首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic retinopathy is a major cause of blindness, and its earliest signs include damage to the blood vessels and the formation of lesions in the retina. Automated detection and grading of hard exudates from the color fundus image is a critical step in the automated screening system for diabetic retinopathy. We propose novel methods for the detection and grading of hard exudates and the main retinal structures. For exudate detection, a novel approach based on coarse-to-fine strategy and a new image-splitting method are proposed with overall sensitivity of 93.2% and positive predictive value of 83.7% at the pixel level. The average sensitivity of the blood vessel detection is 85%, and the success rate of fovea localization is 100%. For exudate grading, a polar fovea coordinate system is adopted in accordance with medical criteria. Because of its competitive performance and ability to deal efficiently with images of variable quality, the proposed technique offers promising and efficient performance as part of an automated screening system for diabetic retinopathy.  相似文献   

2.
We present an automatic image processing algorithm to detect hard exudates. Automatic detection of hard exudates from retinal images is an important problem since hard exudates are associated with diabetic retinopathy and have been found to be one of the most prevalent earliest signs of retinopathy. The algorithm is based on Fisher's linear discriminant analysis and makes use of colour information to perform the classification of retinal exudates. We prospectively assessed the algorithm performance using a database containing 58 retinal images with variable colour, brightness, and quality. Our proposed algorithm obtained a sensitivity of 88% with a mean number of 4.83+/-4.64 false positives per image using the lesion-based performance evaluation criterion, and achieved an image-based classification accuracy of 100% (sensitivity of 100% and specificity of 100%).  相似文献   

3.
Abstract

The main intention of mass screening programmes for Diabetic Retinopathy (DR) is to detect and diagnose the disorder earlier than it leads to vision loss. Automated analysis of retinal images has the likelihood to improve the efficacy of screening programmes when compared over the manual image analysis. This article plans to develop a framework for the detection of DR from the retinal fundus images using three evaluations based on optic disc, blood vessels and retinal abnormalities. Initially, the pre-processing steps like green channel conversion and Contrast Limited Adaptive Histogram Equalisation is done. Further, the segmentation procedure starts with optic disc segmentation by open-close watershed transform, blood vessel segmentation by grey level thresholding and abnormality segmentation (hard exudates, haemorrhages, Microaneurysm and soft exudates) by top hat transform and Gabor filtering mechanisms. From the three segmented images, the feature like local binary pattern, texture energy measurement, Shanon’s and Kapur’s entropy are extracted, which is subjected to optimal feature selection process using the new hybrid optimisation algorithm termed as Trial-based Bypass Improved Dragonfly Algorithm (TB – DA). These features are given to hybrid machine learning algorithm with the combination of NN and DBN. As a modification, the same hybrid TB – DA is used to enhance the training of hybrid classifier, which outputs the categorisation as normal, mild, moderate or severe images based on three components.  相似文献   

4.
目的提出一种基于改进的模糊C-均值(improved fuzzy C-means,IFCM)聚类算法及支持向量机(support vector machine,SVM)的检测算法,以实现对眼底图像中硬性渗出的自动识别。方法首先利用改进的FCM算法对由江苏省中医院眼科提供的120幅彩色眼底图像进行粗分割以获取硬性渗出候选区域;其次,利用Logistic回归对候选区域提取出的特征进行选择,并利用候选区域的优化特征集及相应判定结果建立SVM分类器,实现眼底图像中硬性渗出的自动检测;最后利用该方法对65幅眼底图像进行硬性渗出自动检测。结果硬性渗出自动检测得到的病灶区域水平灵敏度96.47%,阳性预测值90.13%;图像水平灵敏度100%,特异性95.00%,准确率98.46%;平均一幅图像处理时间4.56 s。结论利用改进的FCM算法与识别率较高的SVM分类器相结合的方法能够高效自动地识别出眼底图像中的硬性渗出。  相似文献   

5.
Automated detection of exudates for diabetic retinopathy screening   总被引:1,自引:0,他引:1  
Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13,219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy.  相似文献   

6.
Diabetes mellitus may cause alterations in the retinal microvasculature leading to diabetic retinopathy. Unchecked, advanced diabetic retinopathy may lead to blindness. It can be tedious and time consuming to decipher subtle morphological changes in optic disk, microaneurysms, hemorrhage, blood vessels, macula, and exudates through manual inspection of fundus images. A computer aided diagnosis system can significantly reduce the burden on the ophthalmologists and may alleviate the inter and intra observer variability. This review discusses the available methods of various retinal feature extractions and automated analysis.  相似文献   

7.
硬性渗出物是糖尿病视网膜病变(DR)的早期病症,是糖尿病性黄斑水肿的最主要表现,因此对硬性渗出物的准确检测具有重要的临床意义。提出一种基于背景估计和SVM分类器的眼底图像硬性渗出物检测方法。首先通过背景估计,得到包含亮目标的前景图;然后利用基于Kirsch算子的边缘信息确定硬性渗出物的候选区域,再移除视盘;最后对候选区域进行形状特征、直方图统计特征以及相位特征的提取,采用SVM对候选区域进行分类,完成硬性渗出物的精确提取。对DIARETDB1和HEI MED公共数据库中共248幅眼底图像进行实验,图像水平达到灵敏度97.3%和特异性90%,病灶水平达到灵敏度84.6%和阳性预测值944%。实验表明,所提出的方法能够实现眼底图像中硬性渗出物的自动检测。  相似文献   

8.
Diabetic retinopathy has become an increasingly important cause of blindness. Nevertheless, vision loss can be prevented from early detection of diabetic retinopathy and monitor with regular examination. Common automatic detection of retinal abnormalities is for microaneurysms, hemorrhages, hard exudates, and cotton wool spot. However, there is a worse case of retinal abnormality, but not much research was done to detect it. It is neovascularization where new blood vessels grow due to extensive lack of oxygen in the retinal capillaries. This paper shows that various combination of techniques such as image normalization, compactness classifier, morphology-based operator, Gaussian filtering, and thresholding techniques were used in developing of neovascularization detection. A function matrix box was added in order to classify the neovascularization from natural blood vessel. A region-based neovascularization classification was attempted as a diagnostic accuracy. The developed method was tested on images from different database sources with varying quality and image resolution. It shows that specificity and sensitivity results were 89.4% and 63.9%, respectively. The proposed approach yield encouraging results for future development.  相似文献   

9.
Translation of electroencephalographic (EEG) recordings into control signals for brain–computer interface (BCI) systems needs to be based on a robust classification of the various types of information. EEG-based BCI features are often noisy and likely to contain outliers. This contribution describes the application of a fuzzy support vector machine (FSVM) with a radial basis function kernel for classifying motor imagery tasks, while the statistical features over the set of the wavelet coefficients were extracted to characterize the time–frequency distribution of EEG signals. In the proposed FSVM classifier, a low fraction of support vectors was used as a criterion for choosing the kernel parameter and the trade-off parameter, together with the membership parameter based solely on training data. FSVM and support vector machine (SVM) classifiers outperformed the winner of the BCI Competition 2003 and other similar studies on the same Graz dataset, in terms of the competition criterion of the mutual information (MI), while the FSVM classifier yielded a better performance than the SVM approach. FSVM and SVM classifiers perform much better than the winner of the BCI Competition 2005 on the same Graz dataset for the subject O3 according to the competition criterion of the maximal MI steepness, while the FSVM classifier outperforms the SVM method. The proposed FSVM model has potential in reducing the effects of noise or outliers in the online classification of EEG signals in BCIs.  相似文献   

10.
Diabetic retinopathy is a serious microvascular disorder that might result in loss of vision and blindness. It seriously damages the retinal blood vessels and reduces the light-sensitive inner layer of the eye. Due to the manual inspection of retinal fundus images on diabetic retinopathy to detect the morphological abnormalities in Microaneurysms (MAs), Exudates (EXs), Haemorrhages (HMs), and Inter retinal microvascular abnormalities (IRMA) is very difficult and time consuming process. In order to avoid this, the regular follow-up screening process, and early automatic Diabetic Retinopathy detection are necessary. This paper discusses various methods of analysing automatic retinopathy detection and classification of different grading based on the severity levels. In addition, retinal blood vessel detection techniques are also discussed for the ultimate detection and diagnostic procedure of proliferative diabetic retinopathy. Furthermore, the paper elaborately discussed the systematic review accessed by authors on various publicly available databases collected from different medical sources. In the survey, meta-analysis of several methods for diabetic feature extraction, segmentation and various types of classifiers have been used to evaluate the system performance metrics for the diagnosis of DR. This survey will be helpful for the technical persons and researchers who want to focus on enhancing the diagnosis of a system that would be more powerful in real life.  相似文献   

11.

Diabetic retinopathy is a chronic condition that causes vision loss if not detected early. In the early stage, it can be diagnosed with the aid of exudates which are called lesions. However, it is arduous to detect the exudate lesion due to the availability of blood vessels and other distractions. To tackle these issues, we proposed a novel exudates classification from the fundus image known as hybrid convolutional neural network (CNN)-based binary local search optimizer–based particle swarm optimization algorithm. The proposed method from this paper exploits image augmentation to enlarge the fundus image to the required size without losing any features. The features from the resized fundus images are extracted as a feature vector and fed into the feed-forward CNN as the input. Henceforth, it classifies the exudates from the fundus image. Further, the hyperparameters are optimized to reduce the computational complexities by utilization of binary local search optimizer (BLSO) and particle swarm optimization (PSO). The experimental analysis is conducted on the public ROC and real-time ARA400 datasets and compared with the state-of-art works such as support vector machine classifiers, multi-modal/multi-scale, random forest, and CNN for the performance metrics. The classification accuracy is high for the proposed work, and thus, our proposed outperforms all the other approaches.

  相似文献   

12.
Patients with diabetes require annual screening for effective timing of sight-saving treatment. However, the lack of screening and the shortage of ophthalmologists limit the ocular health care available. This is stimulating research into automated analysis of the reflectance images of the ocular fundus. Publications applicable to the automated screening of diabetic retinopathy are summarised. The review has been structured to mimic some of the processes that an ophthalmologist performs when examining the retina. Thus image processing tasks, such as vessel and lesion location, are reviewed before any intelligent or automated systems. Most research has been undertaken in identification of the retinal vasculature and analysis of early pathological changes. Progress has been made in the identification of the retinal vasculature and the more common pathological features, such as small aneurysms and exudates. Ancillary research into image preprocessing has also been identified. In summary, the advent of digital data sets has made image analysis more accessible, although questions regarding the assessment of individual algorithms and whole systems are only just being addressed.  相似文献   

13.
以氨基酸组成为特征对膜蛋白的分类,忽略了序列残基之间的相关性信息,而采用传统支持向量机算法作为分类算法,在解决多类问题时会出现分类盲区问题。针对这两种情况,计算蛋白质序列的氨基酸组成、二肽组成以及6种氨基酸相关系数,将三类特征结合,作为膜蛋白序列的特征向量;同时采用模糊支持向量机作为分类器,解决了传统支持向量机在多类数据识别中的盲区问题。测试结果表明,在相同特征输入下,模糊支持向量机分类性能优于传统支持向量机;在相同分类器的情况下,氨基酸组成、二肽组成和相关系数组合的特征选择方法的分类性能优于只使用其中一类或两类特征的方法;而采取组合特征和模糊支持向量机相结合的分类策略,在独立性数据集测试中的整体预测精度达到97%,优于现有的多种分类策略,是目前最有效的膜蛋白分类方法之一。  相似文献   

14.
Diabetic retinopathy (DR) is a leading cause of vision loss among diabetic patients in developed countries. Early detection of occurrence of DR can greatly help in effective treatment. Unfortunately, symptoms of DR do not show up till an advanced stage. To counter this, regular screening for DR is essential in diabetic patients. Due to lack of enough skilled medical professionals, this task can become tedious as the number of images to be screened becomes high with regular screening of diabetic patients. An automated DR screening system can help in early diagnosis without the need for a large number of medical professionals. To improve detection, several pattern recognition techniques are being developed. In our study, we used trace transforms to model a human visual system which would replicate the way a human observer views an image. To classify features extracted using this technique, we used support vector machine (SVM) with quadratic, polynomial, radial basis function kernels and probabilistic neural network (PNN). Genetic algorithm (GA) was used to fine tune classification parameters. We obtained an accuracy of 99.41 and 99.12 % with PNN–GA and SVM quadratic kernels, respectively.  相似文献   

15.
The objective was to evaluate digital images of the retina from a handheld fundus camera (Nidek NM-100) for suitability in telemedicine screening of diabetic retinopathy. A handheld fundus camera (Nidek) and a standard fundus camera (Zeiss) were used to photograph 49 eyes from 25 consecutive patients attending our diabetic clinic. One patient had cataracts, making it impossible to get a quality image of one of the eyes (retina). The Nidek images were digitized, compressed, and stored in a Fujix DF-10M digitizer supplied with the camera. The digital images and the photographs were presented separately in a random order to three ophthalmologists. The quality of the images was ranked as good, acceptable or unacceptable for diabetic retinopathy diagnosis. The images were also evaluated for the presence of microaneurysms, blot hemorrhages, exudates, fibrous tissue, previous photocoagulation, and new vessel formation. kappa Values were computed for agreement between the photographs and digital images. Overall agreement between the photographs and digital images was poor (kappa < 0.30). On average, only 24% of the digital images were graded as being good quality and 56% as having an acceptable quality. However, 93% of the photographs were graded as good-quality images for diagnosis. The results indicate that the digital images from the handheld fundus camera may not be suitable for diagnosis of diabetic retinopathy. The images shown on the liquid crystal display (LCD) screen of the camera were of good quality. However, the images produced by the digitizer (Fujix DF-10M) attached to the camera were not as good as the images shown on the LCD screen. A better digitizing system may produce better quality images from the Nidek camera.  相似文献   

16.
糖尿病视网膜病变(DR)是糖尿病严重的并发症,是视力损害最常见的原因之一。硬性渗出物(HE)是DR早期的症状之一,从眼底图像中对硬性渗出的准确检测是DR筛查的关键步骤。提出一种基于生成对抗网络(GANs)的视网膜硬性渗出的自动检测方法。相比一般的卷积神经网络,生成对抗网络由生成式模型G和判别式模型D组成,两者之间的博弈与竞争使得生成对抗网络能够更加精确地检测眼底图像中的硬性渗出。首先,为了避免视盘对后续硬性渗出检测的干扰,根据血管分布信息与全局灰度信息,准确定位视盘(OD)中心并掩盖视盘;然后,交替迭代训练生成式模型G和判别式模型D,得到在验证集上分割效果最佳的模型并保存。所提出的算法在e-ophtha EX数据库上训练和验证,并进行像素级评估,获得88.6%、84.3%和86.4%的平均灵敏度、PPV和F-score。在另一个独立的DIARETDB1数据库上进行测试,获得的平均灵敏度、特异性和准确性分别为100%、96.2%和97.8%。综上所述,两个视网膜图像数据库的评估结果证明,生成对抗网络的博弈模式能够有效地检测彩色眼底图像中的硬性渗出。  相似文献   

17.
Fundus images obtained in a telemedicine program are acquired at different sites that are captured by people who have varying levels of experience. These result in a relatively high percentage of images which are later marked as unreadable by graders. Unreadable images require a recapture which is time and cost intensive. An automated method that determines the image quality during acquisition is an effective alternative. To determine the image quality during acquisition, we describe here an automated method for the assessment of image quality in the context of diabetic retinopathy. The method explicitly applies machine learning techniques to access the image and to determine ‘accept’ and ‘reject’ categories. ‘Reject’ category image requires a recapture. A deep convolution neural network is trained to grade the images automatically. A large representative set of 7000 colour fundus images was used for the experiment which was obtained from the EyePACS that were made available by the California Healthcare Foundation. Three retinal image analysis experts were employed to categorise these images into ‘accept’ and ‘reject’ classes based on the precise definition of image quality in the context of DR. The network was trained using 3428 images. The method shows an accuracy of 100% to successfully categorise ‘accept’ and ‘reject’ images, which is about 2% higher than the traditional machine learning method. On a clinical trial, the proposed method shows 97% agreement with human grader. The method can be easily incorporated with the fundus image capturing system in the acquisition centre and can guide the photographer whether a recapture is necessary or not.  相似文献   

18.
Image processing of a fundus image is performed for the early detection of diabetic retinopathy. Recently, several studies have proposed that the use of a morphological filter may help extract hemorrhages from the fundus image; however, extraction of hemorrhages using template matching with templates of various shapes has not been reported. In our study, we applied hue saturation value brightness correction and contrast-limited adaptive histogram equalization to fundus images. Then, using template matching with normalized cross-correlation, the candidate hemorrhages were extracted. Region growing thereafter reconstructed the shape of the hemorrhages which enabled us to calculate the size of the hemorrhages. To reduce the number of false positives, compactness and the ratio of bounding boxes were used. We also used the 5 × 5 kernel value of the hemorrhage and a foveal filter as other methods of false positive reduction in our study. In addition, we analyzed the cause of false positive (FP) and false negative in the detection of retinal hemorrhage. Combining template matching in various ways, our program achieved a sensitivity of 85% at 4.0 FPs per image. The result of our research may help the clinician in the diagnosis of diabetic retinopathy and might be a useful tool for early detection of diabetic retinopathy progression especially in the telemedicine.  相似文献   

19.
Diabetic retinopathy (DR) is one of the most important causes of visual impairment. Automatic recognition of DR lesions, like hard exudates (EXs), in retinal images can contribute to the diagnosis and screening of the disease. The aim of this study was to automatically detect these lesions in fundus images. To achieve this goal, each image was normalized and the candidate EX regions were segmented by a combination of global and adaptive thresholding. Then, a group of features was extracted from image regions and the subset which best discriminated between EXs and retinal background was selected by means of logistic regression (LR). This optimal subset was subsequently used as input to a radial basis function (RBF) neural network. To improve the performance of the proposed algorithm, some noisy regions were eliminated by an innovative postprocessing of the image. The main novelty of the paper is the use of LR in conjunction with RBF and the proposed postprocessing technique. Our database was composed of 117 images with variable color, brightness and quality. The database was divided into a training set of 50 images (from DR patients) and a test set of 67 images (40 from DR patients and 27 from healthy retinas). Using a lesion-based criterion (pixel resolution), a mean sensitivity of 92.1% and a mean positive predictive value of 86.4% were obtained. With an image-based criterion, a mean sensitivity of 100%, mean specificity of 70.4% and mean accuracy of 88.1% were achieved. These results suggest that the proposed method could be a diagnostic aid for ophthalmologists in the screening for DR.  相似文献   

20.
眼底微动脉瘤是糖尿病视网膜病变最早期的症状,准确检测眼底图像中的微动脉瘤对糖尿病视网膜病变的筛查具有重要意义。提出一种基于相位一致性模型的微动脉瘤检测方法。首先采用相位一致性模型获取微动脉瘤候选者,然后通过构建灰度剖面图去除图像中血管片段等无关信息,从而筛选出真正的微动脉瘤。通过对ROC网站提供的50幅眼底图像进行实验,在图像水平上实现了灵敏度94%、特异性100%、准确率96%的检测效果。结果表明,该方法对图像的亮度、对比度不敏感,能够高效自动地检测出彩色眼底图像中的微动脉瘤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号