首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
In Escherichia coli, each subunit of the trimeric channel protein AmtB carries a hydrophobic pore for transport of NH(4)(+) across the cytoplasmic membrane. Positioned along this substrate conduction pathway are two conserved elements--a pair of hydrogen-bonded histidines (H168/H318) located within the pore itself and a set of aromatic residues (F107/W148/F215) at its periplasmic entrance--thought to be critical to AmtB function. Using site-directed mutagenesis and suppressor genetics, we examined the requirement for these elements in NH(4)(+) transport. This analysis shows that AmtB can accommodate, by either direct substitution or suppressor generation, acidic residues at one or both positions of the H168/H318 twin-histidine site while retaining near wild-type activity. Similarly, study of the F107/W148/F215 triad indicates that good-to-excellent AmtB function is preserved upon individual and simultaneous replacement of these aromatic amino acids with aliphatic residues. Our findings lead us to conclude that these elements and their component parts are not required for AmtB function, but instead serve to optimize its performance.  相似文献   

2.
The conduction mechanism of Escherichia coli AmtB, the structurally and functionally best characterized representative of the ubiquitous Amt/Rh family, has remained controversial in several aspects. The predominant view has been that it facilitates the movement of ammonium in its uncharged form as indicated by the hydrophobic nature of a pore located in the center of each subunit of the homotrimer. Using site-directed mutagenesis and a combination of biochemical and crystallographic methods, we have investigated mechanistic questions concerning the putative periplasmic ammonium ion binding site S1 and the adjacent periplasmic "gate" formed by two highly conserved phenylalanine residues, F107 and F215. Our results challenge models that propose that NH(4)(+) deprotonation takes place at S1 before NH(3) conduction through the pore. The presence of S1 confers two critical features on AmtB, both essential for its function: ammonium scavenging efficiency at very low ammonium concentration and selectivity against water and physiologically important cations. We show that AmtB activity absolutely requires F215 but not F107 and that removal or obstruction of the phenylalanine gate produces an open but inactive channel. The phenyl ring of F215 must thus play a very specific role in promoting transfer and deprotonation of substrate from S1 to the central pore. We discuss these results with respect to three distinct mechanisms of conduction that have been considered so far. We conclude that substrate deprotonation is an essential part of the conduction mechanism, but we do not rule out net electrogenic transport.  相似文献   

3.
The ammonium/methylammonium transport (Amt) proteins of enteric bacteria and their homologues, the methylammonium/ammonium permeases of Saccharomyces cerevisiae, are required for fast growth at very low concentrations of the uncharged species NH(3). For example, they are essential at low ammonium (NH(4)+ + NH(3)) concentrations under acidic conditions. Based on growth studies in batch culture, the Amt protein of Salmonella typhimurium (AmtB) cannot concentrate either NH(3) or NH(4)+ and this organism appears to have no means of doing so. We now show that S. typhimurium releases ammonium into the medium when grown on the alternative nitrogen source arginine and that outward diffusion of ammonium is enhanced by the activity of AmtB. The latter result indicates that AmtB acts bidirectionally. We also confirm a prediction that the AmtB protein would be required at pH 7.0 in ammonium-limited continuous culture, i.e., when the concentration of NH(3) is < or =50 nM. Together with our previous studies, current results are in accord with the view that Amt and methylammonium/ammonium permease proteins increase the rate of diffusion of the uncharged species NH(3) across the cytoplasmic membrane. These proteins are examples of protein facilitators for a gas.  相似文献   

4.
AmtB, a member of the Rh/Amt/MEP superfamily, is responsible for ammonia transport in Escherichia coli. The ammonia pathway in AmtB consists of a narrow hydrophobic lumen in between hydrophilic periplasmic and cytoplasmic vestibules. A series of molecular dynamics simulations (greater than 0.4 μs in total) were performed to determine the mechanism of solute recruitments and selectivity by the periplasmic vestibule. The results show that the periplasmic vestibule plays a crucial role in solute selectivity, and its solute preferences follow the order of NH4(+) > NH3 > CO2. Based on our results, NH4(+) recruitment is initiated by its interaction with either E70 or E225, highly conserved residues located at the entrance of the vestibule. Subsequently, the backbone carbonyl groups at the periplasmic vestibule direct NH4(+) to the conserved aromatic cage at the bottom of the vestibule (known as the Am1 site). The umbrella sampling simulations suggest that the conserved residue D160 is not directly involved in the ammonia conduction; rather its main function is to keep the structure of periplasmic vestibule intact. The MD simulations also revealed that two partially stacked phenyl rings of F107 and F215, separating the periplasmic vestibule from the hydrophobic lumen, flip open and closed simultaneously with a frequency of approximately 10(8) flipping events per second. These results show how the periplasmic vestibule selectively recruits NH4(+) to the Am1 site, and also that the synchronized flipping of two phenyl rings potentially facilitates the solute transition from the periplasmic vestibule to the hydrophobic lumen in the Rh/Amt/MEP superfamily.  相似文献   

5.
The Amt/Mep ammonium channels are trimers in which each monomer contains a long, narrow, hydrophobic pore. Whether the substrate conducted by these pores is NH(3) or NH(4)(+) remains controversial. Substitution of leucine for the highly conserved tryptophan 148 residue at the external opening to Escherichia coli AmtB pores allowed us to address this issue. A strain carrying AmtB(W148L) accumulates much larger amounts of both [(14)C]methylammonium and [(14)C]methylglutamine in a washed cell assay than a strain carrying wild-type AmtB. Accumulation of methylammonium occurs within seconds and appears to reflect channel conductance, whereas accumulation of methylglutamine, which depends on the ATP-dependent activity of glutamine synthetase, increases for many minutes. Concentration of methylammonium was most easily studied in strains that lack glutamine synthetase. It is eliminated by the protonophore carbonyl cyanide m-chlorophenyl hydrazone and is approximately 10-fold higher in the strain carrying AmtB(W148L) than wild-type AmtB. The results indicate that AmtB allows accumulation of CH(3)NH(3)(+) ion in response to the electrical potential across the membrane and that the rate of flux through AmtB(W148L) is approximately 10 times faster than through wild-type AmtB. We infer that both mutant and wild-type proteins also carry NH(4)(+). Contrary to our previous views, we assess that E. coli AmtB does not differ from plant Amt proteins in this regard; both carry ions. We address the role of W148 in decreasing the activity and increasing the selectivity of AmtB and the implications of our findings with respect to the function of Rh proteins, the only known homologues of Amt/Mep proteins.  相似文献   

6.
The histidine periplasmic permease of Salmonella typhimurium has been partially purified and reconstituted into proteoliposomes. In this in vitro preparation, transport activity is completely dependent on the presence of all four permease proteins (HisJ, HisQ, HisM, and HisP) and on internal ATP. The reconstituted system shows initial rates of transport that are comparable to those obtained with right-side-out membrane vesicles and it establishes a 100-fold concentration gradient for histidine. Proteoliposomes also transport histidine when GTP replaces ATP. Proteoliposomes do not catalyze significant ATP hydrolysis until histidine transport is initiated by addition of substrate along with HisJ, the water-soluble histidine-binding protein. Both initially and throughout the course of substrate transport there is a concomitant hydrolysis of ATP, with an apparent stoichiometry (ATP/histidine) of 5:1. These experiments demonstrate directly that ATP is the source of energy for periplasmic permeases, thus resolving previous controversies on this topic.  相似文献   

7.
Rh (Rhesus) proteins (D, CcEe) are expressed in red cells (RBC) in association with other membrane proteins (RhAG, LW, CD47 and GPB). By interacting with the spectrin-based skeleton through protein 4.2 and ankyrin, the Rh complex contributes to the maintenance of the mechanical properties of the erythrocyte membrane. The RH system is one of the most immunogenic and polymorphic human blood group system. Molecular basis of most Rh phenotypes, including the Rh(null) phenotype associated with hemolytic anemia, have been determined. The demonstration that the RHD-positive locus is composed of the RHD and RHCE genes, whereas the RHD gene is deleted in most RhD-negative individuals, allowed fetal RhD genotyping by non-invasive PCR assays for antenatal diagnosis of pregnancy at risk for Rh hemolytic disease of the newborn. In mammals, the Rh protein family includes two non-erythroid members, RhBG and RhCG, mainly expressed in liver and kidney, two organs specialized in ammonia genesis and excretion. Functional analyses in heterologous systems revealed that RhAG, RhBG and RhCG can mediate ammonium (NH(3) and/or NH(4)(+)) transport across the cell membrane and might represent mammalian specific ammonium transporters. Furthermore, recent studies performed in human and murine red blood cells (RBC) indicate that RhAG facilitates CH(3)NH(2)/NH(3) movement across the membrane and represents a potential example of gas channel. The crystallographic structure of the bacterial ammonia channel AmtB and functional studies showing that AmtB conducts NH(3) into reconstituted vesicles is fully consistent with these latter studies. In RBCs, RhAG may transport NH(3) to detoxifying organs like kidney and liver and with non-erythroid tissues orthologs may contribute to regulation of the acid-base balance.  相似文献   

8.
The membrane-bound complex of bacterial periplasmic permeases consists of two hydrophobic integral membrane proteins and two copies of a hydrophilic ATP-binding protein. The ATP-binding proteins from all periplasmic permeases display a high level of sequence similarity and are referred to as "conserved components." The conserved component from the histidine permease, HisP, has been postulated on the basis of genetic evidence to be accessible at the exterior membrane surface, in contrast to the commonly postulated association with the interior membrane surface as peripheral membrane proteins. We have used proteolysis and biotinylation of membrane vesicles to show that HisP is accessible to these reagents at the external surface and that this orientation depends on the presence of the two hydrophobic components, HisQ and HisM. Several binding-protein-independent hisP mutants are shown to produce HisP proteins that are more susceptible to proteases from the external membrane surface. Since the hydrophilic component is well conserved also in a group of eukaryotic transporters, which together with many prokaryotic systems form the superfamily of traffic ATPases, this insight about its membrane topology has general implications for understanding the molecular mechanism of action of this large superfamily, which includes the cystic fibrosis transmembrane conductance regulator and multidrug-resistance proteins.  相似文献   

9.
Denitrifying bacteria metabolize nitrogen oxides through assimilatory and dissimilatory pathways. These redox reactions may affect lung physiology. We hypothesized that airway colonization with denitrifying bacteria could alter nitrogen balance in the cystic fibrosis (CF) airway. We measured airway nitrogen redox species before and after antimicrobial therapy for Pseudomonas aeruginosa in patients with CF. We also studied ammonium (NH(4)(+)) and nitric oxide (NO) metabolism in clinical strains of P. aeruginosa in vitro and in CF sputum ex vivo. Ammonium concentrations in both sputum and tracheal aspirates decreased with therapy. Nitric oxide reductase (NOR) was present in clinical strains of P. aeruginosa, which both produced NH(4)(+) and consumed NO. Further, NO consumption by CF sputum was inhibited by tobramycin ex vivo. We conclude that treatment of pseudomonal lung infections is associated with decreased NH(4)(+) concentrations in the CF airways. In epithelial cells, NH(4)(+) inhibits chloride transport, and nitrogen oxides inhibit amiloride-sensitive sodium transport and augment chloride transport. We speculate that normalization of airway nitrogen redox balance could contribute to the beneficial effects of antipseudomonal therapy on lung function in CF.  相似文献   

10.
The protective antigen (PA) moiety of anthrax toxin forms a heptameric pore in endosomal membranes of mammalian cells and translocates the enzymatic moieties of the toxin to the cytosol of these cells. Phenylalanine-427 (F427), a solvent-exposed residue in the lumen of the pore, was identified earlier as being crucial for the transport function of PA. The seven F427 residues were shown in electrophysiological studies to form a clamp that catalyzes protein translocation through the pore. Here, we demonstrate by a variety of tests that certain F427 mutations also profoundly inhibit the conformational transition of the heptameric PA prepore to the pore and thereby block pore formation in membranes. Lysine, arginine, aspartic acid, or glycine at position 427 strongly inhibited this acidic pH-induced conformational transition, whereas histidine, serine, and threonine had virtually no effect on this step, but inhibited translocation instead. Thus, it is possible to inhibit pore formation or translocation selectively, depending on the choice of the side chain at position 427; and the net inhibition of the PA transport function by any given F427 mutation is the product of its effects on both steps. Mutations inhibiting either or both steps elicited a strong dominant-negative phenotype. These findings demonstrate the dual functions of F427 and underline its central role in transporting the enzymatic moieties of anthrax toxin across membranes.  相似文献   

11.
The mammalian rhesus (Rh) proteins that carry the Rh blood group antigens of red blood cells are related to the ammonium channel (Amt) proteins found in both pro- and eukaryotes. However, despite their clinical importance the structure of the Rh antigens is presently unknown. We have constructed homology models of the human Rh proteins, RhD and RhAG using the structure of the Escherichia coli ammonia channel AmtB as a template, together with secondary structure predictions and the extensive available biochemical data for the Rh proteins. These models suggest that RhAG and the homologous non-erythrocyte Rhesus glycoproteins, RhBG and RhCG, have a very similar channel architecture to AmtB. By comparison, RhD and RhCE have a different arrangement of residues, indicating that if they function as ammonia channels at all, they must do so by a different mechanism. The E. coli AmtB protein is a homotrimer and our models provoke a reassessment of the widely accepted tetrameric model of the organisation of the erythrocyte Rh complex. A critical analysis of previously published data, together with sequencing yield data, lead us to suggest that the erythrocyte Rh complex could indeed also be trimeric.  相似文献   

12.
X-ray crystal structures of lactose permease (LacY) reveal pseudosymmetrically arranged N- and C-terminal six-transmembrane helix bundles surrounding a deep internal cavity open on the cytoplasmic side and completely closed on the periplasmic side. The residues essential for sugar recognition and H(+) translocation are located at the apex of the cavity and are inaccessible from the outside. On the periplasmic side, helices I/II and VII from the N- and C- six helix bundles, respectively, participate in sealing the cavity from the outside. Three paired double-Cys mutants-Ile-40 --> Cys/Asn-245 --> Cys, Thr-45 --> Cys/Asn-245 --> Cys, and Ile-32 --> Cys/Asn-245 --> Cys-located in the interface between helices I/II and VII on the periplasmic side of LacY were constructed. After cross-linking with homobifunctional reagents less than approximately 15 A in length, all three mutants lose the ability to catalyze lactose transport. Strikingly, however, full or partial activity is observed when cross-linking is mediated by flexible reagents greater than approximately 15 A in length. The results provide direct support for the argument that transport via LacY involves opening and closing of a large periplasmic cavity.  相似文献   

13.
Homologues of the amtB gene of enteric bacteria exist in all three domains of life. Although their products are required for transport of the ammonium analogue methylammonium in washed cells, only in Saccharomyces cerevisiae have they been shown to be necessary for growth at low NH4+ concentrations. We now demonstrate that an amtB strain of Escherichia coli also grows slowly at low NH4+ concentrations in batch culture, but only at pH values below 7. In addition, we find that the growth defect of an S. cerevisiae triple-mutant strain lacking the function of three homologues of the ammonium/methylammonium transport B (AmtB) protein [called methylammonium/ammonium permeases (MEP)] that was observed at pH 6.1 is relieved at pH 7.1. These results provide direct evidence that AmtB participates in acquisition of NH4+/NH3 in bacteria as well as eucarya. Because NH3 is the species limiting at low pH for a given total concentration of NH4+ + NH3, results with both organisms indicate that AmtB/MEP proteins function in acquisition of the uncharged form. We confirmed that accumulation of [14C]methylammonium depends on its conversion to γ-N-methylglutamine, an energy-requiring reaction catalyzed by glutamine synthetase, and found that at pH 7, constitutive expression of AmtB did not relieve the growth defects of a mutant strain of Salmonella typhimurium that appears to require a high internal concentration of NH4+/NH3. Hence, contrary to previous views, we propose that AmtB/MEP proteins increase the rate of equilibration of the uncharged species, NH3, across the cytoplasmic membrane rather than actively transporting—that is, concentrating—the charged species, NH4+.  相似文献   

14.
Amt proteins are ubiquitous channels for the conduction of ammonia in archaea, eubacteria, fungi, and plants. In Escherichia coli, previous studies have indicated that binding of the PII signal transduction protein GlnK to the ammonia channel AmtB regulates the channel thereby controlling ammonium influx in response to the intracellular nitrogen status. Here, we describe the crystal structure of the complex between AmtB and GlnK at a resolution of 2.5 A. This structure of PII in a complex with one of its targets reveals physiologically relevant conformations of both AmtB and GlnK. GlnK interacts with AmtB almost exclusively via a long surface loop containing Y51 (T-loop), the tip of which inserts deeply into the cytoplasmic pore exit, blocking ammonia conduction. Y51 of GlnK is also buried in the pore exit, explaining why uridylylation of this residue prevents complex formation.  相似文献   

15.
A Ca2+-dependent transglutaminase (EC 2.3.2.13) has been demonstrated in the eye lenses of several mammalian species [Lorand, L., Hsu, L. K. M., Siefring, G. E., Jr., & Rafferty, N. S. (1981) Proc. Natl. Acad. Sci. USA 78, 1356-1360]. Using [3H]methylamine as a convenient probe for transglutaminase activity, we have explored the action of this enzyme in the bovine eye lens. We could characterize the glutamine residues acting as acyl-donor sites in three beta-crystallin chains, which are the only substrates for lens transglutaminase among the various lens-specific structural proteins, the crystallins. A single glutamine was found to bind [3H]methylamine in each of these three chains: glutamine -9 in beta Bp (beta B2), glutamine -21 in beta B3, and glutamine -23 or -24 in beta A3. The four glutamines are all located in the NH2-terminal regions, which presumably extend from the compact two-domain structure of the beta-crystallin chains. It was, moreover, established that several components of the lens cytoskeleton are substrates for transglutaminase.  相似文献   

16.
The role of subunit a in promoting proton translocation and rotary motion in the Escherichia coli F1Fo ATP synthase is poorly understood. In the membrane-bound Fo sector of the enzyme, H+ binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of subunit c. Protons are thought to reach Asp-61 at the center of the membrane via aqueous channels formed at least in part by one or more of the five TMHs of subunit a. Aqueous access pathways have previously been mapped to surfaces of aTMH4. Here we have substituted Cys into the second and fifth TMHs of subunit a and carried out chemical modification with Ag+ and N-ethylmaleimide to define the aqueous accessibility of residues along these helices. Access to cAsp-61 at the center of the membrane may be mediated in part by Ag+-sensitive residues 248, 249, 251, and 252 in aTMH5. From the periplasmic surface, aqueous access to cAsp-61 may be mediated by silver-sensitive residues 115, 116, 119, 120, 122, and 126 in aTMH2. The Ag+-sensitive residues in TMH2, -4, and -5 form a continuum extending from the periplasmic to the cytoplasmic side of the membrane. In an arrangement of helices supported by second-site revertant and crosslinking analyses, these residues cluster at the interior of a four-helix bundle formed by TMH2-5. The aqueous access pathways at the interior of subunit a may be gated by a swiveling of helices in this bundle, alternately exposing cytoplasmic and periplasmic half channels to cAsp-61 during the H+ transport cycle.  相似文献   

17.
Properties of four two-component bacterial transport systems of the cation/proton antiporter-2 (CPA2) family led to suggestions that this CPA2 subset may use a channel rather than an antiport mechanism [see Booth IR, Edwards MD, Gunasekera B, Li C, Miller S (2005) in Bacterial Ion Channels, eds Kubalski A, Martinac B (Am Soc Microbiol, Washington, DC), pp 21-40]. The transporter subset includes the intensively studied glutathione-gated K(+) efflux systems from Escherichia coli, KefGB, and KefFC. KefG and KefF are ancillary proteins. They are peripheral membrane proteins that are encoded in operons with the respective transporter proteins, KefB and KefC, and are required for optimal efflux activity. The other two-component CPA2 transporters of the subset are AmhMT, an NH(4)(+) (K(+)) efflux system from alkaliphilic Bacillus pseudofirmus OF4; and YhaTU, a K(+) efflux system from Bacillus subtilis. Here a K(+)/H(+) antiport capacity was demonstrated for YhaTU, AmhMT, and KefFC in membrane vesicles from antiporter-deficient E. coli KNabc. The apparent K(m) for K(+) was in the low mM range. The peripheral protein was required for YhaU- and KefC-dependent antiport, whereas both AmhT and AmhMT exhibited antiport. KefFC had the broadest range of substrates, using Rb(+) approximately K(+)>Li(+)>Na(+). Glutathione significantly inhibited KefFC-mediated K(+)/H(+) antiport in vesicles. The inhibition was enhanced by NADH, which presumably binds to the KTN/RCK domain of KefC. The antiport mechanism accounts for the H(+) uptake involved in KefFC-mediated electrophile resistance in vivo. Because the physiological substrate of AmhMT in the alkaliphile is NH(4)(+), the results also imply that AmhMT catalyzes NH(4)(+)/H(+) antiport, which would prevent net cytoplasmic H(+) loss during NH(4)(+) efflux.  相似文献   

18.
The CLC family of Cl(-)-transporting proteins includes both Cl(-) channels and Cl(-)/H(+) exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl(-) ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu(148) and Tyr(445), are known to impair H(+) movement while preserving Cl(-) transport. In the x-ray crystal structure of CLC-ec1, these residues form putative "gates" flanking an ion-binding region. In mutants with both of the gate-forming side chains reduced in size, H(+) transport is abolished, and unitary Cl(-) transport rates are greatly increased, well above values expected for transporter mechanisms. Cl(-) transport rates increase as side-chain volume at these positions is decreased. The crystal structure of a doubly ungated mutant shows a narrow conduit traversing the entire protein transmembrane width. These characteristics suggest that Cl(-) flux through uncoupled, ungated CLC-ec1 occurs via a channel-like electrodiffusion mechanism rather than an alternating-exposure conformational cycle that has been rendered proton-independent by the gate mutations.  相似文献   

19.
Rhesus (Rh) antigens are carried by a membrane complex that includes Rh proteins (D and CcEe), Rh-associated glycoproteins (RhAG), and accessory chains (LW and CD47) associated by noncovalent bonds. In heterologous expression systems, RhAG and its kidney orthologs function as ammonium transporters. In red blood cells (RBCs), it is generally accepted that NH(3) permeates by membrane lipid diffusion. We have revisited these issues by studying RBC and ghosts from human and mouse genetic variants with defects of proteins that comprise the Rh complex. In both normal and mutant cells, stopped-flow analyses of intracellular pH changes in the presence of inwardly directed methylammonium (CH(3)NH(+)(3)+CH(3)NH(2)) or ammonium (NH(+)(4)+NH(3)) gradients showed a rapid alkalinization phase. Cells from human and mouse variants exhibited a decrease in their kinetic rate constants that was strictly correlated to the degree of reduction of their RhAG/Rhag expression level. Rate constants were not affected by a reduction of Rh, CD47, or LW. CH(3)NH(2)/NH(3) transport was characterized by (i) a sensitivity to mercurials that is reversible by 2-mercaptoethanol and (ii) a reduction of alkalinization rate constants after bromelain digestion, which cleaves RhAG. The results show that RhAG facilitates CH(3)NH(2)/NH(3) movement across the RBC membrane and represents a potential example of a gas channel in mammalian cells. In RBCs, RhAG may transport NH(3) to detoxifying organs, like kidney and liver, and together with nonerythroid tissue orthologs may contribute to the regulation of the systemic acid-base balance.  相似文献   

20.
The N- and C-terminal six-helix bundles of lactose permease (LacY) form a large internal cavity open on the cytoplasmic side and closed on the periplasmic side with a single sugar-binding site at the apex of the cavity near the middle of the molecule. During sugar/H(+) symport, an outward-facing cavity is thought to open with closing of the inward-facing cavity so that the sugar-binding site is alternately accessible to either face of the membrane. In this communication, single-molecule fluorescence (F?rster) resonance energy transfer is used to test this model with wild-type LacY and a conformationally restricted mutant. Pairs of Cys residues at the ends of two helices on the cytoplasmic or periplasmic sides of wild-type LacY and the mutant were labeled with appropriate donor and acceptor fluorophores, single-molecule fluorescence resonance energy transfer was determined in the absence and presence of sugar, and distance changes were calculated. With wild-type LacY, binding of a galactopyranoside, but not a glucopyranoside, results in a decrease in distance on the cytoplasmic side and an increase in distance on the periplasmic side. In contrast, with the mutant, a more pronounced decrease in distance and in distance distribution is observed on the cytoplasmic side, but there is no change on the periplasmic side. The results are consistent with the alternating access model and indicate that the defect in the mutant is due to impaired ligand-induced flexibility on the periplasmic side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号