首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TLR9 recognizes unmethylated CpG‐containing DNA commonly found in bacteria. Synthetic oligonucleotides containing CpG‐motifs (CpG ODNs) recapitulate the activation of TLR9 by microbial DNA, whereas inversion of the CG dinucleotide within the CpG motif to GC (GpC ODNs) renders such ODNs inactive. This difference cannot be attributed to binding of ODNs to the full‐length TLR9 ectodomain, as both CpG and GpC ODNs bind comparably. Activation of murine TLR9 requires cleavage into an active C‐terminal fragment, which binds CpG robustly. We therefore compared the ability of CpG and GpC ODNs to bind to full‐length and C‐terminal TLR9, and their impact on the cleavage of TLR9. We found that CpG binds better to C‐terminal TLR9 when compared with GpC, despite comparably low binding of both ODNs to full‐length TLR9. Neither CpG nor GpC ODNs affected TLR9 cleavage in murine RAW 264.7 cells stably expressing TLR9‐Myc. Inhibitory ODNs (IN‐ODNs) block TLR9 signaling, but how they do so remains unclear. We show here that inhibitory ODNs do not impede TLR9 cleavage but bind to C‐terminal TLR9 preferentially, and thereby compete for CpG ODN binding both in RAW cells and in TLR9‐deficient cells transduced with TLR9‐Myc. Ligand binding to C‐terminal fragment thus determines the outcome of activation through TLR9.  相似文献   

2.
Vertebrate toll-like receptors (TLRs) sense invading pathogens by recognizing bacterial and viral structures and, as a result, activate innate and adaptive immune responses. Ten human functional TLRs have been reported so far; three of these (TLR7, 8, and 9) are expressed in intracellular compartments and respond to single-stranded nucleic acids as natural ligands. The pathogen structure selectively recognized by TLR9 in bacterial or viral DNA was identified to be CpG dinucleotides in specific sequence contexts (CpG motifs). Short phosphorothioate-stabilized oligodeoxynucleotides (ODNs) containing such motifs are used as synthetic TLR9 agonists, and different classes of ODN TLR9 agonists have been identified with distinct immune modulatory profiles. The TLR9-mediated activation of the vertebrate immune system suggests using such TLR9 agonists as effective vaccine adjuvants for infectious disease, and for the treatment of cancer and asthma/allergy. Immune activation by CpG ODNs has been demonstrated to be beneficial in animal models as a vaccine adjuvant and for the treatment of a variety of viral, bacterial, and parasitic diseases. Antitumor activity of CpG ODNs has also been established in numerous mouse models. In clinical vaccine trials in healthy human volunteers or in immunocompromised HIV-infected patients, CpG ODNs strongly enhanced vaccination efficiency. Most encouraging results in the treatment of cancers have come from human phase I and II clinical trials using CpG ODNs as a tumor vaccine adjuvant, monotherapy, or in combination with chemotherapy. Therefore, CpG ODNs represent targeted immune modulatory drugs with a broad range of potential applications.  相似文献   

3.
Unmethylated cytosine-phosphate-guanine (CpG) dinucleotides in microbial DNA sequences activate Toll-like receptor (TLR) 9, and previous studies have shown that oligodeoxynucleotides (ODNs) containing CpG in specific base sequence motifs (CpG ODNs) can reiterate the majority of the immunomodulatory effects produced by bacterial DNA. Many of the manifestations in allergic diseases are primarily due to T helper (Th)-2 cell-type responses. CpG ODNs can induce Th1 and T-regulatory (Treg) cell-type cytokines that can suppress the Th2 response. The therapeutic application of TLR9 has been explored extensively in recent years, and many studies are being conducted to assess the safety and efficacy of TLR9 agonists in various diseases, including atopic and infectious diseases, and cancer. Studies in murine models have shown that the development of atopic airway disease can be prevented by treatment with CpG ODNs. Various clinical trials are currently ongoing to determine the efficacy of CpG ODNs as a therapeutic tool for atopic diseases. In this review, we discuss the therapeutic application of CpG ODNs in allergy and asthma. CpG ODNs may be used alone or as an adjuvant to immunotherapy to treat these disorders.  相似文献   

4.
Bacterial CpG DNA or synthetic oligonucleotides(ODNs)that contain unmethylated CpG motifs(CpG ODN)candirectly activate antigen-presenting cells(APCs)to secrete various cytokines through the intraceilular receptorTLR9.Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial tothe subsequent immune responses.To date,cytokine profiles in APCs upon CpG ODN stimulation in vitro are notfully investigated.In the present study,vector-based siRNA was used to downregulate TLR9 expression.Cytokineprofiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid uponCpG ODN stimulation.We found that not all the cytokine expressions by the macrophage were decreased whileTLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased,but IL-6,IFN-β and IL-10 expressions were not affected.Interestingly,the level of IFN-α was even increased.This alterationof cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role ofCpG DNA is more complicated in the pathogenesis and prevention of diseases.Cellular & Molecular Immunology.2005;2(2):130-135.  相似文献   

5.
6.
To explore the possibility that human mitochondrial genomic DNA‐mimicking oligodeoxynucleotides could regulate the immune response, a series of mitochondrial DNA‐based oligodeoxynucleotides (MTODNs) were designed and studied to determine their immunoregulatory effects on immune cells activated by toll‐like receptor (TLR) stimulation. The results showed that a C‐rich MTODN, designated MT01, was able to inhibit the proliferation of human peripheral blood mononuclear cells (PBMCs) induced by cytosine–phosphate–guanosine (CpG) oligodeoxynucleotides (ODNs) and the production of type I interferon (IFN) from human PBMCs stimulated by TLR agonists, including inactivated influenza virus, imiquimod, inactivated herpes simplex virus‐1 (HSV‐1) and CpG ODNs. In addition, MT01 inhibited the CpG ODN‐enhanced antibody response and this inhibition could be related to the antagonism of TLR9‐activation pathways in B cells. Notably, unlike the G‐rich suppressive ODNs reported, MT01 is composed of ACCCCCTCT repeats. These data imply that MT01 represents a novel class of immunosuppressive ODNs that could be candidate biologicals with therapeutic use in TLR activation‐associated diseases.  相似文献   

7.
Phagocytic defenses are critical for effective host defenses against the opportunistic fungal pathogen Aspergillus fumigatus. Previous studies found that following challenge with A. fumigatus, Toll-like receptor 9 (TLR9) knockout mice survived longer than wild-type mice. However, the mechanism responsible was not defined. Here we demonstrate that A. fumigatus contains unmethylated CpG sequences, the natural ligands for TLR9. A. fumigatus DNA and synthetic CpG-rich oligodeoxynucleotides (ODNs) containing sequences found in the A. fumigatus genome potently stimulated the production of proinflammatory cytokines in mouse bone marrow-derived dendritic cells (BMDCs) and human plasmacytoid dendritic cells. The response was decreased when the fungal DNA was treated with a CpG methylase or with CpG-specific endonucleases. A role for TLR9 was demonstrated as cytokine production was abolished in BMDCs from TLR9-deficient mice. Moreover, transfection of HEK293 cells with human TLR9 conferred responsiveness to synthetic CpG-rich ODNs containing sequences found in A. fumigatus DNA. Taken together, these data demonstrate that TLR9 detects A. fumigatus DNA, resulting in the secretion of proinflammatory cytokines, which may contribute to the immune response to the pathogen.  相似文献   

8.
Toll-like receptor 9 (TLR9) recognizes microbial DNA containing unmethylated cytosyl guanosyl (CpG) sequences, induces innate immune responses, and facilitates antigen-specific adaptive immunity. Recent studies report that in addition to stimulating innate immunity, TLR9 ligands induce apoptosis of TLR9 expressing cancer cells. To understand the mechanism of TLR9-induced apoptosis, we compared the effects of CpG containing oligodeoxynucleotides (CpG ODN) on a mouse B-cell lymphoma line, CH27, with those on mouse splenic B cells. CpG ODN inhibited constitutive proliferation and induced apoptosis in the CH27 B-cell lymphoma line. In contrast, CpG ODN-treated primary B cells were stimulated to proliferate and were rescued from spontaneous apoptosis. The induction of apoptosis required the ODNs to contain the CpG motif and the expression of TLR9 in lymphoma B cells. A decrease in Bcl-xl expression and an increase in Fas and Fas ligand expression accompanied lymphoma B-cell apoptosis. Treatment with the Fas ligand-neutralizing antibody inhibited CpG ODN-induced apoptosis. CpG ODN triggered a transient NF-κB activation in the B-cell lymphoma cell line, which constitutively expresses a high level of c-Myc, while CpG ODN induced sustained increases in NF-κB activation and c-Myc expression in primary B cells. Furthermore, an NF-κB inhibitor inhibited the proliferation of the CH27 B-cell lymphoma line. Our data suggest that the differential responses of lymphoma and primary B cells to CpG ODN are the result of differences in NF-κB activation. The impaired NF-κB activation in the CpG ODN-treated B-cell lymphoma cell line alters the balance between NF-κB and c-Myc, which induces Fas/Fas ligand-dependent apoptosis.  相似文献   

9.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines.  相似文献   

10.
Kim JM  Kim NI  Oh YK  Kim YJ  Youn J  Ahn MJ 《International immunology》2005,17(12):1525-1531
To elucidate the role of Toll-like receptor 9 (TLR9) activation along with the intracellular signaling pathways triggered by CpG DNA in CD34+ cells, we investigated whether synthetic oligodeoxynucleotides (ODNs), containing unmethylated CpG motifs, could induce IL-8 expression in CD34+ cells through mitogen-activated protein kinase (MAPK) or nuclear factor-kappaB (NF-kappaB) pathway. We demonstrated evidence for the first time that CD34+ cells constitutively expressed TLR9. Exposure of the cells to CpG ODN resulted in a time- and dose-dependent increase of IL-8 expression, and activation of phosphorylated ERK1/2 and phosphorylated p38. In addition, CpG ODN stimulated AP-1, but not NF-kappaB, signals. Moreover, inhibitors of MAPK (U0126 and SB203580) significantly reduced the IL-8 production, while the inhibition of NF-kappaB (pyrrolidinedithiocarbamate and retrovirus containing dominant-negative IkappaB alpha plasmid) did not affect the IL-8 expression increased by CpG ODN. Moreover, co-stimulation with LPS and CpG synergistically up-regulates IL-8 in CD34+ cells. These results suggest that CpG DNA, acting on TLR9, activates CD34+ cells to express IL-8 through MAPK-dependent and NF-kappaB-independent pathways.  相似文献   

11.
Becker Y 《Virus genes》2006,33(2):253-264
Based on the hypothesis that respiratory syncytial virus (RSV) sG protein causes allergy in patients, it is suggested that treatment of RSV patients with antagonists of IL-4 and FKN early in infection will prevent the increased level of IL-4 in the serum. Together with CpG ODNs that induce Toll-like receptor 9+ (TLR9+) plasmacytoid dendritic cells to release type I IFN-α and -β will reactivate the inhibited Th1 cells and the antiviral cytotoxic T leukocytes. In addition, binding of CpG ODNs to TLR9+ B cells will stop IgE synthesis and antiviral IgG and IgA will continue. Together, the IL-4 and FKN antagonists and CpG ODNs reactivate the adaptive immune response to clear the virus and protect the patient from a second RSV infection. It is also suggested that the less-pathogenic RSV strain Long may be a candidate for vaccine development after deletion of the FKN and superantigen domains from the G gene.  相似文献   

12.
Toll-like receptors (TLRs) are part of the innate immune system, and they belong to the pattern recognition receptors (PRR) family. The PRR family is designed to recognize and bind conserved pathogen-associated molecular patterns, which are not generated by the host and are restricted and essential to microorganisms. TLR9, which recognizes unmethylated CpG (cytosine guanosine dinucleotide), is a very promising target for therapeutic activation. Stimulation of TLR9 activates human plasmacytoid dendritic cells and B cells, and results in potent T helper-1 (Th1)-type immune responses and antitumor responses in mouse tumor models and in patients. Several pharmaceutical companies, such as Pfizer, Idera, and Dynavax, are developing CpG oligodeoxynucleotides (ODNs) for the treatment of cancer, along with other conditions, such as infections and allergy. CpG ODNs have shown promising results as vaccine adjuvants and in combination with cancer immunotherapy. Several TLR9 agonists are being developed and have entered clinical trials to evaluate their safety and efficacy for the treatment of several hematopoietic and solid tumors. In this review, we discuss the use of CpG ODNs in several phase I and II clinical trials for the treatment of NHL, renal cell carcinoma, melanoma, and non-small cell lung cancer, either alone or in combination with other agents.  相似文献   

13.
Single‐stranded versus multimeric phosphorothioate‐modified CpG oligodeoxynucleotides (ODNs) undergo differential endosomal trafficking upon uptake into plasmacytoid dendritic cells (pDCs), correlating with Toll‐like receptor‐9‐dependent pDC maturation/activation (single‐stranded B‐type CpG ODN) or interferon‐α (IFN‐α) induction (multimeric A‐type CpG ODN), respectively. As was recently shown, IFN‐α production, other than by CpG ODNs, can also be induced in a sequence‐independent manner by phosphodiester (PD) ODNs multimerized by 3′ poly‐guanosine (poly‐G) tails. We investigate here the type of endosomal trafficking responsible for IFN‐α induction by natural PD ODN ligands. We show that 3′ extension with poly‐G tails leads to multimerization of single‐stranded PD ODNs and to enhanced cellular uptake into pDCs. While monomeric PD ODNs, which induce CpG‐dependent Toll‐like receptor‐9 stimulation and pDC maturation/activation, localized to late endosomal/lysosomal compartments, the poly‐G multimerized PD ODNs, which induce CpG‐independent IFN‐α production, located to vesicles with a distinct, ‘early’ endosomal phenotype. We conclude that poly‐G‐mediated multimerization of natural PD ODNs allows for sequence‐independent, Toll‐like receptor‐9‐dependent IFN‐α induction in pDCs by combining three distinct effects: relative protection of sensitive PD ODNs from extracellular and intracellular DNase degradation, enhanced cellular uptake and preferential early endosomal compartmentation.  相似文献   

14.
Abstract

Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and infectious non-self. The recognition of infectious non-self involves germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). The PAMPs are the components of pathogenic microbes which include not only the cell wall constituents but also the unmethylated 2′-deoxy-ribo-cytosine-phosphate-guanosine (CpG) motifs. These CpG motifs present within bacterial and viral DNA are recognized by toll-like receptor 9 (TLR9), and signaling by this receptor triggers a proinflammatory cytokine response which, in turn, influences both innate and adaptive immune responses. The activation of TLR9 with synthetic CpG oligodeoxynucleotides (ODNs) induces powerful Th1-like immune responses. It has been shown to provide protection against infectious diseases, allergy and cancer in laboratory animal models and some domestic animal species. With better understanding of the basic biology and immune mechanisms, it would be possible to exploit the potential of CpG motifs for animal welfare. The research developments in the area of CpG and TLR9 and the potential applications in animal health have been reviewed in this article.  相似文献   

15.
Chen HC  Sun B  Tran KK  Shen H 《Biomaterials》2011,32(6):1731-1737
Biomaterials interface with toll-like receptor (TLR) 9-mediated innate immunity in a wide range of medical applications, such as tissue implants and drug delivery systems. The stimulation of TLR9 can lead to two different signaling pathways, resulting in the generation of proinflammatory cytokines (i.e. IL-6) and/or type I interferons (IFNs, i.e. IFN-α). These two categories of cytokines differentially influence both innate and adaptive immunity. Although particle size is known to be a critical parameter of biomaterials, its role in TLR9-mediated cytokine profiles is not clear. Here, we examined how the size of biomaterials impacted cytokine profiles by using polystyrene particles of defined sizes as model carriers for TLR9 agonists (CpG oligonucleotides (CpG ODNs)). CpG ODNs bound to nano- to submicro- particles stimulated the production of both IL-6 and IFN-α, while those bound to micro particles resulted in IL-6 secretions only. The differential TLR9-mediated cytokine profiles were attributed to the pH of endosomes that particles trafficked to. The magnitude of IFN-α production was highly sensitive to the change in endosomal pH in comparison to that of IL-6. Our results define two critical design variables, size and the ability to modulate endosomal pH, for the engineering of biomaterials that potentially interface with TLR9-mediated innate immunity. The fine control of these two variables will allow us to fully exploit the beneficial facets of TLR9-mediated innate immunity while minimizing undesirable side effects.  相似文献   

16.
Deoxycytidyl-deoxyguanosine [(CpG)3] oligodeoxynucleotides (ODNs) signal through TLR9 to induce type-I IFN (IFN-alphabeta) and IFN-alphabeta-dependent MHC-I cross-presentation of exogenous antigens by dendritic cells (DCs). A puzzle was presented by our observation that three ODN classes, CpG-A, CpG-B, and CpG-C, had similar efficacy for induction of IFN-alphabeta-dependent MHC-I antigen cross-presentation by myeloid DCs despite greatly differing for induction of IFN-alphabeta (CpG-A>CpG-C>CpG-B). All ODN classes similarly enhanced plasmacytoid DC (pDC) presentation of exogenous MHC-I-restricted peptide, although pDCs did not cross-process protein antigen. MHC-I and the transporter for antigen presentation were induced by all ODN classes or IFN-alpha. CpG-B ODNs were slightly more potent than CpG-A or CpG-C ODNs for induction of low levels of IFN-alphabeta but less efficacious at high concentrations than CpG-A or CpG-C ODNs. Low levels of IFN-alphabeta induced by CpG-B ODNs sufficed for full induction of MHC-I cross-presentation. Thus, CpG-B ODNs are slightly more potent but less efficacious than CpG-A and CpG-C ODNs for induction of IFN-alphabeta. High sensitivity to IFN-alphabeta allows CpG-B ODNs to be equally efficacious for induction of MHC-I cross-presentation. CpG-B ODNs may be effective for inducing therapeutic responses that require low levels of IFN-alphabeta and may avoid unnecessarily high induction of IFN-alphabeta.  相似文献   

17.
Microbial DNA sequences containing unmethylated CpG dinucleotides activate Toll-like receptor 9 (TLR9). We have found that TLR9 is localized to the endoplasmic reticulum (ER) of dendritic cells (DCs) and macrophages. Because there is no precedent for immune receptor signaling in the ER, we investigated how TLR9 is activated. We show that CpG DNA binds directly to TLR9 in ligand-binding studies. CpG DNA moves into early endosomes and is subsequently transported to a tubular lysosomal compartment. Concurrent with the movement of CpG DNA in cells, TLR9 redistributes from the ER to CpG DNA-containing structures, which also accumulate MyD88. Our data indicate a previously unknown mechanism of cellular activation involving the recruitment of TLR9 from the ER to sites of CpG DNA uptake, where signal transduction is initiated.  相似文献   

18.
The present study addressed the modulatory role of CC chemokine receptor 4 (CCR4) in Toll-like receptor (TLR) 9-mediated innate immunity and explored the underlying molecular mechanisms. Our results demonstrated that CCR4-deficient mice were resistant to both septic peritonitis induced by cecal ligation and puncture (CLP) and CpG DNA/D-galactosamine-induced shock. In bone marrow-derived macrophages (BMMPhi) from CLP-treated CCR4-deficient mice, TLR9-mediated pathways of MAPK/AP-1, PI3K/Akt, and IkappaB kinase (IKK)/NF-kappaB were impaired compared to wild-type (WT) cells. While TLR9 expression was not altered, the intensity of internalized CpG DNA was increased in CCR4-deficient macrophages when compared to WT macrophages. Pharmacological inhibitor studies revealed that impaired activation of JNK, PI3K/Akt, and/or IKK/NF-kappaB could be responsible for decreased proinflammatory cytokine expression in CCR4-deficient macrophages. Interestingly, the CCR4-deficient BMMPhi exhibited an alternatively activated (M2) phenotype and the impaired TLR9-mediated signal transduction responses in CCR4-deficient cells were similar to the signaling responses observed in WT BMMPhi skewed to an alternatively activated phenotype. These results indicate that macrophages deficient in CCR4 impart a regulatory influence on TLR9-mediated innate immunity.  相似文献   

19.
During bacterial and viral infections, unmethylated CpG-DNA released by proliferating and dying microbes is recognized by toll-like receptor (TLR) 9 in host cells, initiating innate immune responses. Many corneal infections occur secondary to epithelial breaches and represent a major cause of vision impairment and blindness globally. To mimic this clinical situation, we investigated mechanisms of TLR9 ligand-induced corneal inflammation in mice after epithelial debridement. Application of CpG oligodeoxynucleotides (ODNs) resulted in neutrophil and macrophage infiltration to the cornea and loss of transparency. By 6 hours after CpG-ODN administration, TLR9 mRNA was increased in the cornea and retina. In vivo clinical examination at 24 hours revealed inflammatory infiltrates in the vitreous and retina, which were confirmed ex vivo to be neutrophils and macrophages, along with activated resident microglia. CpG-ODN-induced intraocular inflammation was abrogated in TLR9(-/-) and macrophage-depleted mice. Bone marrow reconstitution of irradiated TLR9(-/-) mice with TLR9(+/+) bone marrow led to restored corneal inflammatory responses to CpG-ODN. Fluorescein isothiocyanate-CpG-ODN rapidly penetrated the cornea and ocular media to reach the retina, where it was present within CD68(+) retinal macrophages and microglia. These data show that topically applied CpG-ODN induces intraocular inflammation owing to TLR9 activation of monocyte-lineage cells. These novel findings indicate that microbial CpG-DNA released during bacterial and/or viral keratitis can cause widespread inflammation within the eye, including the retina.  相似文献   

20.
In the present report, we revisited the B cell responsiveness of 7 wild-derived mouse strains to various toll-like receptor ligands (TLR-L). We found that 2 of them, namely PWK and STF presented profound defects in B cell proliferative responses to most of the TLR-L. Yet, their macrophage responses were largely unaffected, suggesting that regulation of TLR pathways are distinct in B cells and macrophages. We also showed that, anti-CD40 mAbs rescued the low proliferative responses to CpG in both PWK and STF B cells. In the other hand, CpG synergized with LPS to induce high levels of proliferation in STF B cells, which did not respond to LPS alone. Cytokine or immunoglobulin (Ig) productions, in vitro, were less impaired than the proliferative responses to LPS or CpG alone. In STF B cells, both ERK, P38 and JNK pathways were affected following in vitro TLR4 or TLR9 signaling. Moreover, while the basal levels of Ig secreting cells and of serum Igs were similar to that of control mice, antibody responses to both TI and TD antigens were severely affected, mainly in STF mice. Our findings therefore highlight the relevance of wild-derived mouse strains and TLR-L to study B cell physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号