首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new dammarane-type triterpene glycoside, polysciasoside A (1), and three known compounds have been isolated from the leaves of Polyscias fulva. The structure of the new compound was established as 12-oxo-3beta,16beta,20(S)-trihydroxydammar-24-ene-3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside.  相似文献   

2.
New steroidal glycosides from the fruits of Tribulus terrestris   总被引:5,自引:0,他引:5  
Three new steroidal saponins (1-3) were isolated from the fruits of Tribulus terrestris. Their structures were assigned by spectroscopic methods (IR, HRESIMS, 1D- and 2D-NMR) as 26-O-beta-D-glucopyranosyl-(25S)-5beta-furost-20(22)-en-3bet a, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl- (1-->4)]-beta-D-glucopyranoside (1), 26-O-beta-D-glucopyranosyl-(25S)-5beta-furost-20(22)-en-3bet a, 26-diol-3-O-alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1 -->4)]-beta-D-galactopyranoside (2), and 25(S)-5beta-spirostan-3beta-ol-3-O-alpha-L-rhamnopyranosyl-( 1-->2)-[b eta-D-glucopyranosyl-(1-->4)]-beta-D-galactopyranoside (3). Compound 3 showed cytotoxicity against a human malignant melanoma cell line (SK-MEL).  相似文献   

3.
Five dammarane-type saponins were isolated by means of centrifugal partition chromatography from the leaves of Zizyphus lotus. Their structures were elucidated using a combination of 1D and 2D 1H and 13C NMR spectra and mass spectroscopy. One of these glycosides is the known jujuboside B (5). Three are new jujubogenin glycosides, identified as 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyljujubogenin-20-O-(2,3,4-O-triacetyl)-alpha-L-rhamnopyranoside (1), 3-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyljujubogenin-20-O-alpha-L-rhamnopyranoside (2), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[(4-sulfo)-beta-D-glucopyranosyl-(1-->3)]-alpha-L-arabinopyranosyljujubogenin (3). The last is a new sulfated derivative of jujubasaponine IV, identified as 3-O-alpha-L-rhamnopyranosyl-(1-->2)-[(4-sulfo)-beta-D-glucopyranosyl-(1-->3)]-beta-D-galactopyranosyl-(20R,22R)-16beta,22:16alpha,30-diepoxydammar-24-ene-3beta,20-diol (4).  相似文献   

4.
Three new triterpenoid saponins, 1-3, were isolated from the roots of Acanthophyllum squarrosum. Their structures were established mainly by 2D NMR techniques as 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl-gypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-beta-D-xylopyranosyl-(1-->4)-3-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)-3,4-di-O-acetyl-beta-D-fucopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl-gypsogenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-[5-O-acetyl-alpha-L-arabinofuranosyl-(1-->3)]-4-O-acetyl-beta-D-fucopyranoside (2), and 3-O-beta-D-glucopyranosyl-quillaic acid-28-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (3).  相似文献   

5.
Six novel triterpenoid saponins, named saponariosides C-H, were isolated from the whole plants of Saponaria officinalis. Their structures were established as saponarioside C (1), 3-O-beta-D-xylopyranosyl-gypsogenic acid-28-O-alpha-D-galactopyranosyl-(1-->6)-beta-D-glucopyranosyl-(1-- >6)-[beta-D-glucopyranosyl-(1-->3)]-beta-D-glucopyranoside; saponarioside D (2), 3-O-beta-D-xylopyranosyl-gypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->6) -[beta-D-glucopyranosyl-(1-->3)]-beta-D-glucopyranoside; saponarioside E (3), 3-O-beta-D-glucopyranosyl-gypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->6) -[beta-D-glucopyranosyl-(1-->3)]-beta-D-glucopyranoside; saponarioside F (4), 3-O-beta-D-xylopyranosyl-16alpha-hydroxygypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->6) -[beta-D-glucopyranosyl-(1-->3)]-beta-D-glucopyranoside; saponarioside G (5), 3-O-beta-D-xylopyranosyl-16alpha-hydroxygypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->6)-[beta-D-glucopyranosyl-(1-->3 )]-beta-D-glucopyranoside; and saponarioside H (6), 3-O-beta-D-xylopyranosyl-gypsogenic acid-28-O-beta-D-glucopyranoside, by a combination of extensive NMR (DEPT, COSY, HOHAHA, HETCOR, HMBC, and NOESY) studies and chemical degradation.  相似文献   

6.
Monoterpene glycosides and triterpene acids from Eriobotrya deflexa   总被引:3,自引:0,他引:3  
A phytochemical study on a methanolic extract of leaves of Eriobotrya deflexa led to the isolation and characterization of nine terpenoid compounds. Four of these are new chemical entities, including two monoterpene glycosides, (3S)-O-alpha-L-rhamnopyranosyl-(1-->3)-[4-O-(E)-coumaroyl]-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyl-linalool (1) and (3S)-O-alpha-L-rhamnopyranosyl-(1-->3)-[4-O-(Z)-coumaroyl]-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyl-linalool (2), and two triterpene acids, 1beta,2alpha,19alpha-trihydroxy-3-oxo-12-ursen-28-oic acid (3) and 2alpha,3alpha,19alpha-trihydroxy-12-oleanen-28-oic acid (4). Their structures were elucidated on the basis of spectroscopic analysis. The activities of these isolates in an in vitro antiproliferation test were also determined.  相似文献   

7.
目的:研究鹿药Smilacina japonica根茎及根的化学成分及活性.方法:采用超声提取,柱色谱分离与纯化,根据理化性质及红外、质谱、一维、二维核磁共振等波谱方法鉴定结构,进行了体外抗肿瘤活性测定.结果:分离得到1个化合物,鉴定为26-O-β-D-吡喃葡萄糖基-(25R)-呋甾-5-烯3β,12,17α,22ζ,26-五醇-12-O-乙酰基-3-O-α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖苷(1),该化合物具有抑制入肺腺癌SPC-A-1细胞生长的活性.结论:化合物1为新化合物.  相似文献   

8.
Four new oleanane-type triterpenoidal glycosides, named gleditsiosides A-D (1-4), were isolated from the anomalous fruits of Gleditsia sinensis. Using modern NMR techniques, including DQF-COSY, HETCOR, HOHAHA, HMBC, and ROESY experiments and MS analysis as well as chemical methods, their structures were determined as 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl oleanolic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[(6S,2E)-6-hydroxy-2,6-dimethyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (1); 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl oleanolic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[(2E)-2-hydroxylmethyl-6-hydroxy-6-methy l-2 ,7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (2); 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl echinocystic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta- D-galactopyranosyl-(1-->2)]-alpha-L-rhamnopyranosyl-(1-->2)-[(2E)-2-h ydroxylmethyl-6-hydroxy-6-methyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (3); and 3-O-beta-D-xylopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->6)- bet a-D-glucopyranosyl echinocystic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta- D-galactopyranosyl-(1-->2)]-alpha-L-rhamnopyranosyl-(1-->2)-[(6S, 2E)-6-hydroxy-2,6-dimethyl-2, 7-octadienoyl-(1-->6)]-beta-D-glucopyranosyl ester (4).  相似文献   

9.
卷丹化学成分研究   总被引:3,自引:0,他引:3  
目的:研究卷丹Lilium lancifolium鳞茎中的化学成分。方法:用色谱法分离卷丹的化学成分,用波谱法鉴定其结构。结果:从卷丹中分离并鉴定了10个化合物,分别为王百合苷A(1),王百合苷C(2),甲基-α-D-吡喃甘露糖苷(3),甲基-α-D-吡喃葡萄糖苷(4),(25R,26R)-26-甲氧基螺甾烷-5-烯-3β-O-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→6)]-β-D-吡喃葡萄糖苷(5),(25R)-螺甾烷-5-烯-3β-O-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→6)]-β-D-吡喃葡萄糖苷(6),(25R,26R)-17α-羟基-26-甲氧基螺甾烷-5-烯-3β-O-α-L-吡喃鼠李糖-(1→2)-[β-D-吡喃葡萄糖-(1→6)]-β-D-吡喃葡萄糖苷(7),胡萝卜苷(8),腺嘌呤核苷(9),小檗碱(10)。结论:除化合物1,3外均为首次从该植物中分离得到,其中10为首次从百合属植物中发现。  相似文献   

10.
Four new triterpenoid saponins from Conyza blinii   总被引:2,自引:0,他引:2  
Three new bisdesmosidic saponins named conyzasaponins A, B, and C (1-3) and one new monodesmosidic saponin, conyzasaponin G (4), were isolated from the aerial parts of Conyza blinii. Their structures were elucidated on the basis of extensive NMR (DEPT, DQF-COSY, HOHAHA, HMQC, HMBC, and NOESY) and MS studies. Compounds 1-3 share a common prosapogenin, bayogenin 3-O-beta-D-xylopyranosyl-(1-->3)-beta-D-glucopyranoside, which is identical with conyzasaponin G (4), and differ in the structures of the ester-linked sugar moieties at C-28. Conyzasaponin A (1) is the 28-O-beta-D-apiofuranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl ester, conyzasaponin B (2), the 28-O-beta-D-apiofurano- syl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[alpha-L-arabinopyranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl ester, and conyzasaponin C (3), the 28-O-alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl ester of the prosapogenin, respectively.  相似文献   

11.
Three new naphthopyranone glycosides, paepalantine-9-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside (1), paepalantine-9-O-alpha-L-arabinopyranosyl-(1-->6)-beta-D-glucopyranoside (2), and paepalantine-9-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3), along with the known paepalantine-9-O-beta-D-glucopyranoside (4) were isolated from aerial parts of Paepalanthus microphyllus. These compounds were characterized by spectrometric methods, including electrospray mass spectrometry and 1D and 2D NMR experiments. As a part of our program for screening natural compounds for anti-HIV activity, compounds 1-4 were tested in C8166 cells infected with HIV-1MN.  相似文献   

12.
Biologically active triterpenoid saponins from Acanthopanax senticosus   总被引:4,自引:0,他引:4  
Three new triterpenoid saponins, acanthopanaxosides A (1), B (7), and C (13), were isolated from the leaves of Acanthopanax senticosus, together with 12 known saponins. The structures of these new saponins were established as 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-30-nor-olean-12,20(29)-dien-28-oic acid 28-O-alpha-L-rhamnopyranosyl-(1-->4)-6-O-acetyl-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (1), 3-O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranosyl oleanolic acid 28-O-alpha-L-rhamnopyranosyl-(1-->4)-6-O-acetyl-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (7), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-3beta-hydroxyolean-12-ene-28,29-dioic acid (13), on the basis of spectroscopic analysis and chemical degradation. Among the known compounds, sessiloside and tauroside H1 are reported for the first time from A. senticosus. The biological activity of compounds 1-15 was examined against pancreatic lipase. Ciwujianoside C1 (6), tauroside H1 (11), 3-O-alpha-rhamnopyranosyl-(1-->2)-alpha-arabinopyranosyl mesembryanthemoidigenic acid (12), acanthopanaxoside C (13), sessiloside (14), and chiisanoside (15) inhibited pancreatic lipase activity in vitro. In turn, ciwujianosides C2 (3), D2 (5), C4 (8), and C3 (10) and hederasaponin B (9) enhanced this enzyme.  相似文献   

13.
轮叶棘豆的化学成分研究   总被引:1,自引:0,他引:1  
目的:研究轮叶棘豆的化学成分。方法:90%乙醇冷浸提取,所得浸膏经硅胶,聚酰胺,C-18,Sephadex LH-20等多种材料进行柱色谱分离,通过波谱学方法鉴定化合物的结构。结果:分离鉴定了8个化合物,分别鉴定为azukisapogenol(1),(22E,24R)-24-甲基-5α-胆甾-7,22-二烯-3β,5α,6β-三醇(2),芹菜素(3),3′,4′-二甲氧基-槲皮素-3-O-β-D-半乳糖吡喃苷 (4),7,4′- 二甲氧基-槲皮素-3-O-α-L-鼠李糖吡喃基(1→2)-β-D-葡萄糖吡喃苷(5),(2S,3S,4R)-N-[(R)-2′-羟基二十四烷醇基]-1,3,4-三羟基-2-氨基-十八-6-烯(6),β-谷甾醇(7),胡萝卜苷(8)。结论:所有化合物均为首次从该植物中分得。  相似文献   

14.
鲜鱼腥草的黄酮类化合物研究   总被引:27,自引:2,他引:27  
目的:研究三白草科Saururaceae蕺菜属植物蕺菜Houttuynia cordata的黄酮类化学成分。方法:利用Diaion HP-20,Sephadex LH-20,ODS和硅胶柱色谱进行分离纯化,根据化合物的理化性质和光谱数据鉴定结构。结果:分离得到5个化合物,分别鉴定为槲皮素-3-O-β-D-半乳糖-7-O-β-D-葡萄糖苷(1),山柰酚-3-O-β-D-[α-L-吡喃鼠李糖(1→6)]吡喃葡萄糖苷(2),槲皮苷(3),金丝桃苷(4),槲皮素-3-O-α-D-鼠李糖-7-O-β-D-葡萄糖苷(5)。结论:化合物1,2,5为首次从该属及本植物中分离得到。  相似文献   

15.
Seven new cycloartane glycosides (1-7), beesiosides G, H, and J-N, together with beesioside I (8) and beesioside A, were isolated from the rhizomes of Beesia calthifolia, and their structures were established by spectroscopic and chemical methods. Beesiosides G, H, and J-N were assigned as 20xi(1),24xi(2)-epoxy-9,19-cyclolanostane-3beta,16beta,18,25-tetraol-3-O-beta-D-glucopyranoside (1), 20xi(1),24xi(2)-epoxy-9,19-cyclolanostane-3beta,16beta,18,25-tetraol-3-O-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (2), (20S,24R)-15alpha,16beta-diacetoxy-20,24-epoxy-9,19-cyclolanostane-3beta,18,25-triol-3-O-beta-D-xylopyranoside (3), (20S,24S)-16beta-acetoxy-18,24;20,24-diepoxy-9,19-cyclanostane-3beta,15beta,25-triol-3-O-beta-D-xylopyranoside (4), (20S,24S)-16beta-acetoxy-18,24;20,24-diepoxy-9,19-cyclanostane-3beta,25-diol-3-O-beta-D-xylopyranoside (5), 20xi(1),24xi(2)-epoxy-15alpha-acetoxy-9,19-cyclolanostane-3beta,16beta,25-triol-3-O-beta-D-xylopyranoside (6), and 20xi(1),24xi(2)-epoxy-9,19-cyclolanostane-3beta,12alpha,15alpha,16beta,25-pentaol-3-O-beta-D-xylopyranoside (7), respectively.  相似文献   

16.
Activity-guided fractionation of a CHCl(3)-soluble extract of the twigs of Aglaia rubiginosa, using human oral epidermoid carcinoma (KB) cells as a monitor, led to the isolation of a new naturally occurring cyclopenta[b]benzofuran, 1-O-acetylrocaglaol (1), along with seven known compounds, methyl rocaglate (2), rocagloic acid (3), 1-O-acetylmethyl rocaglate (4), desyclamide, eryodictiol, 5-hydroxy-3,7,4'-trimethoxyflavone, and naringenin. A CHCl(3) extract of the leaves of A. rubiginosa yielded the new compound (3S,4R,22R)-cholest-7,24-diene-3,4,22-triol (5), as well as 11 known compounds, including 2 and 4 and cabraleone, dammarelonic acid, (20S,23E)-20,25-dihydroxy-3,4-secodammara-4(28),23-dienoic acid, (20S,23E)-20,25-dihydroxy-3,4-secodammara-4(28),23-dienoic acid methyl ester, (3beta,4beta,22R)-ergosta-5,24(24')-diene-3,4,22-triol, ocotillone, shoreic acid, beta-sitosterol, and beta-sitosterol glycoside. The structures of 1 and 5 were elucidated by spectral and chemical methods. Isolates were evaluated with a human cancer cell panel, and compounds 1-4 were found to exhibit potent cytotoxic activity.  相似文献   

17.
Assay-guided fractionation of the ethanol extract of the twigs and leaves of Miconia trailii yielded two new flavanone glycosides, matteucinol 7-O-alpha-l-arabinopyranosyl(1-->6)-beta-d-glucopyranoside (miconioside A, 1) and farrerol 7-O-beta-d-apiofuranosyl(1-->6)-beta-d-glucopyranoside (miconioside B, 2), along with the known compounds matteucinol 7-O-beta-d-apiofuranosyl(1-->6)-beta-d-glucopyranoside (3), matteucinol (4), 2alpha,3beta,19alpha-trihydroxyolean-12-ene-24,28-dioic acid (bartogenic acid, 5), 2alpha,3beta,23-trihydroxyolean-12-ene-28-oic acid (arjunolic acid, 6), 2alpha,3alpha,19alpha, 23-tetrahydroxyurs-12-ene-28-oic acid (myrianthic acid, 7), and stigmast-4-ene-3,6-dione (8). The structures of 1-8 were elucidated by spectroscopic methods, including 2D NMR.  相似文献   

18.
Tupichigenin A, a new steroidal sapogenin from Tupistra chinensis   总被引:2,自引:0,他引:2  
From the underground parts of Tupistra chinensis, a novel polyhydroxylated spirostanol sapogenin, tupichigenin A [(20S, 22R)-spirost-25(27)-ene-1beta,2beta,3beta,5beta- tetraol] (1), was isolated and determined structurally on the basis of spectroscopic methods. Also isolated was the known steroidal sapogenin (20S, 22R)-spirost-25(27)-ene-1beta,2beta,3beta,4beta, 5beta, 7alpha-hexaol-6-one (2).  相似文献   

19.
Six new triterpene saponins, 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-21-epi-kudzusapogenol A (1), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-21-epi-kudzusapogenol A (2), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-beta-D-glucopyranosyl-21-epi-kudzusapogenol A (3), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-beta-D-glucopyranosyl-21-epi-kudzusapogenol A (4), 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-xylopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-alpha-L-arabinopyranosyl-21-epi-kudzusapogenol A (5), and 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl-(1-->2)-beta-D-glucuronopyranosyl-22-O-alpha-L-arabinopyranosyl-21-epi-kudzusapogenol A (6), were isolated from the roots of Astragalus flavescens, together with the known trajanoside B, azukisaponin V, and astragalosides IV, VII, and VIII. Their structures were established mainly by 2D NMR techniques and mass spectrometry.  相似文献   

20.
Two novel triterpenoid saponins (1 and 2) have been isolated from the roots of Acanthophyllum squarrosum. The structures were established mainly by a combination of 2D NMR techniques as 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-be ta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3 )-b eta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L- rhamnopyranosyl-(1-->3)]-beta-D-fucopyranoside (1) and 3-O-beta-D-glucopyranosylgypsogenin-28-O-alpha-L-rhamnopyranosyl-( 1-- >2)-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6 )]- beta-D-glucopyranoside (2). Compound 1 showed a moderate concentration-dependent immunomodulatory effect in an in vitro lymphocyte proliferation assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号