首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between increased intracellular calcium concentration ([Ca(2+)](i)) and changes in spontaneous synaptic current frequency caused by the neurotoxicant methylmercury (MeHg) was examined in Purkinje cells of cerebellar slices using confocal microscopy and whole-cell recording. MeHg (10-100 microM) stimulated and then suppressed completely the frequency of spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). Current amplitude was also initially increased. The same MeHg concentrations markedly increased fluorescence of the Ca(2+) indicator Fluo-4 throughout the molecular layer as well as the granule cells. No changes in fluorescence occurred in Purkinje cell soma, although fluorescence increased in their subplasmalemmal shell. Simultaneous confocal imaging and whole-cell recording revealed that time to onset of MeHg-induced increase in fluorescence in the molecular layer correlated with that of increased sEPSC and sIPSC frequency in Purkinje cells. Pretreatment with the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) significantly suppressed the MeHg-induced increase in sIPSC frequency, further suggesting that MeHg-induced elevation of [Ca(2+)](i) is partially responsible for its early stimulatory effects on spontaneous synaptic responses. However when spontaneous synaptic currents ceased with MeHg, Fluo-4 fluorescence remained elevated. Thus synaptic transmission cessation is apparently not related to changes in [Ca(2+)](i). It may result from effects of MeHg on transmitter release or sensitivity of postsynaptic receptors. The lack of effect of MeHg on Purkinje cell somal fluorescence reinforces that they are more resistant to MeHg-induced elevations of [Ca(2+)](i) than other cells, including cerebellar granule cells.  相似文献   

2.
3.
The effect of carvedilol on intracellular free Ca(2+) levels ([Ca(2+)](i)) has not been explored previously. This study was aimed to examine the effect of carvedilol on Ca(2+) handling in renal tubular cells. Madin-Darby canine kidney cells were used as a model for renal tubular cells and fura-2 was used as a fluorescent Ca(2+) probe. Carvedilol increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 5 microM. Extracellular Ca(2+) removal partly inhibited the [Ca(2+)](i) signals. Carvedilol-induced Ca(2+) influx was verified by measuring Mn(2+)-induced quench of fura-2 fluorescence. Carvedilol-induced store Ca(2+) release was reduced by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) but not with 5 microM ryanodine or 2 microM carbonylcyanide m-chlorophenylhydrazone (a mitochondrial uncoupler). Carvedilol (30 microM)-induced Ca(2+) release was not affected by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-l)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; 2 microM), but was potentiated by increasing cAMP levels or inhibiting protein kinase C. The carvedilol-induced Ca(2+) mobilization was not significantly sequestered by the endoplasmic reticulum or mitochondria. This study shows that carvedilol increased [Ca(2+)](i) in renal tubular cells by causing Ca(2+) release from the endoplasmic reticulum and other unknown stores in an inositol-1,4,5-trisphosphate-independent manner, and by inducing Ca(2+) influx. The Ca(2+) release was modulated by cAMP and protein kinase C.  相似文献   

4.
We tested the ability of methylmercury (MeHg) to block calcium channel current in cultures of neonatal cerebellar granule cells using whole-cell patch clamp techniques and Ba(2+) as charge carrier. Low micromolar concentrations of MeHg (0.25-1 microM) reduced the amplitude of whole cell Ba(2+) current in a concentration- and time-dependent fashion; however, this effect was not voltage-dependent and the current-voltage relationship was not altered. Increasing the stimulation frequency hastened the onset and increased the magnitude of block at both 0.25 and 0.5 microM MeHg but not at 1 microM. In the absence of stimulation, all concentrations of MeHg were able to decrease current amplitude. The ability of several Ca(2+) channel antagonists (omega-conotoxin GVIA, omega-conotoxin MVIIC, omega-agatoxin IVA, calcicludine, and nimodipine) to alter the MeHg-induced effect was tested in an effort to determine if MeHg targets a specific subtype of Ca(2+) channel. Each of the antagonists tested was able to decrease a portion of whole cell Ba(2+) current under control conditions. However, none were able to attenuate the MeHg-induced block of whole cell Ba(2+) current, suggesting either that the mechanism of MeHg-induced block involves sites other than those influenced specifically by Ca(2+) channel antagonists or that MeHg was able to "outcompete" these toxins for their binding sites. These results show that acute exposure to submicromolar concentrations of MeHg can block Ba(2+) currents carried through multiple Ca(2+) channel subtypes in primary cultures of cerebellar granule cells. However, it is unlikely that the presence of a specific Ca(2+) channel subtype is able to render granule cells more susceptible to the neurotoxicologic actions of MeHg.  相似文献   

5.
The aim of this study was to elucidate the mechanism of the neurotoxic effect of beta-bungarotoxin (beta-BuTX, a snake presynaptic neurotoxin isolated from the venom of Bungarus multicinctus) on cultured cerebellar granule neurons. beta-BuTX exerted a potent, time-dependent, neurotoxic effect on mature granule neurons. Mature neurons, with an abundance of neurite outgrowths, were obtained after 7-8 days in culture. By means of microspectrofluorimetry and fura-2, we measured the intracellular Ca(2+) concentration ([Ca(2+)](i)) and found it to be increased markedly. BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tertrakis(acetoxymethyl ester)], EGTA, MK801 (dizocilpine maleate), and diltiazem prevented not only the elevation of [Ca(2+)](i), but also the beta-BuTX-induced neurotoxic effect. The signaling pathway involved in the elevation of [Ca(2+)](i) in beta-BuTX-induced neurotoxicity was studied. The results obtained indicated that beta-BuTX initially increased the production of reactive oxygen species and subsequently reduced mitochondrial membrane potential and depleted ATP. All of these events in the signaling pathway were blocked by MK801, diltiazem, EGTA, and BAPTA-AM. These findings suggest that the neurotoxic effect of beta-BuTX is mediated, at least in part, by a cascade of events that include the direct or indirect activation of N-methyl-D-aspartate (NMDA) receptors and L-type calcium channels that, in turn, lead to Ca(2+) influx, oxidative stress, mitochondrial dysfunction, and ATP depletion. Therefore, we suggest that this polypeptide neurotoxin, as a result of its high potency and irreversible properties, is a useful tool to elucidate the mechanisms of neurodegenerative diseases.  相似文献   

6.
The mechanisms of toxic effects of divalent cations of three heavy metals Hg, Cd and Cu in rat ascites hepatoma AS-30D cells cultivated in vitro were compared. It was found that the toxicity of these ions, applied in the micromolar range (10-500 microM), decreased from Hg(2+) (most toxic) to Cu(2+) (least toxic). Hg(2+) and Cd(2+) produced a high percentage of cell death by both necrosis and apoptosis, whereas Cu(2+) at concentrations up to 500 microM was weakly effective. Hg(2+) at concentration of 10 microM appeared slightly uncoupling (i.e., stimulated resting state respiration and decreased the mitochondrial transmembrane potential), whereas it exerted a strong inhibitory effect on the respiratory chain and rapid dissipation of the membrane potential at higher concentrations. Cu(2+) had inhibitory effect on cell respiration only at 500 microM concentration and after incubation of 48 h but produced a significant uncoupling effect at lower concentrations. Cu(2+) induced an early and sharp increase of intracellular production of reactive oxygen species (ROS). The action of Hg(2+) and Cd(2+) on ROS generation was biphasic. They stimulated ROS generation within the cells at low concentrations and at short incubation times but decreased ROS generation at higher concentrations and at longer incubation. It is concluded that mitochondria are an important target for toxic effects of Hg(2+), Cd(2+) and Cu(2+) in AS-30D rat hepatoma cells.  相似文献   

7.
Cerebellar granule cells are preferentially targeted during methylmercury (MeHg) poisoning. Following acute MeHg exposure, granule cells in culture undergo an increase in intracellular Ca2+ concentration ([Ca2+]i) that apparently contributes to cell death. This effect consists of several temporally and kinetically distinct phases. The initial elevation arises from release of Ca2+(i) stores; the second phase results from entry of Ca2+(e). In these experiments, we tested the hypothesis that release of mitochondrial Ca2+ through the mitochondrial permeability transition pore (MTP) contributes to the initial release of Ca2+(i). Neonatal rat cerebellar granule cells in culture and single cell microfluorimetry were used to examine MeHg-induced changes in [Ca2+]i and mitochondrial membrane potential (Psi(m)). Pretreatment with the MTP inhibitor cyclosporin A (CsA, 5 microM) delayed the initial phase of increased [Ca2+]i induced by 0.2 and 0.5 microM MeHg, but not 1.0 microM MeHg. CsA (5 microM) also delayed the irreversible loss of Psi(m) induced by 0.5 microM MeHg. Ca2+(e) was not required for either effect, because the effect of CsA on the first phase increase in [Ca2+]i and loss of Psi(m) was not altered in nominally Ca2+-free buffer. Increasing concentrations of MeHg (0.2-2.0 microM) caused increasing incidence of cell death at 24 h postexposure. Treatment with CsA provided protection against cytotoxicity at lower MeHg concentrations (0.2-0.5 microM), but not at higher MeHg concentrations (1.0-2.0 microM). Thus, the MTP appears to play a significant role in the cellular effects following acute exposure of cerebellar granule neurons to MeHg.  相似文献   

8.
Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.  相似文献   

9.
Store-operated Ca(2+) entry (SOCE) plays an important role in the contraction and proliferation of pulmonary artery smooth muscle cells (PASMCs). The aim of this study was to characterise the pharmacological properties of the SOCE pathway in freshly isolated PASMCs from rat lung and to determine whether this Ca(2+) entry pathway is sensitive to nitric oxide donor drugs. Following depletion of Ca(2+) from the sarcoplasmic reticulum, by treating cells with thapsigargin, re-addition of Ca(2+) produced an increase in cytosolic fluo-4 fluorescence that was sustained for the period that extracellular Ca(2+) was present. Thapsigargin also increased the rate of quench of fura-2 fluorescence, confirming that SOCE was activated. The SOCE pathway was not affected by nifedipine or verapamil; however, it was inhibited by the divalent cations Ni(2+) (10 microM) and Cd(2+) (10 microM) by 47+/-5% and 49+/-5% respectively. SOCE was also inhibited 42+/-5% by 2-aminoethoxydiphenyl borate (2-APB; 75 microM) and 58+/-4% by Gd(3+) (10 microM), although La(3+) (100 microM) had little effect. None of the NO donors examined, including sodium nitroprusside, glyceryl trinitrate, and 2-(N,N-diethylamino)-diazenolate-2-oxide had any effect on SOCE. Thus, the pulmonary vasorelaxation produced by NO does not involve direct inhibition of SOCE in PASMCs. Western blot and immunocytochemistry using antibodies directed against specific TRPC subunits detected the presence of TRPC1, 3, and 6 in pulmonary artery and the pharmacological profile of SOCE in PASMCs favours a role for TRPC1 in mediating the underlying channels that are activated by store depletion.  相似文献   

10.
11.
In order to examine the cadmium cytotoxicity unrelated to external Ca(2+), the effects of micromolar CdCl(2) on intracellular Cd(2+) concentration, cellular content of glutathione, and cell viability of rat cerebellar granule neurons were examined under normal Ca(2+) and external Ca(2+)-free conditions, using a laser confocal microscope with fluorescent probes, fluo-3-AM, 5-chloromethylfluorescein (CMF) diacetate, and propidium iodide. CdCl(2) (10-300 microM) dose-dependently increased the intensity of fluo-3 fluorescence. Exposure to CdCl(2) equally enhanced the fluo-3 fluorescence under both Ca(2+) conditions and MnCl(2) did not quench the CdCl(2)-enhanced fluorescence. The results indicate that the enhancement of fluo-3 fluorescence is due to the increase in intracellular Cd(2+) concentration. CdCl(2) at 100-300 microM decreased the intensity of CMF fluorescence, indicating the decrease in cellular content of glutathione. The population of cells stained with propidium (dead cells) was increased by 100-300 microM CdCl(2). Similar results described above were also observed under external Ca(2+)-free condition. It is suggested that some of cytotoxic actions of CdCl(2) on neurons are unrelated to external Ca(2+), one of main sources for increasing intracellular Ca(2+) concentration.  相似文献   

12.
The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.  相似文献   

13.
We report on the uptake of MeHg in astrocytes and neurons, as well as specific indicators of neurotoxicity. Cerebellar granule neurons and astrocytes separately and in co-culture were cultured in the presence of MeHg and changes in 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT)-reduction, lactate dehydrogenase (LDH) leakage, and cellular content of glutathione and amino acids were used as indicators of MeHg toxicity. Mitochondria in cortical astrocytes were slightly more sensitive than those in cerebellar astrocytes to the toxic effects of MeHg; furthermore, cellular integrity was better preserved in cerebellar astrocytes. When neurons and astrocytes from cerebellum were incubated in separable co-cultures using inserts, the astrocytes showed cellular damage at lower exposure to MeHg while neurons showed less changes compared to respective cell types in mono-cultures. Mercury uptake studies at 25 microM MeHg (10% serum present) showed that for neurons in co-culture the uptake was 1/3 compared to mono-cultures. In contrast, for astrocytes in co-culture, uptake was increased by 75%. A MeHg concentration-dependent increase of glutamate content in mono-cultures was noted. When MeHg concentration was increased to 10, 25, or 50 microM, neurons in co-cultures decreased their glutamate content, whereas astrocytes showed an increase. Other amino acids, such as glutamine, serine, valine, isoleucine, taurine, and phenylalanine were unaffected by MeHg. Glutathione content showed MeHg concentration-dependent changes in astrocytes and was increased in neurons in co-culture incubated with 5 microM MeHg. In conclusion, astrocytes appear to increase neuronal resistance, indicating a possible protective role for astrocytes in MeHg neurotoxicity.  相似文献   

14.
Membranes of Chinese hamster ovary (CHO-K1) cells were used to study the opposite modulation of enzyme activity and [125I]Ang IV binding to cystinyl aminopeptidase (EC 3.4.11.3) by divalent cation chelators. Whereas ethylene diamine tetraacetic acid (EDTA) or ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) alone only slightly affected the enzyme activity, 1,10-phenanthrolin (1,10-PHE) produced a complete and concentration-dependent inhibition. Interestingly EDTA (> or =0.05 mM) or EGTA (> or =0.15 mM) enhanced the inhibitory effect of 1,10-PHE. Two-site analysis of the corresponding inhibition curves revealed that EDTA and EGTA converted enzymes with low sensitivity towards 1,10-PHE into enzymes with high sensitivity. The combined inhibition by EDTA (0.1 mM) and 1,10-PHE (0.1 mM) could be prevented and reversed by addition of Zn2+ (at about 0.04-0.1 mM). In contrast, specific binding of [125I]Ang IV was enhanced in the presence of 1,10-PHE. Binding was only slightly affected by EDTA or EGTA alone. Furthermore, the stimulatory effect of 1,10-PHE was potentiated by EDTA (> or =0.05 mM) as well as EGTA (> or =0.15 mM). In the presence of EDTA (0.1 mM) and 1,10-PHE (0.1 mM), specific [125I]Ang IV binding was completely inhibited by Zn2+ (IC50= 39.7 +/- 6.2 microM). The present data show that divalent cations such as Zn2+ are essential for the enzyme activity of cystinyl aminopeptidase and inhibitory for [125I]Ang IV binding. Modulation of the effects of 1,10-PHE by other chelators such as EDTA or EGTA, suggests that, in addition to the binding site for zinc in the catalytic site, cystinyl aminopeptidase also bears a regulatory divalent cation binding site.  相似文献   

15.
16.
This study was designed to investigate the possible involvement of NADPH oxidase and the Na(+)/Ca(2+) exchanger in regulating membrane repolarisation and store-operated uptake of Ca(2+) by FMLP (1 microM)-activated human neutrophils. Diphenyleneiodonium chloride (DPI, 5-10 microM) and KB-R7943 (2.5-10 microM), inhibitors of NADPH oxidase and the reverse mode of the Na(+)/Ca(2+) exchanger respectively, were used as pharmacological probes. Transmembrane fluxes of Ca(2+), K(+) and Na(+) were determined radiometrically, while alterations in membrane potential and cytosolic Ca(2+) were evaluated using spectrofluorimetric procedures. DPI, added to the cells at the time of maximum FMLP-activated membrane depolarisation, accelerated the rates of both membrane repolarisation and influx of Ca(2+), while KB-R7943 effectively antagonised these processes. SKF 96365 (10 microM), an antagonist of store-operated Ca(2+) channels, abolished the influx of Ca(2+) into FMLP-activated neutrophils, but had no effects on membrane repolarisation, suggesting that the Na(+)/Ca(2+) exchanger is primarily involved in mediating membrane repolarisation, thereby facilitating uptake of Ca(2+) via store-operated channels. These observations are compatible with prominent negative and positive regulatory roles for NADPH oxidase and the Na(+)/Ca(2+) exchanger respectively in regulating the rates of membrane repolarisation and store-operated uptake of Ca(2+) by chemoattractant-activated neutrophils.  相似文献   

17.
Resistance to chemotherapy limits the effectiveness of anti-cancer drug treatment. Here, we present a new approach to overcome the setback of drug resistance by designing a conjugate of a cell-penetrating peptide and the cytostatic agent methotrexate (MTX). Two different peptides, YTA2 and YTA4, were designed and their intracellular delivery efficiency was characterized by fluorescence microscopy and quantified by fluorometry. MTX was conjugated to the transport peptides and the ability of the peptide-MTX conjugates to inhibit dihydrofolate reductase, the target enzyme of MTX, was found to be 15 and 20 times less potent than MTX. In addition, in vitro studies were performed in a drug resistant cell model using the 100-fold MTX resistant breast cancer cells MDA-MB-231. At a concentration of 1 microM, the peptide-MTX conjugates were shown to overcome MTX resistance and kill the cells more efficiently than MTX alone. Estimated EC50's were determined for MTX, MTX-YTA2 and YTA2 to be 18.5, 3.8 and 20 microM, respectively. In summary, cell-penetrating peptide conjugation of MTX is a new way of increasing delivery, and thereby, the potency of already well-characterized therapeutic molecules into drug resistant tumour cells.  相似文献   

18.
Methylmercury (MeHg) is an important environmental neurotoxicant that is present in seafood and affects the developing and mature nervous system. The neurotoxicity induced by MeHg is a concern, particularly for fish-eating populations and pregnant or nursing women. During MeHg-induced neurotoxicity, degeneration of the granule cell layer in the cerebellum occurs, which leads to deficits in motor function. I suggest that the action of MeHg on specific neurotransmitter receptors contributes to the selective vulnerability of granule cells. MeHg appears to stimulate M(3) muscarinic acetylcholine receptors and to inhibit GABA(A) receptor subtypes preferentially on cerebellar granule cells. This could lead to the loss of tonic inhibition of granule cells as a result of antagonism of GABA(A) receptors, and a M(3)-receptor-mediated increase in the intracellular concentration of Ca(2+) and block of a K(+)-dependent leak current. The net result would be increased spontaneous release of glutamate, which, coupled with a MeHg-induced impairment of glutamate uptake by astrocytes, could cause Ca(2+)-mediated cytotoxicity.  相似文献   

19.
Pancreatic beta-cells respond to glucose stimulation with increase of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), manifested as membrane-derived slow oscillations sometimes superimposed with transients of intracellular origin. The effect of external ATP on the oscillatory Ca(2+) signal for pulsatile insulin release was studied by digital imaging of fura-2 loaded beta-cells and small aggregates isolated from islets of ob/ob-mice. Addition of ATP (0.01-100 microM) to media containing 20mM glucose temporarily synchronized the [Ca(2+)](i) rhythmicity in the absence of cell contact by eliciting premature oscillations. External ATP triggered premature [Ca(2+)](i) oscillations also when the sarcoendoplasmic reticulum Ca(2+)-ATPase was inhibited with 50 microM cyclopiazonic acid and phospholipase C inhibited with 10 microM U-73122. The effect of ATP was mimicked by other activators of cytoplasmic phospholipase A(2) (10nM acetylcholine, 0.1-1 micro M of the C-terminal octapeptide of cholecystokinin and 2 microg/ml melittin) and suppressed by an inhibitor of the enzyme (50 microM p-amylcinnamoylanthranilic acid). Premature oscillations generated by pulses of ATP sometimes triggered subsequent oscillations. However, prolonged exposure to high concentrations of the nucleotide (10-100 microM) had a suppressive action on the beta-cell rhythmicity. The early effects of ATP included generation of transients induced by inositol (1,4,5) trisphosphate and superimposed on the premature oscillation or on an ordinary oscillation induced by glucose. The results support the idea that purinergic activation of phospholipase A(2) has a co-ordinating effect on the beta-cell rhythmicity by triggering premature [Ca(2+)](i) oscillations mediated by closure of ATP-sensitive K(+) channels.  相似文献   

20.
In human osteoblasts, the effect of the widely prescribed cyclooxygenase-2 inhibitor celecoxib on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cell proliferation was explored by using fura-2 and the tetrazolium assay, respectively. Celecoxib at concentrations greater than 1microM caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner ( EC 50= 10 microM). Celecoxib-induced [Ca(2+)](i) rise was reduced by 90% by removal of extracellular Ca(2+), and by 30% by l-type Ca(2+) channel blockers. Celecoxib-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that celecoxib-induced extracellular Ca(2+) influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of celecoxib on [Ca(2+)](i) was greatly inhibited. Conversely, pretreatment with celecoxib to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phoispholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not celecoxib-induced, [Ca(2+)](i) rise. Pretreatment with phorbol 12-myristate 13-acetate and forskolin to activate protein kinase C and adenylate cyclase, respectively, partly inhibited celecoxib-induced [Ca(2+)](i) rise in Ca(2+)-containing medium. Separately, overnight treatment with 1-100microM celecoxib inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human osteoblasts, celecoxib increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Celecoxib may be cytotoxic at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号