首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Dispersed polymer nanocapsules can serve as nano-sized drug carriers to achieve controlled release as well as efficient drug targeting. The dispersion stability and the primary physiological response are mainly determined by the type of the surfactant and the nature of the outer coating. Their release and degradation properties largely depend on the composition and the structure of the capsule walls. Another important criterion is the capsule size, where an optimum is generally seen for radii ranging between 100 and 500 nm. Nanocapsules can be prepared by four principally different approaches: interfacial polymerization, interfacial precipitation, interfacial deposition, and self assembly procedures. All these procedures offer their individual advantages and disadvantages when it comes to the design of optimized drug carrier systems. The most important capsule parameters such as capsule radius distribution, the capsule surface, the thickness and the permeability of the capsule membrane and its thermal or chemical decomposition, are discussed and examples are shown. In combination with efficient preparation procedures, nanocapsule dispersions allow for new and promising approaches in many kinds of pharmaceutical therapies.  相似文献   

2.
The aim of the present work was to develop a family of novel materials based on a combination of sodium alginate and acrylic polymers and to evaluate their potential in drug delivery applications. In the presence of sodium alginate, acrylic chains with acidic as well as basic moieties were polymerized to create an interpolymer complex based on electrostatic interactions that are able to modulate the release rate of low molecular weight drugs. The synthesized materials were used to prepare hydrophilic matrices for drug delivery and tested for their adhesion properties to glass, used as a model substrate for mucoadhesion.  相似文献   

3.
D A Drachman 《Neurobiology of aging》1989,10(5):632-3; discussion 648-50
Programmed infusion pumps, polymers and neural transplants provide the capability of delivering a variety of agents to specific locations in the central nervous system. If a necessary or therapeutically useful substance cannot otherwise penetrate the blood-brain barrier, or must be delivered to a precise location in the CNS, these strategies may be of value in neurologic disease. The possibility of transplanting functioning tissue into the brain raises the hope of providing "new parts for old." For drugs that can penetrate the blood-brain barrier, and do not require a single precise anatomic site of action, systemic administration remains the "gold standard." The role of these novel drug delivery systems in treatment of Alzheimer's disease is as yet unclear.  相似文献   

4.
Sequential polydepsipeptides containing both peptide and ester bonds, poly[(L-alanyl)n-gamma-ethyl L-glutamyl-L-lactyl] (n = 0, 1, 2, and 3) (poly[(Ala)n-Glu(OEt)-Lac]), were prepared for application as biodegradable carriers for drug delivery systems. The in vivo degradation of these polymers was evaluated by subcutaneous implantation in the backs of male rats, and was strongly influenced by the number (n) of Ala units in poly[(Ala)n-Glu(OEt)-Lac]. The resulting poly(Ala-Ala-Glu(OEt)-Lac) gave the highest degradability, in which 100% degradation was observed 24 weeks from the start of implantation. A luteinizing-hormone-releasing hormone agonist des-Gly10-[D-Leu6]-LH-RH ethylamide (LH-RH agonist), was incorporated into a sequential poly(Ala-Ala-Glu(OEt)-Lac) carrier by the melt-pressing technique, which gave fine cylindrical polymer formulations with different structures of drug dispersion, e.g., blend-type and sandwich-type formulations. The rate of in vivo release of LH-RH agonist from a blend-type formulation showed a linear decrease with time until its release was finished after 6 weeks' implantation. In contrast, in a sandwich-type formulation, the in vivo release rate was apparently maintained constant over a period of 16 weeks (24 +/- 14 micrograms/day).  相似文献   

5.
Jiang HL  Zhu KJ 《Biomaterials》2002,23(11):2345-2351
Two classes of fluorescent copolyanhydrides were synthesized by melt copolycondensation of the fluorophoric diacid, p-(carboxyethylformamido)benzoic acid (CEFB), with sebacic acid (SA) or N-trimellitylimidoglycine (TMA-gly). Alternate copolyanhydride based on SA and CEFB was also prepared by solution polycondensation of CEFB and sebacoyl chloride. 'H NMR spectra of the copolymers confirm their structures. Fluorescence was observed for all the copolymers, the intensity of which increases with the CEFB fraction. Either blue (ca. 429 nm) or green (ca. 520 nm) light can be emitted from the copolymers with the excitation of UV (356 nm) and visible (470 nm) light, respectively. The polymers were further fabricated to microsphere formulation, which can be clearly visualized by fluorescent microscopy.  相似文献   

6.
Biomaterials for drug delivery systems   总被引:1,自引:0,他引:1  
Drug delivery systems have unusual materials requirements which derive mainly from their therapeutic role: to administer drugs over prolonged periods of time at rates that are independent of patient-to-patient variables. The chemical nature of the surfaces of such devices may stimulate biorejection processes which can be enhanced or suppressed by the simultaneous presence of the drug that is being administered. Selection of materials for such systems is further complicated by the need for compatibility with the drug contained within the system. A review of selected drug delivery systems is presented. This leads to a definition of the technologies required to develop successfully such systems as well as to categorize the classes of drug delivery systems available to the therapist. A summary of the applications of drug delivery systems will also be presented. There are five major challenges to the biomaterials scientist: (1) how to minimize the influence on delivery rate of the transient biological response that accompanies implantation of any object; (2) how to select a composition, size, shape, and flexibility that optimizes biocompatibility; (3) how to make an intravascular delivery system that will retain long-term functionality; (4) how to make a percutaneous lead for those delivery systems that cannot be implanted but which must retain functionality for extended periods; and (5) how to make biosensors of adequate compatibility and stability to use with the ultimate drug delivery system-a system that operates with feedback control.  相似文献   

7.
Bone morphogenetic proteins (BMPs) are osteoinductive proteins used intensively in clinical investigations involving various bone-related treatments. Owing to their high potential in new bone formation they require local application at the treatment site. For this purpose various controlled delivery systems with BMPs as the excipients have been prepared in recent years. Focusing on this clinical need a disc-shaped BMP carrier was designed as a local delivery system using soluble collagen and chondroitin sulfate. In situ release studies carried out with a model protein (FITC-labeled Protein A) presented a very high rate of release; with most of the protein content being released within 24 h. This rate could be decreased by providing a poly(L-lactide) (PLLA) and sucrose acetate isobutyrate-based (SAIB-based) coat around the release system, applied after BMP loading. In this way, it was possible to extend the release period from 24 h to about 12 days. In situ release of BMP from the same carriers, as quantitated using an ELISA kit, was even slower, with 50% of the protein being released in 15 days. In order to be able to secure the BMP delivery system at the bone defect site and to provide support a mesh knitted using Vicryl sutures and bonded with poly(L-lactide-co-glycolide) (PLGA) was tested in in vivo. Two time periods, 1 and 3 weeks, were used to evaluate the healing process. Osteoinduction by the BMP carrier system was assessed by histology-based bone scoring and X-ray examinations. PLLA-SAIB-coated collagen discs containing BMP presented good biocompatibility and optimum osteogenic stimulation. Structural changes in histological micrographs at week 1 indicated dose-dependent periosteal ossification. At the end of week 3 histological findings with both BMP (1 and 2 microg) doses were almost the same.  相似文献   

8.
Chen Y  Zhou S  Li Q 《Acta biomaterialia》2011,7(3):1140-1149
The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds.  相似文献   

9.
Vaccines represent the most relevant contribution of immunology to human health. However, despite the remarkable success achieved in the past years, many vaccines are still missing in order to fight important human pathologies and to prevent emerging and re-emerging diseases. For these pathogens the known strategies formaking vaccines have been unsuccessful and thus, new avenues should be investigated to overcome the failure of clinical trials and other important issues including safety concerns related to live vaccines or viral vectors, the weak immunogenicity of subunit vaccines and side effects associated with the use of adjuvants. A major hurdle of developing successful and effective vaccines is to design antigen delivery systems in such a way that optimizes antigen presentation and induces broad protective immune responses. Recent advances in vector delivery technologies, immunology, vaccinology and system biology, have led to a deeper understanding of the molecular and cellular mechanisms by which vaccines should stimulate both arms of the adaptive immune responses, offering new strategies of vaccinations. This review is an update of current strategies with respect to live attenuated and inactivated vaccines, DNA vaccines, viral vectors, lipid-based carrier systems such as liposomes and virosomes as well as polymeric nanoparticle vaccines and virus-like particles. In addition, this article will describe our work on a versatile and immunogenic delivery system which we have studied in the past decade and which is derived from a nonpathogenic prokaryotic organism: the "E2 scaffold" of the pyruvate dehydrogenase complex from Geobacillus stearothermophilus.  相似文献   

10.
Nanoparticles based on disulfide bond reduced bovine serum albumin and thiolated alginate (alginate-cysteine conjugate) have been prepared by coacervation method and have been loaded with tamoxifen (TMX). The TMX load into the nanoparticles was optimized (4-6 μg/mg NP) by freeze-drying the systems before the loading procedure. Maximum TMX release (45-52%) took place between 2 and 25 h. Cytotoxicity of unloaded nanoparticles in MCF-7 and HeLa cells was not observed, although a small decrease in viability took place at very high concentration. Cell uptake of nanoparticles occurred in both cell types and the presence of polysaccharide in the nanoparticle composition allowed a better interaction with cells. The administration of 10 μM TMX by TMX-nanoparticles was effective in both cellular lines, and the effect of the drug-loaded systems on MCF-7 cell cycle showed the efficacy of the TMX-loaded nanoparticles.  相似文献   

11.
12.
13.
A previous paper dealt with the preparation of an in vitro programmable zero-order drug delivery system in which the area of the surface exposed to the dissolution medium and the macromolecular relaxation of polymer controlled the release of the drug. In the present study, the preparation of similar delivery systems is described, in which differing drugs and polymers were used to ascertain the mechanism governing the drug-release kinetics. The movement of the interfaces between solvent and system was measured during drug release in systems with varying composition. The results indicate that the synchronization of the movement of swelling and eroding fronts at the solvent-system interface determines the achievement of the linear-release kinetics of such swelling activated systems and that the swelling and dissolution characteristics of the polymer employed for core preparation govern front movement.  相似文献   

14.
In this study, immobilization of rhBMP-2 on polylactone-type polymer scaffolds via plasma treatment was investigated. To introduce proper functional groups on the surface of poly(lactide-co-glycolide) (PLGA) matrix, PLGA films were treated under different atmospheres, such as oxygen, ammonia and carbon dioxide, respectively, and then incubated in rhBMP-2 solution of de-ionized water. The effect of various plasma-treated PLGA films on binding rhBMP-2 was investigated and compared. It was found that PLGA binding ability to rhBMP-2 was enhanced by carbon dioxide and oxygen plasma treatment, and the binding ability of the oxygen plasma-treated PLGA (OT-PLGA) to rhBMP-2 was the strongest after oxygen plasma treating for 10 min under a power of 50 W. The changes of surface chemistry and surface topography of PLGA matrix induced by oxygen plasma treatment played main roles in improving the PLGA binding ability to rhBMP-2. The stability of rhBMP-2 bound on OT-PLGA film was determined under a dynamic condition by a Parallel Plate Flow Chamber. The result showed that the rhBMP-2 had been immobilized on the OT-PLGA film. Mouse OCT-1 osteoblast-like cell as a model cell was cultured on the rhBMP-2 bound OT-PLGA (OT-PLGA/BMP) in vitro, which showed that the bound rhBMP-2 via oxygen plasma treatment was bioactive. Depending on hydrophilicity and rich polar O-containing groups of the OT-PLGA scaffold, different amount of rhBMP-2 could be evenly immobilized on the surface of the OT-PLGA scaffold. The immobilized rhBMP-2 had stimulated differentiation of OCT-1 cell and accelerated process of mineralization of OCT-1 cell in the scaffold. It revealed the rhBMP-2 immobilized PLGA scaffold had good cell affinity.  相似文献   

15.
Increasing knowledge of the neurochemical aspects of central nervous system function raises the possibility of treating Alzheimer's disease (AD) and other neurological diseases by the appropriate manipulation of neurotransmitters, neuromodulators, neurohormones or neurotrophic factors. Clinical application of this knowledge may, however, be inhibited by long standing problems with drug delivery to the central nervous system (CNS). Novel, CNS-directed, drug delivery systems might be used to overcome many of these problems. The problems encountered in drug delivery to the brain, present experience with the clinical use of some novel drug delivery systems and the advantages and disadvantages of these systems will be discussed.  相似文献   

16.
Several materials capable of acting as structures for controlled release were analysed for the fabrication of matrices. Among those used, hydrophilic polysaccharides appeared to be the most suitable materials. Carboxymethylcellulose (a semi-synthetic polysaccharide) was chemically cross-linked with a 60% and 90% cross-linking degree in order to obtain hydrogels and utilised as matrix for the realisation of controlled drug release systems. The morphology of the gels was changed in order to obtain a microporous structure with different porosity (14, 30 and 40 μm). The obtained porous matrices were characterised in terms of pore density, dimension and swelling behaviour. The influence of both the pore dimension and technique of loading on the release kinetics was analysed. By increasing the pore dimension the release of ibuprofen-lysin was slower. Inducing the microporous structure after the loading of the hydrogel with the drug resulted in a slower release.  相似文献   

17.
Several materials capable of acting as structures for controlled release were analysed for the fabrication of matrices. Among those used, hydrophilic polysaccharides appeared to be the most suitable materials. Carboxymethylcellulose (a semi-synthetic polysaccharide) was chemically cross-linked with a 60% and 90% cross-linking degree in order to obtain hydrogels and utilised as matrix for the realisation of controlled drug release systems. The morphology of the gels was changed in order to obtain a microporous structure with different porosity (14, 30 and 40 microm). The obtained porous matrices were characterised in terms of pore density, dimension and swelling behaviour. The influence of both the pore dimension and technique of loading on the release kinetics was analysed. By increasing the pore dimension the release of ibuprofen-lysin was slower. Inducing the microporous structure after the loading of the hydrogel with the drug resulted in a slower release.  相似文献   

18.
Ceramic materials are osteoconductive matrices extensively used in bone tissue engineering approaches. The performance of these types of biomaterials can be greatly enhanced by the incorporation of bioactive agents and materials. It is previously reported that chitosan is a biocompatible, biodegradable material that enhances bone formation. In the other hand, bone morphogenetic protein-2 (BMP-2) is a well-known osteoinductive factor. In this work we coated porous beta-tricalcium phosphate (beta-TCP) scaffolds with recombinant human BMP-2 (rhBMP-2) carrier chitosan films and studied how they could modify the ceramic physicochemical properties, cellular response, and in vivo bone generation. Initial beta-TCP disks with an average diameter of 5.78 mm, 2.9 mm thickness, and 53% porosity were coated with a chitosan film. These coating properties were studied by X-ray diffraction, Fourier transform-infrared analysis, transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). Treatment modified the scaffold porous distribution and increased the average hardness. The biocompatibility did not seem to be altered. In addition, adhered C2C12 cells expressed alkaline phosphatase activity, related to cell differentiation toward osteogenic lineage, due to the incorporation of rhBMP-2. On the other hand, in vivo observations showed new bone formation 3 weeks after surgery, a much shorter time than control beta-TCP ceramics. These results suggest that developed coating improved porous beta-TCP scaffold for bone tissue applications and added osteoinductive properties.  相似文献   

19.
基因治疗的新型载体研究进展   总被引:8,自引:3,他引:8  
建立和发展一个安全及有效的载体系统对基因治疗是极其重要的。尽管病毒载体已经在临床上用于基因治疗,但其安全性仍然不确切。近年来,许多非病毒性基因载体系统已被广泛开展及应用。本综述将讨论一些新的基因载体系统,特别是本实验室开展研究的载体系统,包括细胞转导肽,电脉冲导入系统,壳聚糖载体等。  相似文献   

20.
The prolonged continuous intraperitoneal infusion of cytoarabin was studied in 28 courses. Only 9 courses were completed for the full period of 3 weeks. No cytoarabin was detected in the plasma of patients on any of these courses. The combination of intraperitoneal administration of methotrexate and dipyridamole did not show a synergistic interaction of these 2 substances. However, the addition of dipyridamole to etoposide showed a clear synergy between these 2 substances studied on a human ovarian carcinoma cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号