首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intracellular free calcium ion concentration ([Ca2+]i) of the neuroblastoma × glioma hybrid cell line, NG108-15, was measured using the 19F-nuclear magnetic resonance divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (5F-BAPTA). The basal [Ca2+]i was measured to be 106 ± 14 nM. Treatment with 5 μM lead (Pb) for 2 h produced a 2-fold increase in [Ca2+]i to 200 ± 24 nM and a measurable intracellular free Pb2+ concentration ([Pb2+]i) of 30 ± 10 pM. Intracellular free Zn2+ concentrations ([Zn2+]i) were also observed in the presence of Pb. This represents the first direct demonstration that Pb elevates the [Ca2+]i in neurons, thus providing evidence for a role of [Ca2+]i in mediating the neurotoxicity of Pb.  相似文献   

2.
Intracellular magnesium concentration ([Mg2+]i) of cultured dorsal root ganglion (DRG) neurons was measured using the magnesium indicator Mag-Fura-2/AM. [Mg2+]i was 0.48±0.08 mM (mean±SEM, n=23) at rest, and it increased 3-fold by depolarization with a 60-mM K+ solution. The [Mg2+]i increase was observed in the absence of extracellular Mg2+, but the increase disappeared in the absence of extracellular Ca2+. 50 μM cadmium or 100 μM verapamil, a Ca2+ channel blocker, also diminished the rise of [Mg2+]i. The additional measurement of an intracellular Ca2+ concentration ([Ca2+]i) indicated that the [Mg2+]i rise requires a threshold concentration of [Ca2+]i to be reached; above 60 nM. The present results indicate that depolarization induces a Ca2+-influx through voltage dependent Ca channels and this causes the release of Mg2+ from intracellular stores into the cytoplasm.  相似文献   

3.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

4.
Warm cells were identified by Fura-PE3-based microfluorimetry of Ca2+ in cultured dorsal root ganglion (DRG) neurons. In response to a physiologically relevant stimulus temperature (43°C), a subpopulation of small DRG neurons from new born rats increased the intracellular Ca2+ concentration ([Ca2+]i). Seven percent of the cells responded to the warm stimulus. The stimulus evoked elevation in [Ca2+]i from 52.5±9.5 nM (mean±S.D., n=18) to 171.0±15.6 nM in cells between 15 and 25 μm in diameter. The depletion of extracellular Ca2+ diminished the Ca2+ elevation. The Na+-free condition also diminished the response. We concluded that the heat stimulation opens nonselective cation channels in putative warm cells from DRG neurons.  相似文献   

5.
The effects of the removal of extracellular Ca2+ on the responses of cytosolic concentrations of Ca2+ ([Ca2+]i) to acidic stimuli, a protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and an organic acid acetate, were examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2 microfluorometry. Application of FCCP (1 μM) induced an increase in [Ca2+]i (mean±S.E.M., 108±14%). After withdrawal of the protonophore the increased [Ca2+]i returned slowly to a resting level. The [Ca2+]i response was attenuated by an inorganic Ca2+ channel antagonist Ni2+ (2 mM) by 81±4%, and by an L-type voltage-gated Ca2+ channel antagonist D600 (10 μM) by 53±13%. The removal of extracellular Ca2+ eliminated the [Ca2+]i response in 71% of the tested cells (n=17), and depressed it by 68±6% in the rest. Recovery following stimulation with FCCP in the absence of Ca2+ reversibly produced a rapid and large rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/FCCP. The magnitude of a [Ca2+]i rise after Ca2+-free/FCCP (285±28%, P<0.05) was larger than that of an increase in [Ca2+]i induced by FCCP in the presence of Ca2+ and had a correlation with the intensity of the suppression of the [Ca2+]i response by Ca2+ removal. A [Ca2+]i rise after Ca2+-free/FCCP was inhibited mostly by D600. Similarly, recovery following exposure to acetate in the absence of Ca2+ caused a rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/acetate which was sensitive to D600. The magnitude of the [Ca2+]i rise was larger than that of a change in [Ca2+]i caused by acetate in the presence of Ca2+. These results suggest that FCCP-induced increase in [Ca2+]i was, in most cells, due to Ca2+ influx via L-type voltage-gated Ca2+ channels and, in some cells, due to both Ca2+ influx and Ca2+ release from internal Ca2+ pool. The removal of extracellular Ca2+ might modify [Ca2+]i responses to acidic stimuli, causing [Ca2+]i rises after Ca2+-free/acidic stimuli which involve mostly L-type Ca2+ channels.  相似文献   

6.
Hyposmotic activation hyperpolarizes outer hair cells of guinea pig cochlea   总被引:1,自引:0,他引:1  
The electrophysiological responses of isolated guinea pig outer hair cells (OHCs) to hyposmotic activation were studied using the whole-cell patch-clamp technique. The cell swelling by hyposmotic activation hyperpolarized OHCs by 6.6 ± 2.3 mV from the resting membrane potential of −58.5 ± 5.9 mV (n = 48). This hyperpolarization was associated with an outward current ( 97.7 ± 22.2, pA, n = 15). The hyperpolarization was inhibited by 300 μM quinine, 5 mN Ba2+ and increasing the extracellular K+ to 30 mM from 5 mM. In the absence of extracellular Ca2+ (1 mM EGTA), the hyperpolarization during hyposmotic activation was also abolished while the following depolarization was preserved. 50 μM GdCl3, which is known to block strecch-activated non-specific cation channels, inhibited the hyperpolarization reversibly. 50 μM GdCl3 also inhibited [Ca2+]i increase during hyposmotic activation as shown by the calcium-sensitive dye fura-2. Simultaneously, the [Ca2+]i increase and the hyperpolarization during hyposmotic activation could be observed using the combined method of whole-cell patch clamp and fura-2 technique. It is concluded that the cell swelling by hyposmotic activation may activate the stretch-activated non-specific cation channels in the OHCs which allow a Ca2+ influx. In turn, this [Ca2+]i increase leads to an activation of the Ca2+-activated K+ channels at the basolateral membrane of OHCs which results finally in a reversible hyperpolarization of OHCs by K+ efflux.  相似文献   

7.
The effect of dibutyryl cGMP (dbcGMP), a membrane permeant cGMP analogue, on cytosolic concentrations of Ca2+ ([Ca2+]i) was studied in cultured nodose ganglion neurons of the rabbit using fura-2AM and microfluorometry. Application of dbcGMP (10–1000 μM) increased [Ca2+]i in 42% of neurons (n=67). The effect was observed in a dose-dependent fashion. The threshold dose was 100 μM and the increase at 500 μM averaged 117±8%. Removal of extracellular Ca2+ abolished the dbcGMP effect. Application of Ni2+ (1 mM) or neomycin (50 μM), a non-L-type voltage-gated Ca2+ channel (VGCC) antagonist, eliminated the dbcGMP effect. ω-conotoxin GVIA (2 μM), the N-type Ca2+ channel antagonist, or L-type Ca2+ channel antagonists (D600, 50 μM, or nifedipine, 10 μM) did not alter the dbcGMP effect. Ryanodine (10 μM) did not alter the effect of dbcGMP. Therefore, cGMP could play a part of role of an intracellular messenger in primary sensory neurons of the autonomic nervous system.  相似文献   

8.
By means of the fura-2 technique and image analysis the intracellular concentration of free calcium ions [Ca2+]i was examined in isolated rainbow trout pinealocytes identified by S-antigen immunocytochemistry. Approximately 30% of the pinealocytes exhibited spontaneous [Ca2+]i oscillations whose frequency differed from cell to cell. Neither illumination with bright light nor dark adaptation of the cells had an apparent effect on the oscillations. Removal of extracellular Ca2+ or application of 10 μM nifedipine caused a reversible breakdown of the [Ca2+]i oscillations. Application of 60 mM KCl elevated [Ca2+]i in 90% of the oscillating and 50% of the non-oscillating pinealocytes. The effect of KCl was blocked by 50 μM nifedipine. These results suggest that voltage-gated L-type calcium channels play a major role in the regulation of [Ca2+]i in trout pinealocytes. Experiments with thapsigargin (2 μM) revealed the presence of intracellular calcium stores in 80% of the trout pinealocytes, but their role for regulation of [Ca2+]i remains elusive. Treatment with norepinephrine (100 pM–50 μM), previously shown to induce calcium release from intracellular calcium stores in rat pinealocytes, had no apparent effect on [Ca2+]i in any trout pinealocyte. This finding conforms to the concept that noradrenergic mechanisms are not involved in signal transduction in the directly light-sensitive pineal organ of anamniotic vertebrates.  相似文献   

9.
As alterations in intracellular pH (pHi) tend to exert a profound effect on the properties of cells, this study was undertaken to examine NMDA-induced changes in pHi in rat hippocampal slices using the BCECF fluorescent technique. The ‘resting' pHi in the CA1 pyramidal cell layers was 6.93±0.07 (mean±S.D., n=72 slices) in 25 mM HCO3/5% CO2-buffered solution at 37°C. Exposure of hippocampal slices to NMDA in the range of 10–1000 μM produced a biphasic change in pHi: an initial transient alkaline shift was followed by a long-lasting acid shift. Dizocilpine (10 μM) but not CNQX (40 μM) blocked the NMDA-induced changes in pHi. In 0 Ca medium (0 mM Ca2+ supplemented 1 mM EGTA, referred to as 0 Ca), pHi acid shift caused by NMDA (20 μM) declined by about 11%, whereas the initial alkaline shift almost completely disappeared. In an independent experiment, the NMDA-induced increase in intracellular Ca2+ ([Ca2+]i) was reduced by more than 80% in 0 Ca medium. Glucose substitution using equimolar pyruvate (as an energy-yielding substrate) suppressed this NMDA-induced pHi acid shift by two-thirds, while the NMDA-induced pHi alkaline shift was enhanced. Fluoride (10 mM), a glycolytic inhibitor, abolished NMDA-induced pHi acid shift. Furthermore, the lactate content of hippocampal slices was markedly increased following exposure to NMDA. In conclusion, activation of NMDA receptors in rat hippocampal slices evokes a biphasic change in pHi. The initial alkaline shift is suggested to be associated with calcium influx, and the following acid shift may be caused by an increase in lactate production through the acceleration of glycolysis, as well as the increased [Ca2+]i. The pHi acid shift produced by the increased lactate may contribute to proton modulation of the NMDA receptor and NMDA-induced cell injury or death.  相似文献   

10.
We determined the relationships between the intracellular free Ca2+ concentration ([Ca2+]i) and the membrane potential (Em) of six different neurones in the leech central nervous system: Retzius, 50 (Leydig), AP, AE, P, and N neurones. The [Ca2+]i was monitored by using iontophoretically injected fura-2. The membrane depolarization evoked by raising the extracellular K+ concentration ([K+]o) up to 89 mM caused a persistent increase in [Ca2+]i, which was abolished in Ca2+-free solution indicating that it was due to Ca2+ influx. The threshold membrane potential that must be reached in the different types of neurones to induce a [Ca2+]i increase ranged between −40 and −25 mV. The different threshold potentials as well as differences in the relationships between [Ca2+]i and Em were partly due to the cell-specific generation of action potentials. In Na+-free solution, the action potentials were suppressed and the [Ca2+]i/Em relationships were similar. The K+-induced [Ca2+]i increase was inhibited by the polyvalent cations Co2+, Ni2+, Mn2+, Cd2+, and La3+, as well as by the cyclic alcohol menthol. Neither the polyvalent cations nor menthol had a significant effect on the K+-induced membrane depolarization. Our results suggest that different leech neurones possess voltage-dependent Ca2+ channels with similar properties.  相似文献   

11.
In this work we examined the effects of Pb2+ and Cd2+ on (a) [3H]ACh release and voltage-sensitive Ca2+ channels in rat brain synaptosomes, and (b)45Ca2+ binding to isolated brain mitochondria and microsomes, and synaptic vesicles isolated from Torpedo electric organs. Pb2+ (Ki ≈ 1.1 μM) and Cd2+ (Ki ≈ 2.2) competitively block the K+-evoked influx of45Ca2+ through the ‘fast’ calcium channels in synaptosomes. The Kis obtained with synaptosomes are in good agreement with the Ki values obtained from electrophysiological experiments at the frog neuromuscular junction (KPb:0.99 μM, KCd: 1.7 μM)7. The Ki for the inhibition of ACh release from synaptosomes by Cd2+ is 4.5 μM. Pb2+ is a less effective inhibitor of transmitter release (Ki ≈ 16 μM) because it secondarily augments spontaneous transmitter efflux. Cd2+ has no effect on spontaneous release at concentrations ≤ 100 μM. The enhancing effect of Pb2+ on spontaneous release is (a) not abolished by omission of Ca2+ from the bathing medium, (b) is delayed by 1–2 min after the beginning of Pb2+ exposure, (c) is reversed upon the removal of Pb2+. In the presence of physiological concentrations of ATP (1 mM), Mg2+ (1 mM) and Pi (2 mM), 1–10 μM Pb2+ inhibits calcium uptake but Pb2+ > 10μM causes a several-fold stimulation of passive binding of calcium to the organelles. This effect is associated with Pb2+-induced enhancement of Pi uptake. Cd2+ inhibits Ca2+ binding at all concentrations tested (1–50 μM) and reduces the Pb2+-induced Ca2+-binding to organelles. Neither Pb2+ nor Cd2+ have any discernible effects on spontaneous loss of calcium from mitochondria or microsomes preloaded with45Ca. In summary, these data are consistent with the notion that Pb2+ and Cd2+ are potent blockers of presynaptic voltage-sensitive Ca2+ channels and the evoked release of transmitter which is contingent on Ca2+ influx through these channels. Our results are not consistent with the hypothesis that Pb2+ augments spontaneous release by interfering with intraterminal Ca2+-buffering by mitochondria, endoplasmic reticulum, or synaptic vesicles.  相似文献   

12.
Prolonged exposure to inorganic lead (Pb2+) during development has been shown to influence activity-dependent synaptic plasticity in the mammalian brain, possibly by altering the regulation of intracellular Ca2+ concentration ([Ca2+]i). To explore this possibility, we studied the effect of Pb2+ exposure on [Ca2+]i regulation and synaptic facilitation at the neuromuscular junction of larval Drosophila. Wild-type Drosophila (CS) were raised from egg stages through the third larval instar in media containing either 0 μM, 100 μM or 250 μM Pb2+ and identified motor terminals were examined in late third-instar larvae. To compare resting [Ca2+]i and the changes in [Ca2+]i produced by impulse activity, the motor terminals were loaded with a Ca2+ indicator, either Oregon Green 488 BAPTA-1 (OGB-1) or fura-2 conjugated to a dextran. We found that rearing in Pb2+ did not significantly change the resting [Ca2+]i nor the Ca2+ transient produced in synaptic boutons by single action potentials (APs); however, the Ca2+ transients produced by 10 Hz and 20 Hz AP trains were larger in Pb2+-exposed boutons and decayed more slowly. For larvae raised in 250 μM Pb2+, the increase in [Ca2+]i during an AP train (20 Hz) was 29% greater than in control larvae and the [Ca2+]i decay τ was 69% greater. These differences appear to result from reduced activity of the plasma membrane Ca2+ ATPase (PMCA), which extrudes Ca2+ from these synaptic terminals. These findings are consistent with studies in mammals showing a Pb2+-dependent reduction in PMCA activity. We also observed a Pb2+-dependent enhancement of synaptic facilitation at these larval neuromuscular synapses. Facilitation of EPSP amplitude during AP trains (20 Hz) was 55% greater in Pb2+-reared larvae than in controls. These results showed that Pb2+ exposure produced changes in the regulation of [Ca2+]i during impulse activity, which could affect various aspects of nervous system development. At the mature synapse, this altered [Ca2+]i regulation produced changes in synaptic facilitation that are likely to influence the function of neural networks.  相似文献   

13.
The hypothesis that intracellular calcium ([Ca2+]i) release in glomus cells via ryanodine receptor (RyR) activation by caffeine may be independent of natural stimuli and chemosensory discharge was tested in the rat carotid body (CB). CB type I cells were isolated, plated and preloaded with calcium-sensitive fluorescent probe, Indo-1AM. With the increase of caffeine dose (0–50 mM) cytosolic calcium ([Ca2+]c) increased from 85±15 nM to 1933±190 nM (n=6) at normoxia (P 2=125–130 Torr, P 2=25–30 Torr, pH 7.30–7.35). Hypoxia (P 2=10–15 Torr) increased and hypocapnia (P 2=7–9 Torr) decreased the cytoplasmic calcium [Ca2+]c levels, independent of caffeine. Caffeine-related [Ca2+]c increase was the same in the presence and the absence of extracellular calcium ([Ca2+]o), indicating the source of Ca2+ ions is the cellular store. Permeabilization of the cell membrane with saponin (25 μg/ml) retained the caffeine response. Additional treatment of the cells with 50 μM ryanodine (an inhibitor of the caffeine-activated RyR site) abolished caffeine-stimulated response. In vitro CB chemosensory (carotid sinus nerve, CSN) responses to hypoxia (P 2=35–40 Torr) were not altered by caffeine. These results suggest that [Ca2+]i stores in CB cells, mobilized by RyR activation, do not participate in the CSN responses to natural stimuli.  相似文献   

14.
15.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

16.
The objective of this study was to assess the influence of Ca2+ influx on intracellular pH (pHi) of neocortical neurons in primary culture. Neurons were exposed to glutamate (100–500 μM) or KCl (50 mM), and pHi was recorded with microspectroflurometric techniques. Additional experiments were carried out in which calcium influx was triggered by ionomycin (2 μM) or the calcium ionophore 4-Br-A23187 (2 μM). Glutamate exposure either caused no, or only a small decrease in pHi (ΔpH ≈ 0.06 units). When a decrease was observed, a rebound rise in pHi above control was observed upon termination of glutamate exposure. In about 20% of the cells, the acidification was more pronounced (ΔpH ≈ 0.20 units), but all these cells had high control pHi values, and showed gradual acidification. Exposure of cells to 50 mM KCl consistently increased pHi. Since this increase was similar in the presence and nominal absence of HCO3, it probably did not reflect influx of HCO3 via a Na+-HCO3 symporter. Furthermore, since it occurred in the absence of external Ca2+ (or a measurable rise in Cai2+) it seemed independent of Ca2+ influx. It is tentatively concluded that the rise in pHi was due to reduced passive influx of H+ along the electrochemical gradient, which is reduced by depolarization. In Ca2+-containing solutions, depolarization led to a rebound increase in pHi above control. This, and the rebound found after glutamate transients, may reflect Ca2+-triggered phosphorylation and upregulation of the Na+/H+ antiporter which extrudes H+ from the cell. Ionomycin and 4-Br-A23187 gave rise to a large rise in Cai2+ and to alkalinization of the cell (ΔpH ≈ 0.5). Since amiloride or removal of Na+ from the external solution did not alter the rise in pHi, it was probably not due to accelerated H+ extrusion. However, removal of Ca2+ from extracellular fluid prevented the rise, suggesting that it was secondary to Ca2+/2H+ exchange across plasma membranes.  相似文献   

17.
The action mechanism of gonadotropin-releasing hormone (GnRH) on the cytosolic free calcium concentration ([Ca2+]i) and high-threshold voltage-dependent Ca2+ channel activity was studied in human nonsecreting (NS) pituitary adenoma cells. [Ca2+]i was monitored in individual cells by dual emission microspectrofluorimetry using indo1 as intracellular fluorescent Ca2+ probe. The whole-cell recording patch-clamp technique was used to study Ca2+ channels. A short application of GnRH (1 to 100 nM) induced an increase in [Ca2+]i due to Ca2+ entry through plasma membrane voltage-sensitive L-type Ca2+ channels. Protein kinase C (PKC) depletion induced by a pretreatment with 1 μM PMA for 24 h abolished spontaneous Ca2+ transients and the action of GnRH on [Ca2+]i and Ca2+ channels. Phloretin (250 μM and staurosporine (20 nM), two protein kinase C inhibitors, inhibited Ca2+ channel activity, thereby suppressing the effect of GnRH. On the other hand, activation of PKC by a short application of phorbol myristate acetate (10 nM) stimulated Ca2+ influx through Ca2+ channels. These findings demonstrate that, in human NS adenoma cells, GnRH (1 to 100 nM) induces an increase in [Ca2+]i, principally due to Ca2+ entry through L-type voltage-activated Ca2+ channels. PKC regulates this mechanism as well as basal ion channel activity, thus exerting both positive and negative control of [Ca2+]i in stimulated and unstimulated NS adenoma cells.  相似文献   

18.
A preparation of acutely dissociated brain cells derived from adult (3-month-old) rat has been developed under conditions preserving the metabolic integrity of the cells and the function of N-methyl-d-aspartate (NMDA) receptors. The effects of glutamate and NMDA on [Ca2+]i measured with fluo3 and45Ca2+ uptake have been studied on preparations derived from hippocampus and cerebral cortex. Glutamate (100 μM) and N-methyl-dl-aspartate (200 μM) increased [Ca2+]i by 26-12 nM and 23-9 nM after 90 s in cerebral cortex and hippocampus, and stimulated45Ca2+ uptake about 16–10% in the same regions. The increases in [Ca2+]i and45Ca2+ uptake were inhibited by 40% in the presence of 1 mM MgCl2 and by 90–50% in the presence of MK-801. The results indicate (a) that a large fraction of the [Ca2+]i response to glutamate in freshly dissociated brain cells from the adult rat involves NMDA receptors, (b) when compared with results in newborn rats, there is a substantial blunting of the [Ca2+]i increase in adult age.  相似文献   

19.
The purpose of this work was to characterize the gap junctions between cultured glomus cells of the rat carotid body and to assess the effects of acidity and accompanying changes in [Ca2+]i on electric coupling. Dual voltage clamping of coupled glomus cells showed a mean macrojunctional conductance (Gj) of 1.16 nS±0.6 (S.E.), range 0.15–4.86 nS. At normal pHo (7.43), a steady transjunctional voltage (ΔVj=100.1±10.9 mV) showed multiple junction channel activity with a mean microconductance (gj) of 93.98±0.6 pS, range 0.3–324.5 pS. Single-channel conductances, calculated as variance/mean gj, gave a mean value of 16.7±0.2 pS, range 5.13–39.38 pS. Manual measurements of single-channel activity showed a mean gj of 22.03±0.2 pS, range 1.3–160 pS. Computer analysis of the noise spectral density distribution gave a channel mean open time of 12.7±1.5 ms, range 6.37–23.42 ms. The number of junction channels, estimated in each experiment from Gj/single-channel gj, showed a range of 7 to 258 channels (mean, 107.2). Optical measurements of [Ca2+]i gave a mean value of 80.2±4.27 nM at pHo of 7.43. Acidification of the medium with lactic acid (1 mM, pH 6.3) induced: 1) Variable changes in Gj (decreases and increases); 2) A significant decrease in mean gj (to 80.36±0.34 pS) and in single-channel conductance (gj=12.8±0.2 pS in computer analyses and 17.23±0.2 pS when measured by hand); 3) Variable changes in open times, resulting in a similar mean (12.8±1.5 ms) and 4) No change in the number of junction channels. When pHo was lowered to 6.3 [Ca2+]i did not change significantly (there were increases and decreases). However, when pHo was lowered to 4.4, [Ca2+]i increased significantly to 157.1±8.1 nM. It is concluded that saline acidification to pH 6.3 depresses the conductance of junction channels and this effect may be either a direct effect on channel proteins or synergistically enhanced by increases in [Ca2+]i. However, there are no studies correlating changes of [Ca2+]i and intercellular coupling in glomus cells. Stronger acidification (pHo 4.4), producing much larger changes in [Ca2+]i, may enhance this synergism. But, again, there are no studies correlating these effects.  相似文献   

20.
Isolated and cultured glomus cells, obtained from mouse carotid bodies, were superfused with Ham's F-12 equilibrated with air (mean PO2, 119 Torr; altitude 1350 m). [Ca2+]o was 3.0 mM. In one experimental series, dual cell penetrations with microelectrodes measured intracellular calcium ([Ca2+]i) and the resting potential (Em). In another series, [Ca2+]i was measured with Indo-1/AM, dissolved in DMSO. Normoxic cells had a mean Em of −42.4 mV and [Ca2+]i was about 80 nM (measured with both methods). The calculated calcium equilibrium potential (ECa) was 137±0.74 mV. Hypoxia, induced by Na2S2O4 1 mM, reduced pO2 to 10–14 Torr. This effect was accompanied by cell depolarization to −19.1 mV. Hypoxia increased [Ca2+]i to 231 nM when detected with Ca-sensitive microelectrodes, but only to 130.2 nM when measured with Indo-1/AM. Calcium increases were preceded by decreases in [Ca2+]i, which also were more pronounced with microelectrode measurements. CoCl2 1 mM blocked the hypoxic [Ca2+]i increase and exaggerated the decreases in [Ca2+]i. Correlations between ΔEm and Δ[Ca2+]i during hypoxia were significant (p<0.05) in 19% of the cells. But, in 29% of them significance was at the p<0.1 level. In the rest (52%), there was no correlation between these parameters. Thus, voltage-gated calcium channels are rare in mouse glomus cells. Their activation by depolarization cannot explain the two to threefold increase in [Ca2+]i seen during hypoxia. More likely, [Ca2+]i increase may be due to hypoxic inactivation of a Ca–Mg ATPase transport system across the cell membrane. The blunting of hypoxic [Ca2+]i increase, seen in Indo-1/AM experiments, is probably due to its solvent (DMSO), which also depresses hypoxic cell depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号