首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two fragments, S66 and S55, of the S glycoprotein of the newly identified canine coronavirus type I (CCoV type I), were expressed in a procariotic system. The purified recombinant proteins of 350 and 366 amino acids in length, respectively, were employed to develop an enzyme-linked immunosorbent assay (ELISA) for the detection of CCoV type I antibodies in dog sera. Four canine sera-positive for CCoV type II, four sera-positive for CCoV type I and 10 negative control sera were examined. Only the sera-positive for CCoV type I strongly reacted with both the proteins, whereas the sera-positive for CCoV type II showed low reactivity in the ELISA test. As CCoV type I seems to be not cultivable in cell cultures, the recombinant fragments of the S protein represent a unique method to study, preliminarily, the immunological and the pathogenetic characteristics of this new virus.  相似文献   

2.
Summary Seven monoclonal antibodies (MAbs) with neutralizing activity against feline infectious peritonitis virus (FIPV) strain 79-1149 (type II) were prepared. When the polypeptide specificity recognized by these monoclonal antibodies (MAbs) was investigated by Western immunoblotting, all of the MAbs reacted with peplomer glycoprotein (S) of the virus. By competitive binding assay these MAbs were found to recognize at least 3 different epitopes. The reactivity of these MAbs with 6 viruses classified as FIPV type I (UCD-1, UCD-2, UCD-3, UCD-4, NW-1, and Black), feline enteric coronavirus (FECV) type II strain 79-1683, canine coronavirus (CCV) strain 1-71, and transmissible gastroenteritis virus (TGEV) strains TO-163 and SH was examined by neutralization tests. All MAbs neutralized FECV strain 79-1683, CCV strain 1-71, and TGEV strains TO-163 and SH, while they did not neutralize the 6 FIPV type I viruses. Moreover, the MAb against TGEV strain TO-163, which has strong neutralizing activity against 7 TGEV viruses, neutralized CCV strain 1-71, FECV strain 79-1683, and FIPV strain 79-1146, but did not neutralize the 6 FIPV type I viruses.These results demonstrated that there are at least 3 epitopes involved in the neutralization of FIPV type II strain 79-1146, and that these epitopes are not present in FIPV type I viruses but are present in FECV strain 79-1683 which does not induce feline infectious peritonitis, TGEV strains TO-163 and SH, and CCV strain 1-71. These results suggest the presence of 2 serotypes of FIPV which can be clearly distinguished by the neutralization test using MAbs.  相似文献   

3.
Two genotype-specific fluorogenic RT-PCR assays were developed for the detection and quantitation of canine coronavirus (CCoV) type I and type II RNA in the faeces of dogs with diarrhoea. Both the fluorogenic assays showed high specificity, sensitivity and reproducibility, allowing a precise quantitation of CCoV type I and type II RNA over a linear range of about eight orders of magnitude (from 101 to 108 copies of standard RNA). Comparison with genotype-specific gel-based RT-PCR assays revealed that the fluorogenic assays were more sensitive and more rapid than conventional amplifications, with a large increase in throughput. The genotype-specific fluorogenic assays were then used to detect and measure viral loads in the faecal samples collected from dogs naturally or experimentally infected with type I, type II, or both genotypes. Of 174 samples collected from naturally infected dogs, 77 were positive for CCoV type I and 46 for CCoV type II. Thirty-eight dogs were found to be infected naturally by both genotypes, with viral RNA titres generally higher for type I in comparison to type II. At the same time, dogs infected experimentally shed type I RNA with higher titres with respect to type II.  相似文献   

4.
This paper characterises a virulent strain (CB/05) of canine coronavirus (CCoV) isolated from the internal organs of pups that had died of a systemic disease without evidence of other common canine pathogens. High viral RNA titres were detected in the internal organs by a real-time RT-PCR assay specific for CCoV type II. Sequence analysis of the 3' end (8.7kb) of the genomic RNA of strain CB/05 revealed conserved structural as well as non-structural proteins, with the exception of a truncated form of non-structural protein 3b. The exceptional form was due to a 38-nucleotide deletion and a frame shift in ORF3b that introduced an early stop codon. By phylogenetic analysis of the structural proteins, the spike (S) protein was found to cluster with feline coronavirus type II strain 79-1683, whereas, the envelope (E), membrane (M) and nucleocapsid (N) proteins segregated together with the reference strain Purdue of transmissible gastroenteritis virus of swine.  相似文献   

5.
Summary.  In this study feline (FECV and FIPV) and canine (CCoV) coronavirus entry into and release from polarized porcine epithelial LLC-PK1 cells, stably expressing the recombinant feline aminopeptidase-N cDNA, were investigated. Virus entry appeared to occur preferentially through the apical membrane, similar to the entry of the related porcine coronavirus transmissible gastroenteritis virus (TGEV) into these cells. However, whereas TGEV is released apically, feline and canine coronaviruses were found to be released from the basolateral side of the epithelial cells. These observations indicate that local infections as caused by TGEV, FECV and CCoV do not strictly correlate with apical release, as suggested by earlier work. Received July 24, 2000 Accepted November 24, 2000  相似文献   

6.
7.
The genetic diversity of 16 canine coronavirus (CCoV) samples is described. Samples were obtained from pups infected naturally living in different areas. Sequence data were obtained from the M gene and pol1a and pol1b regions. The phylogenetic relationships among these sequences and sequences published previously were determined. The canine samples segregated in two separate clusters. Samples of the first cluster were intermingled with reference strains of CCoV genotype and therefore could be assigned to this genotype. The second cluster segregated separately from CCoV and feline coronavirus genotypes and therefore these samples may represent genetic outliers. The reliability of the classification results was confirmed by repeating the phylogenetic analysis with nucleotide and amino acid sequences from multiple genomic regions.  相似文献   

8.
Summary.  Feline infectious peritonitis viruses (FIPVs) are classified into type I and type II serogroups. Here, we report that feline aminopeptidase N (APN), a cell-surface metalloprotease on the intestinal, lung and kidney epithelial cells, is a receptor for type II FIPV but not for type I FIPV. A monoclonal antibody (MAb) R-G-4, which blocks infection of Felis catus whole fetus (fcwf-4) cells by type II FIPV, was obtained by immunizing mice with fcwf-4 cells which are highly susceptible to FIPV. This MAb also blocked infection of fcwf-4 cells by type II feline enteric coronavirus (FECV), canine coronavirus (CCV), and transmissible gastroenteritis virus (TGEV). On the other hand, it did not block infection by type I FIPVs. MAb R-G-4 recognized a polypeptide of relative molecular mass 120–130 kDa in feline intestinal brush-border membrane (BBM) proteins. The polypeptide possessed aminopeptidase activity, and the first 15 N-terminal amino acid sequence was identical to that of the feline APN. Feline intestinal BBM proteins and the polypeptide reacted with MAb R-G-4 (feline APN) inhibited the infectivity of type II FIPV, type II FECV, CCV and TGEV to fcwf-4 cells, but did not inhibit the infectivity of type I FIPVs. Accepted January 19, 1998 Received November 17, 1997  相似文献   

9.
Tumour necrosis factor (TNF)-alpha is a pro-inflammatory cytokine produced by many types of cells. It has been shown that two distinct TNF receptors (TNFRs), TNFR type I (TNFR I) and TNFR type II (TNFR II), have different functions in signal transduction, which is possibly associated with the development of a variety of diseases. In this study, we isolated a feline TNFR I cDNA clone and analysed the expression of TNFR I and TNFR II mRNA in feline lymphoid cells. The deduced amino acid sequence of feline TNFRI cDNA showed 75.8, 62.5 60.9 and 72.1% similarity with those of its human, mouse, rat, and pig counterparts, respectively. The feline TNFR I cDNA was shown to encode extracellular, transmembrane and intracellular domains fundamentally conserved in the homologues of other species. Expression of TNFR I and TNFR II mRNAs was shown to be up-regulated in feline peripheral blood mononuclear cells (PBMC) by stimulation with concanavalin A. Five of six feline lymphoma cell lines were shown to express both TNFR I and TNFR II mRNAs. The expression of TNFR I in PBMC was up-regulated in cats infected with feline immunodeficiency virus (FIV), whereas the expression of TNFR II in PBMC was not different between FIV-infected cats and uninfected cats. The present study indicate that expression of TNFR I and TNFR II may be associated with disease progression, especially in retrovirus infections in cats.  相似文献   

10.
Tumour necrosis factor (TNF)‐α is a pro‐inflammatory cytokine produced by many types of cells. It has been shown that two distinct TNF receptors (TNFRs), TNFR type I (TNFR I) and TNFR type II (TNFR II), have different functions in signal transduction, which is possibly associated with the development of a variety of diseases. In this study, we isolated a feline TNFR I cDNA clone and analysed the expression of TNFR I and TNFR II mRNA in feline lymphoid cells. The deduced amino acid sequence of feline TNFRI cDNA showed 75.8, 62.5 60.9 and 72.1% similarity with those of its human, mouse, rat, and pig counterparts, respectively. The feline TNFR I cDNA was shown to encode extracellular, transmembrane and intracellular domains fundamentally conserved in the homologues of other species. Expression of TNFR I and TNFR II mRNAs was shown to be up‐regulated in feline peripheral blood mononuclear cells (PBMC) by stimulation with concanavalin A. Five of six feline lymphoma cell lines were shown to express both TNFR I and TNFR II mRNAs. The expression of TNFR I in PBMC was up‐regulated in cats infected with feline immunodeficiency virus (FIV), whereas the expression of TNFR II in PBMC was not different between FIV‐infected cats and uninfected cats. The present study indicate that expression of TNFR I and TNFR II may be associated with disease progression, especially in retrovirus infections in cats.  相似文献   

11.
Natural killer T cells (NKT cells) are divided into type I and type II subsets on the basis of differences in their T cell antigen receptor (TCR) repertoire and CD1d-antigen specificity. Although the mode by which type I NKT cell TCRs recognize CD1d-antigen has been established, how type II NKT cell TCRs engage CD1d-antigen is unknown. Here we provide a basis for how a type II NKT cell TCR, XV19, recognized CD1d-sulfatide. The XV19 TCR bound orthogonally above the A' pocket of CD1d, in contrast to the parallel docking of type I NKT cell TCRs over the F' pocket of CD1d. At the XV19 TCR-CD1d-sulfatide interface, the TCRα and TCRβ chains sat centrally on CD1d, where the malleable CDR3 loops dominated interactions with CD1d-sulfatide. Accordingly, we highlight the diverse mechanisms by which NKT cell TCRs can bind CD1d and account for the distinct antigen specificity of type II NKT cells.  相似文献   

12.
Summary cDNA clones spanning the entire region of the peplomer (S) gene of feline infectious peritonitis virus (FIPV) type I strain KU-2 were obtained and their complete nucleotide sequences were determined. A long open reading frame (ORF) encoding 1464 amino acid residues was found in the gene, which was 12 residues longer than the ORF of the FIPV type II strain 79–1146. The sequences of FIPV type I and mainly FIPV type II were compared. The homologies at the N- (amino acid residues 1–693) and C- (residues 694–1464) terminal halves were 29.8 and 60.7%, respectively. This was much lower than that between FIPV type II and other antigenically related coronaviruses, such as transmissible gastroenteritis virus of swine and canine coronavirus. This supported the serological relatedness of the viruses and confirmed that the peplomer protein of FIPV type I has distinct structural features that differ from those of antigenically related viruses.  相似文献   

13.
Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.  相似文献   

14.
Type I interferons (IFNs) are potent regulators of both innate and adaptive immunity. All type I IFNs bind to the same heterodimeric cell surface receptor composed of IFN-alpha receptor (IFNAR-1) and IFN-alpha/beta receptor (IFNAR-2) polypeptides. This study revealed that type I IFN receptor levels vary considerably on hematopoietic cells, with monocytes and B cells expressing the highest levels. Overnight treatment of peripheral blood mononuclear cells (PBMCs) with IFN-alpha2b or IFN-beta led to increased expression on monocytes and B cells of surface markers commonly associated with activated antigen-presenting cells (APCs), such as CD38, CD86, MHC class I, and MHC class II. Five-day exposure of adherent monocytes to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus IFN-alpha or IFN-beta caused the development of potent allostimulatory cells with morphology similar to that of myeloid dendritic cells (DCs) obtained from culture with GM-CSF and interleukin-4 (IL-4) but with distinct cell surface marker profiles and activity. In contrast to IL-4-derived DCs, IFN-alpha-derived DCs were CD14+, CD1a-, CD123+, CD32+, and CD38+ and expressed high levels of CD86 and MHC class II. Development of these cells was completely blocked by an antibody to IFNAR-1. Furthermore, activity of the type I IFN-derived DC in a mixed lymphocyte reaction (MLR) was consistently more potent than that of IL-4-derived DCs, especially at high responder/stimulator ratios. This MLR activity was abrogated by the addition of anti-IFNAR-1 antibody at the start of the DC culture. In contrast, there was no effect of anti-IFNAR-1 on IL-4-derived DCs, indicating that this is a distinct pathway of DC differentiation. These results suggest a potential role for anti-IFNAR-1 immunotherapy in autoimmune diseases, such as systemic lupus erythematosus (SLE), in which the action of excessive type I IFN on B cells and myeloid DCs may play a role in disease pathology.  相似文献   

15.
Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro.   总被引:2,自引:0,他引:2  
The objective of this study was to determine the proliferative and biosynthetic activity of calf meniscus cells seeded in type I and type II collagen-glycosaminoglycan (GAG) copolymers with the overall goal to develop a cell-seeded implant for future investigations to improve the regeneration of the knee meniscus. The cell-seeded matrices were digested in protease and analyzed for GAG by a modification of the dimethyl-methylene blue method and assayed for DNA content. Other specimens were evaluated histologically after 1, 7, 14 and 21 days. Contraction of the same types of matrices, seeded with adult canine meniscus cells, was measured at the same time points. After three weeks, cells were observed throughout the type II matrix, whereas the type I matrix was densely populated at the margins. The cell morphology and the cell density after three weeks in both matrices was consistent with the normal meniscus. DNA assay for the type I matrix showed a 40% decrease over the first week and a final amount of DNA that was not significantly different from the initial value, whereas the type II matrix doubled its DNA content over the same time period. The cells continued their biosynthesis of GAG and type I collagen. GAG content of the type II matrix increased by 50% more than the type I matrix after three weeks. Over the same time period, the type I matrix displayed a significant shrinkage to approximately 50% of its initial value whereas in contrast, the type II matrix and the unseeded controls showed no significant shrinkage. The number of cells and the higher GAG synthesis in the type II matrix, and its resistance to cell-mediated contracture, commend it for future investigation of the regeneration of meniscus in vivo.  相似文献   

16.
With a few exceptions subgroup I group A human rotavirus strains have short RNA patterns, whereas most animal rotavirus strains belong to subgroup I and have long RNA patterns. Thus, new isolates of subgroup I human rotaviruses with long RNA patterns are considered to have a high likelihood of being animal rotaviruses. A group of human rotaviruses represented by the AU-1 strain has recently been shown to be genetically related to a feline rotavirus (FRV-1) isolated in Japan. A human rotavirus, strain Ro1845, which is similar to the AU-1 strain in its subgroup (I), serotype (3), and electropherotype (long), was compared with various human and animal strains by RNA-RNA hybridization to determine its genogroup, a term proposed to classify rotaviruses based on their gene homology. The Ro1845 strain did not show a significant level of homology with AU-1, FRV-1, or other human strains, indicating that the Ro1845 strain is different in its genogroup not only from the AU-1 strain but also from other human strains. However, the Ro1845 strain showed a high degree of homology with another feline rotavirus (Cat97) isolated previously in Australia, suggesting that the Ro1845 strain might originate from a feline rotavirus that is genetically distinct from the Japanese FRV-1 strain. Furthermore, the Ro1845 strain as well as the Cat97 strain were related genetically to the canine rotavirus RS15 strain. Taken together, these results indicate that at least two genogroups are present in feline rotaviruses, one resembling the AU-1 strain and the other resembling the Ro1845 strain as well as canine rotaviruses.  相似文献   

17.
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class‐I‐like molecule. Most type I NKT cells express a semi‐invariant T‐cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR‐α dominates CD1d‐lipid recognition by type I NKT cells, TCR‐α and TCR‐β contribute equally to CD1d‐lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid–CD1d complexes activate a host of cytokine‐dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen‐presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.  相似文献   

18.
The healing of intervertebral disc defects may be improved by the implantation of cell-seeded collagen-based scaffolds. The present study evaluated in vitro the effects of the collagen type (type I vs type II) from which the scaffolds were fabricated on the behavior of adult canine annulus fibrosus cell-seeded collagen-glycosaminoglycan (GAG) scaffolds. Protein and GAG biosynthesis continued through the 8-week period of the experiment, demonstrating the viability of the cells in type I and type II collagen-GAG scaffolds. Statistical analysis revealed no significant effect of the type of collagen that makes up the scaffold on the biosynthetic activity. For both scaffold types, the amount of retained newly synthesized proteins increased from 1 to 2 weeks and from 6 to the 8 weeks. In contrast, the rate of GAG retention increased to a maximum at 4 weeks for both types of scaffolds, then decreased to about 50% of that level after 8 weeks. The number of cells generally increased the first week but then decreased in type I scaffolds while remaining constant in type II scaffolds. It could be assumed that most newly synthesized protein was lost to the medium, as the quantity of protein and collagen remained constant. Cell-mediated contraction of the scaffolds contributed to folds that formed in the constructs and to create an oriented architecture tissue. These findings commend the use of a type II collagen-GAG scaffold for further study on the basis of its maintenance of cell number and the slightly higher accumulated GAG content.  相似文献   

19.
Natural healing of articular cartilage defects generally does not occur, and untreated lesions may predispose the joint to osteoarthritis. To promote healing of cartilage defects, many researchers are turning toward a tissue engineering approach involving cultured cells and/or porous, resorbable matrices. This study investigated the contractile behavior of cultured canine chondrocytes seeded in a porous collagen-glycosaminoglycan (GAG) scaffold. Chondrocytes isolated from the knee joints of adult canines and expanded in monolayer culture were seeded into porous collagen-GAG scaffolds. Scaffolds were of two different compositions, with the predominant collagen being either type I or type II collagen, and of varying pore diameters. Over the 4-week culture period, the seeded cells contracted all of the type I and type II collagen-based matrices, despite a wide range of stiffness (145 +/- 23 Pa, for the type I scaffold, to 732 +/- 35 Pa, for the type II material). Pore diameter (25-85 microm, type I; and 53-257 microm, type II) did not affect cell-mediated contraction. Immunohistochemical staining revealed the presence of alpha-smooth muscle actin, an isoform responsible for contraction of smooth muscle cells and myofibroblasts, in the cytoplasm of the seeded cells and in chondrocytes in normal adult canine articular cartilage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号