首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The production of apolipoprotein B (apoB)-containing lipoproteins by the liver is regulated by a complex series of processes involving apoB being cotranslationally translocated across the endoplasmic reticulum and assembled into a lipoprotein particle. The translocation of apoB across the endoplasmic reticulum is facilitated by the intraluminal chaperone, microsomal triglyceride transfer protein (MTP). MTP facilitates the translocation and folding of apoB, as well as the addition of lipid to lipid-binding domains (which consist of amphipathic beta sheets and alpha helices). In the absence of MTP or sufficient lipid, apoB exhibits translocation arrest. Thus, apoB translation, translocation, and assembly with lipids to form a core-containing lipoprotein particle occur as concerted processes. Abrogation of >/=1 of these processes diverts apoB into a degradation pathway that is dependent on conjugation with ubiquitin and proteolysis by the proteasome. The nascent core-containing lipoprotein particle that forms within the lumen of the endoplasmic reticulum can be "enlarged" to form a mature very low density lipoprotein particle. Additional studies show that the assembly and secretion of apoB-containing lipoproteins are linked to the cholesterol/bile acid synthetic pathway controlled by cholesterol 7alpha-hydroxylase. Studies in cultured cells and transgenic mice indicate that the expression of cholesterol 7alpha-hydroxylase indirectly regulates the expression of lipogenic enzymes through changes in the cellular content of mature sterol response element binding proteins. Oxysterols and bile acids may also act via the ligand-activated nuclear receptors LXR and FXR to link the metabolic pathways controlling energy balance and lipid metabolism to nutritional state.  相似文献   

2.
3.
LY 294002 (80 micromol/L), an inhibitor of phosphoinositide 3-kinase, was used to investigate the involvement of this enzyme in the insulin-mediated regulation of very low density lipoprotein (VLDL) apolipoprotein B (apoB) output from cultured rat hepatocytes. Newly synthesized apoB was pulse-labeled with [(35)S]methionine and was then allowed to assemble, via an intermediate precursor stage, into mature VLDL during subsequent chase periods. Brefeldin A (BFA, 0.2 microgram/mL) was used to discriminate between the role of insulin in the regulation of the early, compared with the later, events of VLDL assembly, including apoB degradation. Insulin (78 nmol/L), when present during the pulse-labeling and subsequent chase periods, inhibited the secretion of apoB-100 and apoB-48 as VLDL by 53% and 56%, respectively. Degradation of both was concomitantly increased. Secretion of high density lipoprotein apoB, derived from VLDL precursors, was relatively unaffected under these conditions, as was the net synthesis of apoB-100 and apoB-48. The presence of BFA during the pulse-labeling period and subsequent chase period prevented the maturation of VLDL in the insulin-treated and the non-insulin-treated cells. BFA was then removed, allowing the maturation of VLDL to proceed. Removal of insulin at this stage reversed the overall inhibitory effect of insulin. Furthermore, when insulin remained present during this period, the simultaneous presence of LY 294002 also reversed the inhibitory effect of insulin on VLDL apoB output and abolished the increase in apoB degradation. The results suggest that insulin signaling via phosphoinositide 3-kinase inhibited the maturation phase of VLDL assembly by preventing bulk lipid transfer to a VLDL precursor, thus enhancing the degradation of apoB. There was no inhibition of the conversion of newly synthesized apoB into the VLDL precursor form.  相似文献   

4.
To elucidate the role of the microsomal triglyceride transfer protein (MTP) in lipoprotein assembly, MTP and apolipoprotein B-53 (apoB 53; the N-terminal 53% of apoB) were expressed in HeLa cells. The results showed that apoB-53 could be expressed in HeLa cells with or without expression of MTP. In contrast, efficient secretion of apoB-53 required expression of MTP. Ultracentrifugal density flotation analysis showed that apoB-53 was secreted predominantly as a particle with the density of high density lipoprotein. An essentially identical apoB-53 particle density distribution was obtained after transient expression of apoB-53 in McArdle RH-7777 rat hepatoma cells. The mass of apoB-53 secreted was greater, and the flotation density was lower, from cells fed lipid, suggesting that apoB secretion in HeLa cells was regulated by lipid availability, similar to what has been described for lipoprotein-producing cell lines. These results indicate that MTP is necessary and sufficient to direct the regulated secretion of apoB-53 in HeLa cells.  相似文献   

5.
Microsomal triglyceride transfer protein (MTP), essential for apolipoprotein B (apoB) biosynthesis, evolved as a phospholipid transfer protein and acquired triglyceride transfer activity during a transition from invertebrates to vertebrates. But it is unknown whether MTP directly transfers lipids onto apoB in vivo and, if it does, whether both neutral and polar lipid transfer activities of MTP are critical for lipoprotein assembly. The molecular bases for differences in lipid transfer activities with respect to distinct domains in Drosophila MTP (dMTP) and human MTP (hMTP) are not obvious because both proteins have very similar primary, secondary, and tertiary structures. We used an in vivo approach to delineate physiological significance of these distinct lipid transfer activities by expressing dMTP (transfers phospholipids) and hMTP (transfers phospholipids and triglycerides) orthologs using adenoviruses in liver-specific MTP-deficient (L-MTP(-/-)) mice that have low plasma and high hepatic lipids. Both orthologs improved plasma lipids but plasma triglycerides were lower in dMTP mice due to lower hepatic triglyceride and apoB production. Hepatosteatosis in L-MTP(-/-) mice was ameliorated to similar levels by both. Attenuation of hepatosteatosis upon dMTP expression pertained to enhanced β-oxidation with no changes in lipogenesis. Phospholipid transfer activity of MTP promoted biogenesis of both apoB48 and apoB100-containing very low density lipoprotein in addition to a phospholipid-rich apoB48-containing high-density lipoprotein particle. Triglyceride transfer activity augmented the biosynthesis of triglyceride-rich lipoproteins by increasing the formation of these particles in the lumen of the endoplasmic reticulum. CONCLUSION: Based on these findings, we posit that the selective inhibition of MTP triglyceride transfer activity might reduce hyperlipidemia while protecting liver from excess lipid accumulation.  相似文献   

6.
The microsomal triglyceride (TG) transfer protein (MTP) is a heterodimeric lipid transfer protein that catalyzes the transport of triglyceride, cholesteryl ester, and phosphatidylcholine between membranes. Previous studies showing that the proximal cause of abetalipoproteinemia is an absence of MTP indicate that MTP function is required for the assembly of the apolipoprotein B (apoB) containing plasma lipoproteins, i.e., very low density lipoproteins and chylomicrons. However, the precise role of MTP in lipoprotein assembly is not known. In this study, the role of MTP in lipoprotein assembly is investigated using an inhibitor of MTP-mediated lipid transport, 2-[1-(3, 3-diphenylpropyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-o ne (BMS-200150). The similarity of the IC50 for inhibition of bovine MTP-mediated TG transfer (0.6 microM) to the Kd for binding of BMS-200150 to bovine MTP (1.3 microM) strongly supports that the inhibition of TG transfer is the result of a direct effect of the compound on MTP. BMS-200150 also inhibits the transfer of phosphatidylcholine, however to a lesser extent (30% at a concentration that almost completely inhibits TG and cholesteryl ester transfer). When BMS-200150 is added to cultured HepG2 cells, a human liver-derived cell line that secretes apoB containing lipoproteins, it inhibits apoB secretion in a concentration dependent manner. These results support the hypothesis that transport of lipid, and in particular, the transport of neutral lipid by MTP, plays a critical role in the assembly of apoB containing lipoproteins.  相似文献   

7.
Bacterial infection elicits hypertriglyceridemia attributed to increased hepatic production of very low-density lipoprotein (VLDL) particles and decreased peripheral metabolism. The mechanisms underlying VLDL overproduction in sepsis are as yet unclear, but seem to be fed/fasted state-dependent. To learn more about this, we investigated hepatocytes isolated from fasted rats, made endotoxic by 1 mg/kg lipopolysaccharide (LPS) injection, for their ability to secrete the VLDL protein and lipid components. The results were then related to lipogenesis markers and expression of genes critical to VLDL biogenesis. Endotoxic rats showed increased levels of serum VLDL-apoB (10-fold), -triglyceride (2-fold), and -cholesterol (2-fold), whereby circulating VLDL were lipid-poor particles. Similarly, VLDL-apoB secretion by isolated endotoxic hepatocytes was approximately 85% above control, whereas marginal changes in the output of VLDL-lipid classes occurred. This was accompanied by a substantial rise in apoB and a moderate rise in MTP mRNA levels, but with basal de novo formation and efficiency of secretion of triglycerides, cholesterol and cholesteryl esters. These results indicate that during periods of food restriction, endotoxin does not enhance lipid provision to accomplish normal lipidation of overproduced apoB molecules, though this does occur to a sufficient extent to pass the proteasome checkpoint and secretion of lipid-poor, type 2 VLDL takes place.  相似文献   

8.
Abetalipoproteinemia, an inherited human disease characterized by a near-complete absence of the apolipoprotein (apo) B-containing lipoproteins in the plasma, is caused by mutations in the gene for microsomal triglyceride transfer protein (MTP). We used gene targeting to knock out the mouse MTP gene (Mttp). In heterozygous knockout mice (Mttp+/− ), the MTP mRNA, protein, and activity levels were reduced by 50%, in both liver and intestine. Compared with control mice (Mttp+/+), chow-fed Mttp+/− mice had reduced plasma levels of low-density lipoprotein cholesterol and had a 28% reduction in plasma apoB100 levels. On a high-fat diet, the Mttp+/− mice exhibited a marked reduction in total plasma cholesterol levels, compared with those in Mttp+/+ mice. Both the livers of adult Mttp+/− mice and the visceral endoderm of the yolk sacs from Mttp+/− embryos manifested an accumulation of cytosolic fat. All homozygous embryos (Mttp−/−) died during embryonic development. In the visceral endoderm of Mttp−/− yolk sacs, lipoprotein synthesis was virtually absent, and there was a marked accumulation of cytosolic fat droplets. In summary, half-normal MTP levels do not support normal levels of lipoprotein synthesis and secretion, and a complete deficiency of MTP causes lethal developmental abnormalities, perhaps because of an impaired capacity of the yolk sac to export lipids to the developing embryo.  相似文献   

9.
Overproduction of apolipoprotein B (apoB)-containing lipoproteins by the liver and the intestine is 1 of the hallmarks of insulin resistance and type 2 diabetes and a well-established risk factor of cardiovascular disease. The assembly of apoB lipoproteins is regulated by the availability of lipids that form the neutral lipid core (triacylglycerol and cholesteryl ester) and the limiting lipoprotein monolayer (phospholipids and cholesterol). Although tremendous advances have been made over the past decade toward understanding neutral lipid and phospholipid biosynthesis and neutral lipid storage in cytosolic lipid droplets (LDs), little is known about the mechanisms that govern the transfer of lipids to the lumen of the endoplasmic reticulum for apoB lipidation. ApoB-synthesizing organs can deposit synthesized neutral lipids into at least 3 different types of LDs, each decorated with a subset of specific proteins: perilipin-decorated cytosolic LDs, and 2 types of LDs formed in the lumen of the endoplasmic reticulum, the secretion-destined LDs containing apoB, and resident lumenal LDs coated with microsomal triglyceride transfer protein and exchangeable apolipoproteins. This brief review will address the current knowledge of lumenal lipid metabolism in the context of apoB assembly and lipid storage.  相似文献   

10.
To explore the process of lipoprotein assembly, plasmids encoding truncated forms of apolipoprotein B (apoB) were transfected into Chinese hamster ovary (CHO) fibroblasts. (One, encoding apoB53, the N-terminal 53% of apoB100, can direct the assembly and secretion of lipoproteins when expressed in hepatoma cells, while the other, encoding the shorter apoB15, does not direct lipoprotein assembly.) Expression of apoB15 in CHO cells resulted in the accumulation of apoB15 protein in both medium and cells. In contrast, apoB was not detectable in medium or within CHO cells transfected with the plasmid encoding apoB53, despite the expression of apoB53 mRNA. ApoB53 did accumulate within transfected cells incubated with the thiol protease inhibitor N-acetylleucylleucylnorleucinal (ALLN), suggesting that it is synthesized but completely degraded in the absence of the inhibitor. ApoB53 was not secreted despite its presence within ALLN-treated cells. Essentially all the apoB53 that accumulated in microsomes from ALLN-treated cells was associated with the membrane and was susceptible to degradation by exogenous trypsin, indicating exposure on the cytoplasmic face of the membrane. Thus, translocation of apoB53 across the endoplasmic reticulum membrane is blocked. However, the apoB53 bound to concanavalin A, suggesting that it is glycosylated and therefore partly exposed to the lumen as well. ApoB requires a unique process, not expressed in CHO fibroblasts, for its complete translocation and entrance into the secretory pathway. This process might account for the inability of abetalipoproteinemic patients to secrete apoB.  相似文献   

11.
gamma-Tocotrienol (gamma-T3), a naturally occurring analog of tocopherol (vitamin E), has been shown to have a hypocholesterolemic effect in animals and humans. Unlike tocopherol, it has also been shown to reduce plasma apoB levels in hypercholesterolemic subjects. The aim of this study was to define the mechanism of action of gamma-T3 on hepatic modulation of apoB production using cultured HepG2 cells as the model system. HepG2 cells preincubated with gamma-T3 were initially shown to inhibit the rate of incorporation of [14C]acetate into cholesterol in a concentration- and time-dependent manner, with a maximum 86+/-3% inhibition at 50 micromol/L observed within 6 hours. gamma-T3, on the other hand, had no significant effect on the uptake of [14C]glycerol into pools of cellular triacylglycerol and phospholipid relative to untreated control. The rate of apoB synthesis and secretion was then studied by an [35S]methionine pulse-labeling experiment and quantified by immunoprecipitating apoB on chasing up to 3 hours. An average reduction of 24+/-3% in labeled apoB in the media was apparent with gamma-T3 despite a 60+/-2% increase in apoB synthesis. Fractionation of secreted apoB revealed a relatively denser lipoprotein particle, suggesting a less stable particle. Using a digitonin-permeabilized HepG2 cell system, the effects of gamma-T3 on apoB translocation and degradation in the endoplasmic reticulum were further investigated. The generation of a specific N-terminal 70-kDa proteolytic fragment proved to be a sensitive measure of the rate of apoB translocation and degradation. The abundance of this fragment increased significantly in gamma-T3-treated cells relative to untreated control cells (50+/-21%) after 2 hours of chase. In addition, the presence of gamma-T3 resulted in an average decrease of 64+/-8% in intact apoB. Taken together, the data suggest that gamma-T3 stimulates apoB degradation possibly as the result of decreased apoB translocation into the endoplasmic reticulum lumen. It is speculated that the lack of cholesterol availability reduces the number of secreted apoB-containing lipoprotein particles by limiting translocation of apoB into the endoplasmic reticulum lumen.  相似文献   

12.
BACKGROUND/AIMS: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. METHODS AND RESULTS: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and activities of diacylglycerol acyltransferase (DGAT) and microsomal triglyceride transfer protein (MTP) are similar in Apoe(-/-) and wild type mice. In addition, apoB synthesis was not decreased in Apoe(-/-) cells. Thus, the accumulation of lipid in these cells is not attributable to perturbed TG turnover, apoB synthesis, and the activities of DGAT and MTP. Inhibition of MTP had a more profound impact on the secretion of VLDL-TG from wild type hepatocytes than Apoe(-/-) hepatocytes, indicating that MTP was more limiting for the production of VLDL-TG from wild type cells. In marked contrast to the MTP-deficient model of fatty liver, electron microscopy of lipid-stained liver sections of Apoe(-/-) mice revealed an accumulation of lipid in numerous small, putative ER-derived vesicles and in the cytosol. No abnormalities were observed in the Golgi of Apoe(-/-) mice. CONCLUSIONS: These results suggest that the removal of lipids from the early or intermediary compartments of the secretory pathway of hepatocytes is impaired in Apoe(-/-) mice.  相似文献   

13.
Atorvastatin is a new HMG-CoA reductase inhibitor that strongly lowers plasma cholesterol and triglyceride (TG) levels in humans and animals. Since previous data indicated that atorvastatin has prolonged inhibition of hepatic cholesterol synthesis, we tested whether this longer duration of inhibitory effect on cholesterol synthesis decreased hepatic lipoprotein secretion in vitro. We used the HepG2 hepatoma cell line to: (1) determine the time required until levels of secreted apo B-100 and TG declined significantly, (2) examine the relation to the mass of cellular cholesteryl ester (CE) and (3) test microsomal triglyceride transfer protein (MTP) activity which leads to decreased apo B-100 production. Although atorvastatin significantly inhibited cholesterol synthesis in HepG2 cells regardless of treatment duration (1, 14 or 24 h), it did not inhibit TG synthesis. Apo B-100 and TG secretion were unchanged after 1-h atorvastatin treatment, but declined significantly after 24-h treatment. Atorvastatin treatment also reduced cellular CE mass, exhibiting both time- and dose-dependency. Mevalonolactone, a product of HMG-CoA reductase, attenuated the inhibitory effects of atorvastatin. Atorvastatin strongly reduced mRNA levels of MTP, whereas it did not inhibit MTP activity as measured by TG transfer assay between liposomes. Simvastatin also induced treatment- and time-dependent reductions in apo B-100, whereas the MTP inhibitor BMS-201038 exhibited no time dependency, instead inhibiting this variable even on 1-h treatment. These results indicate that reduced apo B-100 secretion caused by atorvastatin is a secondary result owing to decreased lipid availability, and that atorvastatin's efficacy depends on the duration of cholesterol synthesis inhibition in the liver.  相似文献   

14.
The cDNA encoding the N-terminal 41% of human apolipoprotein B (apoB), apoB-41, was transfected into nonhepatic, nonintestinal, mammary-derived mouse cells (C127) to generate stably transfected cells expressing human apoB-41 (C127B-41). As determined by centrifugation, apoB-41 is secreted exclusively on lipoproteins (LPs) having a peak density of 1.13 g/ml. Electron microscopy of apoB-41-containing LPs purified by immunoaffinity chromatography showed round particles about 12 nm in diameter. No discoidal particles were observed. Characterization of apoB-41-associated lipids after labeling C127B-41 cells with [3H]oleate and immunoprecipitating the secreted LPs with antibodies to apoB showed that 3H-labeled triacylglycerols were a major lipid class and accounted for about 54% of the total labeled lipids. Cholesterol esters and phospholipids accounted for about 6% and 22%, respectively. Incubation of cells with 0.4 mM oleate resulted in an increased incorporation of the added oleate into lipids associated with secreted apoB-41, along with a 2- to 3-fold increased secretion of apoB-41. The newly formed LPs appear to be transported through the Golgi complex, as brefeldin A (1 microgram/ml) and monensin (1 microM) greatly reduced (> 90%) the secretion of labeled apoB-41 and the amount of triacylglycerol and phospholipid associated with it. Microsomal triacylglycerol transfer protein (MTP) was not detected in these cells. Taken together, the data presented demonstrate that apoB-41 can direct the assembly and secretion of LPs that contain a triacylglycerol-rich core in nonhepatic cells that apparently lack MTP. These cells, therefore, represent an important model for studying LP assembly and may offer some advantages over cultured hepatic or intestinal cells that express their endogenous apoB gene.  相似文献   

15.
Although many steatogenic drugs inhibit mitochondrial fatty acid beta-oxidation, limited information is available on possible effects on hepatic lipoprotein secretion. In the endoplasmic reticulum (ER) lumen, microsomal triglyceride transfer protein (MTP) lipidates apolipoprotein B (Apo B), to form triglyceride (TG)-rich very low density lipoprotein (VLDL) particles, which follow vesicular flow to the plasma membrane to be secreted, whereas incompletely lipidated Apo B particles are partly degraded. We studied hepatic MTP activity, the lipoproteins present in the ER lumen, and hepatic lipoprotein secretion 4 hours after administration of a single dose of amineptine (1 mmol/kg), amiodarone (1 mmol/kg), doxycycline (0.25 mmol/kg), tetracycline (0.25 mmol/kg), tianeptine (0.5 mmol/kg), or pirprofen (2 mmol/kg) in mice. These various doses have been shown previously to markedly inhibit fatty acid oxidation after a single dose, and to trigger steatosis either after repeated doses (doxycycline) or a single dose (other compounds) in mice. In the present study, amineptine, amiodarone, pirprofen, tetracycline, and tianeptine, but not doxycycline, inhibited MTP activity in vitro, decreased ex vivo MTP activity in the hepatic homogenate of treated mice, decreased TG in the luminal VLDL fraction of hepatic microsomes of treated mice, and decreased in vivo hepatic lipoprotein secretion (TG and Apo B). In conclusion, several steatogenic drugs inhibit not only mitochondrial beta-oxidation, as previously shown, but also MTP activity, Apo B lipidation into TG-rich VLDL particles, and hepatic lipoprotein secretion. Drugs with these dual effects may be more steatogenic than drugs acting only on beta-oxidation or only MTP.  相似文献   

16.
17.
Emerging evidence suggests that overproduction of intestinally derived apolipoprotein (apo) B48-containing lipoprotein particles may be an important contributor to both fasting and postprandial dyslipidemia in insulin-resistant states. Mechanisms regulating the assembly and secretion of apoB48-containing lipoproteins are not fully understood particularly in the diabetic/insulin-resistant intestine. In the present study, we have investigated the density profile of apoB48 lipoproteins assembled in primary hamster enterocytes. Both intracellular and secreted apoB48 particles were examined in intestinal enterocytes isolated from normal or insulin-resistant fructose-fed hamsters, as well as in enterocytes treated with exogenous oleic acid. Microsomal luminal contents and culture media were analyzed by discontinuous and sequential ultracentrifugation on sucrose and KBr gradients, respectively. ApoB48 was mostly secreted on VLDL-, LDL-, and denser HDL-sized particles in the fasting state. In pulse-chase labeling experiments, nascent apoB48-containing particles initially accumulated in the microsomal lumen as HDL-sized particles, with subsequent formation of apoB48-VLDL particles, with only a minute amount of chylomicrons observed. Treatment with 720 mu mol/L of oleic acid, increased microsomal apoB48 HDL synthesis, and induced a marked shift toward lighter more buoyant particles. A marked enhancement in assembly of apoB48-containing lipoproteins was also observed in the microsomal lumen of fructose-fed hamster enterocytes, suggesting facilitated assembly and secretion of dense intestinal lipoprotein particles in insulin-resistant states. Overall, these observations suggest that a major proportion of apoB48-containing lipoprotein particles is assembled and secreted as highly dense, HDL-sized particles. The production of these small, dense, and potentially atherogenic apoB48 particles can be stimulated by increased free fatty acid flux as well as in insulin-resistant diabetes.  相似文献   

18.
Microsomal triglyceride transfer protein (MTP) is a lipid transfer protein that is required for the assembly and secretion of very low density lipoproteins (VLDL) by the liver and chylomicrons by the intestine. The common G-493T polymorphism of the MTP promoter has been shown to be associated with decreased plasma LDL-cholesterol and ApoB content of VLDL. The purpose of the present study was, therefore, to investigate the association of this mutation with variations in lipid and apoprotein levels, lipoprotein subclass profiles and coronary heart disease (CHD) risk in a population-based sample of 1226 male and 1284 female Framingham Offspring participants. In men and women, no significant association was found between the G-493T MTP polymorphism and variations of plasma levels of total cholesterol, LDL-cholesterol, apoprotein B, HDL-cholesterol, apoprotein AI and triglycerides. In order to further investigate potential relationships with variations of lipoprotein phenotypes, lipoprotein subclass profiles were measured using automated nuclear magnetic resonance (NMR) spectroscopy. Each NMR profile yielded information on lipid mass of VLDL, LDL, and HDL subclasses. In both genders, there was no significant association between the G-493T polymorphism and variability of lipoprotein subclass distributions or lipoprotein particle size. Furthermore, no significant association was found between the polymorphism of the MTP promoter and prevalence or the age of onset of CHD. Thus, our results suggest that the G-493T mutation in the MTP promoter is unlikely to have significant implications for cardiovascular disease in men and women.  相似文献   

19.
Insulin resistance is strongly associated with metabolic dyslipidemia, which is largely a postprandial phenomenon. Though previously regarded as a consequence of delayed triglyceride-rich lipoprotein clearance, emerging evidence present intestinal overproduction of apoB-48-containing lipoproteins as a major contributor to postprandial dyslipidemia. The majority of mechanistic information is however derived from animal models, namely the fructose-fed Syrian Golden hamster, and extension to human studies to date has been limited. Work in our laboratory has established that aberrant insulin signalling exists in the enterocyte, and that inflammation appears to induce intestinal insulin resistance. The intestine is a major site of lipid synthesis in the body, and upregulated intestinal de novo lipogenesis and cholesterogenesis have been noted in insulin resistant and diabetic states. There is also enhanced dietary lipid absorption attributable to changes in ABCG5/8, NPC1L1, CD36/FAT, and FATP4. Proteins that are involved in chylomicron assembly and secretion, including MTP, MGAT, DGAT, apoAI-V, and Sar1 GTPase, show evidence of increased expression and activity levels. Increased circulating free fatty acids, typically observed in insulin resistant states, may serve to deliver lipid substrates to the intestine for enhanced chylomicron assembly and secretion. To compound the dysregulation of intestinal lipid metabolism, there are changes in the secretion of gut-derived peptides, which include GLP-1, GLP-2, and GIP. Thus, accumulating evidence presents intestinal lipoprotein secretion as a highly regulated process that is sensitive to perturbations in whole body energy homeostasis, and is severely perturbed in insulin resistant states.  相似文献   

20.
Apolipoprotein (apo) B exists in two forms apoB100 and apoB48. ApoB100 is present on very low-density lipoproteins (VLDL), intermediate density lipoproteins (IDL) and LDL. ApoB100 assembles VLDL particles in the liver. This process starts by the formation of a pre-VLDL, which is retained in the cell unless converted to the triglyceride-poor VLDL2. VLDL2 is secreted or converted to VLDL1 by a bulk lipidation in the Golgi apparatus. ApoB100 has a central role in the development of atherosclerosis. Two proteoglycan-binding sequences in apoB100 have been identified, which are important for retaining the lipoprotein in the intima of the artery. Retention is essential for the development of the atherosclerotic lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号