首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the suppressive effect of electric cortical stimulation upon the seizure onset zone and the non-epileptic cortex covered by subdural electrodes in patients with neocortical epilepsy and mesial temporal lobe epilepsy (MTLE). METHODS: Four patients with medically intractable focal epilepsy had implanted subdural electrodes for preoperative evaluation. Cortical functional mapping was performed by intermittently repeating bursts of electric stimulation, which consisted of 50 Hz alternating square pulse of 0.3 ms duration, 1-15 mA, within 5 s. The effect of this stimulation on the seizure onset zones and on the non-epileptic areas was evaluated by comparing spike frequency and electrocorticogram (ECoG) power spectra before and after stimulation. A similar comparison was performed in stimulation of 0.9 Hz of the seizure onset zones for 15 min. RESULTS: When the seizure onset zone was stimulated with high frequency, spike frequency decreased by 24.7%. Logarithmic ECoG power spectra recorded at stimulated electrode significantly decreased in 10-32 Hz band by high frequency stimulation of the seizure onset zone, and in 14-32 Hz band by high frequency stimulation of the non-epileptic area. Low frequency stimulation of the seizure onset zone produced 18.5% spike reduction and slight power decrease in 12-14 Hz. CONCLUSIONS: Both high and low frequency electric cortical stimulation of the seizure onset zone have a suppressive effect on epileptogenicity. Reduction of ECoG fast activities after electric cortical stimulation suggests the augmentation of inhibitory mechanisms in human cortex.  相似文献   

2.
PURPOSE: This study was conducted to investigate the effect of low-frequency electric cortical stimulation on epileptic focus in humans. METHODS: We stimulated the epileptic focus in a patient with medically intractable mesial temporal lobe epilepsy (MTLE) by means of subdural electrodes and evaluated the change in the number of interictal epileptiform discharges. We used biphasic electric current of 0.3-ms duration presented at 0.9-Hz frequency for 250 s, comparing stimulus intensity of 7.5, 2, and 0.5 mA. RESULTS: Interictal epileptiform discharges at the ictal focus occurred less frequently after the stimulation with the intensity of 0.5 mA. With the intensity of 7.5 mA and 2.0 mA, however, habitual auras were elicited by the stimulation, and afterdischarges were seen on the cortical EEG. CONCLUSIONS: Low-frequency, low-intensity electric cortical stimulation could produce inhibitory effects on epileptic activity. At the same time, however, a caution for possible induction of EEG seizures is needed, even when applying low-frequency electric stimulation.  相似文献   

3.
目的 观察重复脑皮质电刺激对氯化铁诱发慢性癫痫大鼠模型脑皮质兴奋性的影响.方法 通过在运动感觉区脑皮质注射氯化铁建立慢性癫痫大鼠模型,给予脑皮质低频(1 Hz)低强度(0.1 mA)和低频(1 Hz)高强度(1.0 mA)、高频(100 Hz)低强度(0.1 mA)和高频(100 Hz)高强度(1.0 mA)不同的重复电刺激,检测电刺激前后脑皮质后放电阈值、后放电时程和行为学评分.假刺激慢性癫痫大鼠作为对照组.结果 后放电阈值低频低强度组(2.10±0.38)mA与对照组(1.50±0.33)mA相比差异有统计学意义(P<0.05).行为学评分和后放电时程各组与对照组相比差异无统计学意义.行为学评分与后放电阈值的比值低频低强度组(1.88±0.60)和低频高强度组(2.18±0.38)与对照组(3.22±0.67)相比差异有统计学意义(P<0.01和P<0.05).结论 重复低频低强度脑皮质电刺激可以升高氯化铁诱发慢性癫痫大鼠模型的脑皮质后放电阈值,降低脑皮质兴奋性,提示合适参数的脑皮质电刺激对氯化铁诱发大鼠癜痫具有抑制作用.  相似文献   

4.
OBJECTIVE: To establish the efficacy and safety of low-frequency electrical stimulation for cortical brain mapping. METHODS: Cortical function was mapped using electrical stimulation in epilepsy patients with chronically implanted intracranial subdural electrodes. Contacts overlying motor, sensory, visual, and language cortex were stimulated at frequencies of 5, 10, and 50 Hz, using current levels ranging from 1 to 17.5 mA for 3-5 s. The current intensity and incidence at which functional alterations and afterdischarges (ADs) occurred were recorded. The modified McNemar test for nonindependent measures was used to analyze the data. RESULTS: 122 electrode contact pairs were electrically stimulated at least two different frequencies in 14 patients. Functional alterations were obtained at all stimulation frequencies (5, 10, and 50 Hz) at generally similar rates. The likelihood of producing an AD correlated with stimulation frequency, and lower-frequency stimulation was less likely to provoke an AD. Higher current intensity was required to induce both functional responses and ADs at low-frequency stimulation than high-frequency stimulation. While overall rates of producing functional changes were similar, differences in functional response with regard to frequency were noted at individual cortical sites. CONCLUSION: 5- and 10-Hz stimulation are as effective for mapping cortical function as 50-Hz stimulation and produce fewer ADs. We recommend that mapping of cortical function be started with 5-Hz-frequency stimulation. Higher frequencies should be used in suspect cortex if no symptoms or signs are produced with 5-Hz stimulation.  相似文献   

5.
Clinical applications of brain stimulation have been increasing during the last decade; however, the mechanisms of action remain unknown. One proposed mechanism of action is that repetitive stimulation modulates cortical excitability. Herein, we explore the question of whether repetitive electric stimulation increases cortical excitability as indexed by the cortical spreading depression. Twenty-four Wistar rats were divided into three groups according to the treatment: sham, 1-Hz and 20-Hz stimulation. Stimulation was applied to the left frontal cortex through a pair of epidurally implanted silver-wire electrodes. The cortical spreading depression-features were analysed at three time points (one day before, one day after and 2 weeks after treatment) in both the stimulated and unstimulated hemisphere. A 3 x 2 x 3 factorial anova with repeated measures showed significant differences in the main effect of time (P < 0.0001), hemisphere (P = 0.0002) and stimulation group (P = 0.008). The interaction between time vs. hemisphere vs. stimulation group was also significant (P < 0.0001). Posthoc analysis demonstrated that 1-Hz and 20-Hz repetitive electrical stimulation significantly increased the velocity of cortical spreading depression in the stimulated hemisphere. Furthermore, 20-Hz stimulation showed a greater effect on cortical spreading depression compared to 1-Hz stimulation. The results show that 1-Hz and 20-Hz repetitive electrical stimulation results in an increase in cortical spreading depression velocity that is associated with the frequency and the hemisphere of stimulation. Furthermore, the effects are found to be long lasting. We believe that these findings have strong relevance to support the clinical application of therapies involving electrical stimulation for diseases of reduced cortical excitability.  相似文献   

6.
F. Fylan  G. F. A. Harding 《Epilepsia》1997,38(10):1124-1131
Summary: Purpose: Seizures provoked by television viewing may be triggered by patterns in the television image or by flicker from the display itself. We examined the incidence of EEG abnormalities elicited by patterns displayed on television sets with two different frame rates to evaluate the likely contribution of photosensitive and pattern-sensitive mechanisms to television- and video-game epilepsy.
Methods : Televisions with frame rates of 50 and 100 Hz were used to present 35 patients who were photosensitive or pattern-sensitive with grating patterns. These patterns comprised vertical square-wave and sine-wave gratings of 90% contrast, and the spatial frequency was varied between 0.25–7 cycles/degree. EEGs were analysed for laboratory sensitivity to patterned and unpatterned intermittent photic stimulation (IPS).
Results : Significantly fewer EEG abnormalities were elicited by patterns displayed on the 100 Hz frame-rate television than on the 50-Hz frame-rate television. No abnormalities were observed in response to the blank screens of either television. Thirty-three patients showed abnormalities in response to patterned IPS but only 15 in response to diffuse flash. Two patients showed no laboratory evidence of photosensitivity. Patients who were sensitive to patterned IPS at 50 Hz were significantly more likely to demonstrate abnormalities to patterns displayed on the 100-Hz frame-rate television than were patients who were not sensitive to 50-Hz patterned IPS.
Conclusions : We suggest that for many patients, the combination of high-contrast patterns and screen flicker may elicit the observed EEG abnormalities. For patients with sensitivity to screen flicker, the use of a high frame-rate television may be beneficial in reducing the risk of seizures.  相似文献   

7.
Visual evoked potentials (VEP) responses to flash stimulation at nine intensities, from 0.611 to 945.6 cd/m(2)*s, and two frequencies (0.2 and 1 Hz) were recorded and oscillatory potentials (OPs) extracted after digital 50-Hz high pass filtering in unanaesthetized unrestrained mice. Both VEP and OPs morphology were replicable for all conditions and were similar to values reported in the literature. In particular OPs spectral analysis showed that the main frequency component remained stable at 66-77 Hz, for both stimulation frequencies, although it displayed an increase in amplitude, as a function of stimulus intensity. OPs amplitude at 1 Hz versus 0.2 Hz stimulus frequency was higher after taking into account the different noise contributions in the two conditions. Root mean square values calculated at selected time windows, revealed that, at 1 Hz, the main contribution to OPs occurs at the onset of the response (14-27 ms) while, at 0.2 Hz, the higher RMS was recorded later (42-56 ms). This difference accounts for the longer duration of the oscillatory event in the 0.2-Hz condition and suggests that oscillatory activity, modulated and carried along the visual pathway, is recorded at the cortical electrode after further elaboration at the cortical/subcortical level, depending on stimulus properties.  相似文献   

8.
Focal clonic seizures are a frequent epileptic phenomenon. However, there are little data about their pathomechanism. In four patients with focal epilepsy and subdural electrodes, focal clonus was elicited by electrical stimulation of the motor cortex. Three additional patients underwent intraoperative stimulation of the spinal cord. Rhythmic clonic muscle responses were elicited by cortical stimulation with 20-50 Hz. The clonus consisted of simultaneous trains of compound muscle action potentials (CMAP) in agonistic and antagonistic muscles alternating with periods of muscular silence despite continuous stimulation. Clonus frequency decreased from 4.0-8.0 Hz at 50 Hz stimulation to 3.0-3.5 Hz at 20 Hz paralleled by a prolongation of the trains of CMAP. The stimulation frequency correlated with the number of stimuli blocked during relaxation. During the stable stimulation periods, the clonus frequency decreased over time. The number of stimuli which formed a train of CMAP and which were blocked during relaxation increased towards the end of the stimulation periods. Increasing intensity of stimulation at the same frequency converted a clonic to a tonic response. There was always an 1:1 relationship between stimulus and CMAP during spinal cord stimulation. We hypothesize that during cortical stimulation, clonus is elicited by synchronous activation of pyramidal tract (PT) neurons which results in excitation of intracortical GABA(B)ergic interneurons by recurrent axon-collaterals. This leads to stepwise hyperpolarization of PT neurons intermittently suppressing the output of PT neurons despite continuous stimulation. This mechanism can explain our finding that temporal and spatial summation of the stimuli were needed for clonus generation.  相似文献   

9.
Objective: Epilepsy can be considered as a result of the imbalance of the excitatory and inhibitory processes. Therefore, the artificial enhancement of the activity of brain inhibitory mechanisms might lead to a beneficial therapeutic effect for intractable epilepsy patients. Material and methods: Studies of the inhibitory effects of electrical stimulation of the head of the caudate nucleus (HCN), cerebellar dentate nucleus (CDN), thalamic centromedian nucleus (CM), and neocortical and temporal lobe mesiobasal epileptic foci were performed on 150 patients with implanted intracerebral electrodes. Chronic brain stimulation with implanted neurostimulators was performed on 54 patients. Sixteen were followed up to 1.5 years (mean 1.2 years). Results: The study demonstrated that 4–8 Hz HCN and 50–100 Hz CDN stimulation suppressed the subclinical epileptic discharges and reduced the frequency of generalized, complex partial, and secondary generalized seizures. CM stimulation (20–130 Hz) desynchronized the EEG and suppressed partial motor seizures. Direct subthreshold 1–3 Hz stimulation of the epileptic focus may suppress rhythmic afterdischarges (ADs). Seizures were eliminated for 26 of 54 patients (48%), worthwhile improvement was achieved for 23 of 54 patients (43%), and no improvement was observed in 5 of 54 patients (9%). Conclusion: The artificial increase of the activity of brain inhibitory system may suppress the activity of epileptic foci, and, in long run, stabilize this epileptic foci activity at a lower, perhaps normal, level. Therapeutic direct brain stimulation, therefore, might serve as a useful tool in the treatment of intractable and multifocal epilepsy, and might be combined with ablative surgical methods.  相似文献   

10.
Purpose :  The paired-pulse technique has been widely used as a convenient but indirect measure of "inhibition" in hippocampal circuits of normal and epileptic animals. Most investigators have used a single paired-pulse protocol, whereas others have utilized repetitive paired pulses. This study investigated which parameters influence results from paired-pulse tests, focusing on the repetitive paired-pulse technique; it aims to assess how this technique may be used in an unbiased and quantitative manner across animal preparations for comparisons of control and experimental epileptic animals.
Methods :  The perforant path was stimulated while field potentials were recorded from the granule cell layer under isoflurane anesthesia. Paired-pulse suppression was analyzed as a function of stimulation intensity and interpulse interval and frequency.
Results :  Paired-pulse suppression was greater with increased stimulus intensity and decreased interpulse interval (20–100 ms). During repetitive protocols, stimulation frequencies ≤1.0 Hz produced paired-pulse suppression similar to single paired-pulse responses, but caused more paired-pulse suppression between 1.0 and 4.0 Hz at all but the lowest intensities. The amplitude of the population spike produced by the conditioning pulse increased progressively during stimulation at higher frequencies (1.0–4.0 Hz).
Discussion :  The single paired-pulse technique is highly dependent on stimulation parameters, as is the repetitive paired-pulse protocol, which is more variable. To generate reliable, consistent, and unbiased data in comparisons of control and experimental epileptic groups, all parameters should be specified and controlled across experiments. Paired-pulse suppression is susceptible to alterations in many mechanisms, and, therefore, represents a circuit response rather than an assay of γ-aminobutyric acid (GABA)ergic inhibition in epilepsy research.  相似文献   

11.
OBJECTIVE: To detect and measure correlation between cortical and muscle activities, coherence analysis was used. METHODS: The electroencephalogram (EEG) and electromyogram (EMG) were recorded in 9 normal volunteers during tonic contraction of upper and lower limb muscles on the right side. Coherence between EEG and EMG was computed to analyze their linear association. RESULTS: EEG over the contralateral sensorimotor area was coherent with EMG, with peak coherence at 11-36 Hz (mean, 22 Hz). For the abductor pollicis brevis (APB) muscle, peak coherence, as determined by functional brain mapping with focal transcranial magnetic stimulation (TMS), was over or slightly posterior to the hand area on the primary motor cortex determined by focal transcranial magnetic stimulation (TMS). Peak coherence over the scalp was somatotopically organized. The temporal relation between EEG and EMG was analyzed with a new model for interpreting the phase shift ('constant phase shift plus constant time lag' model). For the APB muscle, the phase relation between cortical and muscular oscillations differed in the frequency ranges of 3-13 Hz and 14-50 Hz, respectively, suggesting that different coupling mechanisms operate in different bands. Only the phase shift between cortical and motoneuronal firing at 14-50 Hz was reliably estimated by a linear model. At 14-50 Hz, motoneuronal firing was led by surface-negative cortical activity with a constant time lag that depended on the cortical-muscular distance. For the APB muscle, the time lag was slightly shorter than the cortical-muscular conduction time determined by TMS. Vibratory stimulation (100 Hz) of a muscle tendon during tonic contraction had no significant effect on cortical-muscular coherence, indicating that cortical oscillation reflected motor rather than sensory activity. CONCLUSIONS: The present findings suggest temporal coding of the oscillatory motor control system (3-13 Hz vs. 14-50 Hz), and confirm the functional importance of cortical beta and gamma rhythms in the motor efferent command. Cortical-muscular synchronization is most likely mediated by the direct corticospinal pathway within the frequency range of 14-50 Hz.  相似文献   

12.
《Clinical neurophysiology》2020,131(8):1741-1754
ObjectiveUsing interictal epileptiform discharges (IEDs), consisting of spikes and post-spike slow waves (PSSs), and IED-related high-frequency activities (HFAs), we elucidated inhibitory effects of electrical cortical stimulation (ECS) on human epileptic foci.MethodsWe recruited 8 patients with intractable focal epilepsy, and 50-Hz ECS was applied to the seizure-onset zone (SOZ) and non-SOZ. Before (5-min) and after (20-min) ECS, we evaluated the number of IED, the amplitudes of spikes and PSSs, spike-related HFA power, and PSS-related low gamma (30–50 Hz) activities.ResultsSOZ stimulation significantly decreased the number of IEDs and amplitude of spikes. Spike-related HFA power values in fast ripple (200–300 Hz) and ripple (80–150 Hz) bands were significantly suppressed only by SOZ stimulation in 4 and 3 patients, respectively. Among 4 patients with discrete PSSs, the amplitude ratio of spike/PSS decreased and the PSS-related low gamma activity power increased significantly in 2 patients and marginally in 1 patient.ConclusionsECS potentially modulates cortical excitability by reducing excitation and increasing inhibition, and monitoring IED-related HFAs may help achieve the optimal effects of ECS.SignificanceIED and IED-related HFAs are dynamic, potential surrogate markers for epileptic excitability during the interictal period.  相似文献   

13.
Summary:  Purpose: To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe.
Methods: Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed.
Results: Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "'fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses.
Conclusions: These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.  相似文献   

14.
Brief-pulse stimulation at 50 Hz has been shown to terminate afterdischarges observed in epilepsy patients. However, the optimal pulse stimulation parameters for terminating cortical electrical stimulation-induced afterdischarges remain unclear. In the present study, we examined the effects of different brief-pulse stimulation frequencies (5, 50 and 100 Hz) on cortical electrical stimulation-induced after-discharges in 10 patients with refractory epilepsy. Results demonstrated that brief-pulse stimulation could terminate cortical electrical stimulation-induced afterdischarges in refractory epilepsy patients. In conclusion, (1) a brief-pulse stimulation was more effective when the afterdischarge did not extend to the surrounding brain area. (2) A higher brief-pulse stimulation frequency (especially 100 Hz) was more likely to terminate an afterdischarge. (3) A low current intensity of brief-pulse stimulation was more likely to terminate an afterdischarge.  相似文献   

15.
Excessive synchronization of neuronal activity at around 20 Hz is a common finding in the basal ganglia of patients with untreated Parkinson's disease (PD). Correlative evidence suggests, but does not prove, that this spontaneous activity may contribute to slowness of movement in this condition. Here we investigate whether externally imposed synchronization through direct stimulation of the region of the subthalamic nucleus at 20 Hz can slow motor performance in a simple unimanual tapping task and whether this effect is frequency selective. Tapping rates were recorded on 42 sides in 22 patients with PD after overnight withdrawal of medication. Tapping was performed without stimulation and during bilateral stimulation at 20 Hz, 50 Hz and 130 Hz. We found that tapping rates were slowed by 8.2+/-3.2% (p=0.014) during 20-Hz stimulation in subjects with relatively preserved baseline function in the task. This effect was frequency selective. The current data provide proof of the principle that excessive beta synchrony within the basal ganglia-cortical loop may contribute to the slowing of movements in Parkinson's disease.  相似文献   

16.
Penetration of cortical spreading depression (SD) into epileptic foci established in the cerebral cortex by penicillin or Metrazol and into electrically stimulated cortical regions was studied in anaesthetized rats. SD suppressed the activity of penicillin foci with low rates of interictal discharge (0.3 Hz) but did not invade more active foci (1 Hz) or foci triggered by electrical stimulation (1-3 Hz). Metrazol foci did not block SD propagation unless stimulated at 6-10 Hz. Repetitive direct cortical responses elicited by 0.05-0.1 msec pulses blocked SD propagation when applied at 6-10 Hz for 5-20 min. The SD blockade covered an area 3-5 mm in diameter around the bipolar stimulating electrodes. The block outlasted the stimulation for several minutes but was fully reversible. New stimulation reinstated the SD blockade after a shorter latency and at lower stimulus intensities and rates. Interaction of the blocked cortical area and SD resulted in anomalous SD propagation, characterized by reentry or circle waves, returning through or around the stimulated region to the recovered cortex. The dynamics of the onset and offset of blocking suggests that SD propagation is prevented by enhanced K+ reabsorption which rapidly removes the K+ ions penetrating the stimulated area from the SD wave front. The interactive phenomena, particularly SD circulation around an epileptic focus, may account for periodic changes of ictal and interictal activity found in some types of focal epilepsy.  相似文献   

17.
OBJECTIVE: Cerebral [18F]fluorodeoxy-D-glucose PET ([18F]FDG-PET) was used to visualize the lasting neuronal activation after repetitive transcranial magnetic stimulation (rTMS) over the left hand area of the primary motor cortex (M1HAND). BACKGROUND: Applied over M1HAND, rTMS has been shown to produce a modulation of corticomotor excitability beyond the time of stimulation itself. METHODS: Eight right-handed subjects underwent nonquantitative [18F]FDG-PET measurements during two experimental conditions: at rest and after focal subthreshold 5-Hz rTMS over the left M1HAND. In the post-rTMS condition, [18F]FDG was injected immediately after the administration of 1,800 magnetic pulses over the left M1HAND. Relative differences in normalized regional cerebral metabolic rate of glucose (normalized rCMRglc) between conditions were determined using a voxel-by-voxel Student's t-test and volume-of-interest (VOI) analysis. Analysis was a priori restricted to the M1HAND, the supplementary motor area (SMA), and the primary auditory cortex of both hemispheres. RESULTS: A 5-Hz rTMS of the left M1HAND caused a lasting relative increase in normalized rCMRglc within the M1HAND bilaterally and the SMA. The magnitude and the topographic pattern of persisting relative rCMRglc increases within these motor cortical areas demonstrated considerable interindividual variations. CONCLUSIONS: Subthreshold 5-Hz repetitive transcranial magnetic stimulation (rTMS) over the hand area of the primary motor cortex is associated with a persisting neuronal activation in a distinct set of motor cortical areas beyond the time of stimulation. The current findings demonstrate that [18F]FDG-PET can localize and quantify regional net changes in synaptic cortical activity after rTMS and thus might elucidate the mechanisms underlying rTMS-associated therapeutic effects.  相似文献   

18.
Objective: We describe the electrocorticographic findings after hippocampal stimulation in normal awake rats. Methods: Six male Wistar rats were implanted bilaterally with neocortical and hippocampal electrodes. The animals were submitted to hippocampal low‐ and high‐frequency stimulation. Results: Recruiting responses were seen in the ipsilateral hippocampus after unilateral low‐frequency (6 Hz) hippocampal stimulation with low voltage (0.3 V). These recruiting responses could be seen at the contralateral hippocampus with slightly higher voltage (0.5 V) and over the ipsilateral neocortex with stimulation with 1.2 V. Bilateral neocortical recruiting responses were noted at stimuli voltage of 1.5 V. There were no recruiting responses after high‐frequency stimulation (130 Hz). A dorsal column (DC) shift, characterized by baseline oscillation without brain activity modification, was noted in all animals after hippocampal stimulation with frequency higher than 60 Hz. The increase of stimulation frequency from 6 to 130 Hz (1.2 V, 300 µsec) showed progressive reduction in the amplitude and disappearance of the time‐locked recruiting responses, especially from around 60 Hz. Conclusions: Bilateral hippocampal and cortical recruiting responses were easily obtained in all animals after low‐frequency hippocampal unilateral stimulation. High‐frequency stimulation did not give rise to recruiting response, although a DC shift was noted. The fact that unilateral hippocampal stimulation might lead to bilateral limbic system modulation suggested that unilateral stimulation might be enough in many situations. Our findings suggested that high‐frequency stimulation was more likely to be effective than low‐frequency stimulation regarding the potential inactivation of the hippocampus. These findings might prove relevant to the determination of the adequate parameters for stimulation using hippocampal deep brain stimulation (DBS) in the future. An increase in our knowledge on the physiologic mechanisms underlying DBS might be translated into more rational clinical approaches.  相似文献   

19.

Objective

In a previous transcranial magnetic stimulation (TMS) study we demonstrated that suprathreshold mesh-glove (MG) whole-hand stimulation elicits lasting changes in motor cortical excitability. Currently, there is no consensus with regard to the optimal parameters for the induction of sensorimotor cortical plasticity using peripheral electrical stimulation. Thus, in the present study we explore the modulatory effects of MG stimulation at different stimulus intensities and different frequencies in order to identify an optimal stimulation protocol.

Methods

MG stimulation was performed on 12 healthy subjects in separate sessions at different stimulation levels: sub-sensory at 50 Hz, sensory at 50 Hz and motor at 2 Hz. To verify if stimulation at lower frequencies is less effective, an additional experiment at sensory level with 2 Hz was performed. TMS was used to assess motor threshold (MT), motor evoked potentials (MEPs) recruitment curve (RC), short latency intracortical inhibition (SICI) and intracortical facilitation (ICF) to paired-pulse TMS at baseline (T0), immediately after (T1) and 1 h (T2) after 30 min of MG stimulation. F-wave studies were performed to assess spinal motoneuron excitability.

Results

MG stimulation at sub-sensory/50 Hz and sensory/2 Hz level determines no significant cortical excitability changes; at sensory/50 Hz level and at motor/2 Hz level we found decreased MT, increased MEP RC as well as reduced SICI and increased ICF at T1 and T2.

Conclusions

MG stimulation at sensory/50 Hz and motor/2 Hz level induces similar long-lasting modulatory effects on motor cortical excitability. Both the strength of the corticospinal projections and the intracortical networks are influenced to the same extend.

Significance

The study provides further evidence that stimulation intensity and frequency can independently modulate motor cortical plasticity. The selection of optimal stimulation parameters has potentially important implications for the neurorehabilitation of patients after brain damage (e.g. stroke, traumatic brain injury) with hand motor deficits.  相似文献   

20.
《Brain stimulation》2014,7(1):74-79
BackgroundTranscranial magnetic stimulation (TMS) has been used to reveal excitability changes of the primary motor cortex (M1) in Parkinson's disease (PD). Abnormal rhythmic neural activities are considered to play pathophysiological roles in the motor symptoms of PD. The cortical responses to external rhythmic stimulation have not been studied in PD. We recently reported a new method of triad-conditioning TMS to detect the excitability changes after rhythmic conditioning stimuli, which induce facilitation by 40-Hz stimulation in healthy volunteers.ObjectiveWe applied a triad-conditioning TMS to PD patients to reveal the motor cortical response characteristics to rhythmic TMS.MethodsThe subjects included 13 PD patients and 14 healthy volunteers. Three conditioning stimuli over M1 at an intensity of 110% active motor threshold preceded the test TMS at various inter-stimulus intervals corresponding to 10–200 Hz.ResultsThe triad-conditioning TMS at 40 Hz induced no MEP enhancement in PD patients in either the On or Off state, in contrast to the facilitation observed in the normal subjects. Triad-conditioning TMS at 20–33 Hz in the beta frequency elicited significant MEP suppression in PD patients. The amount of suppression at 20 Hz positively correlated with the UPDRS III score.ConclusionWe observed abnormal M1 responses to rhythmic TMS in PD. The suppression induced by beta frequency stimulation and no facilitation by 40-Hz stimulation may be related to abnormal beta and gamma band activities within the cortical-basal ganglia network in PD patients. The motor cortical response to rhythmic TMS may be an additional method to detect physiological changes in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号