首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Rationale Atypical antipsychotic drugs are classically associated with lower propensity to extrapyramidal symptoms (EPS) and hyperprolactinemia than typical antipsychotic drugs. It has not been clarified why some atypical antipsychotic drugs, such as amisulpride, induce prolactin plasma concentration (PRL) elevation, but little EPS. Previous studies have found an association between striatal D2/D3 receptor occupancy and PRL in typical antipsychotic treated patients suggesting that PRL is a marker of central D2/D3 receptors blockade.Objective We have evaluated the relationship between PRL and central (striatum, temporal cortex and thalamus) D2/D3 receptor occupancy in amisulpride treated schizophrenic patients.Methods Single photon emission tomography (SPET) and [123I]-epidepride were used to determine D2/D3 receptor occupancy in eight amisulpride treated patients. PRL was measured concurrently with the scans.Results The mean PRL was 1166 (range 499–1892 mIU/l) for a mean amisulpride dose of 406 mg/day (range 150–600 mg/day). Amisulpride plasma concentration and central D2/D3 receptor occupancy were positively correlated (r=0.83–0.89, df=4, P<0.05). No significant correlations were observed between PRL and amisulpride (daily dose or plasma concentration, P>0.05), or between PRL and central D2/D3 receptor occupancy (P>0.05).Conclusions Our findings show that amisulpride-induced hyperprolactinemia is uncoupled from central D2/D3 receptor occupancy. Amisulpride has poor blood–brain barrier penetration and reaches much higher concentration at the pituitary, which is outside the blood–brain barrier. Higher D2/D3 receptor occupancy at the pituitary gland than at central regions is a possible explanation for amisulpride PRL elevation with low EPS. Further studies evaluating pituitary D2/D3 receptor occupancy in vivo are necessary to confirm this hypothesis.This study was partially presented (poster) at the International Congress on Schizophrenia Research, Colorado Springs, USA, 2003 and received the Young Investigator Award.  相似文献   

2.
Rationale Flupentixol (FLX) has been used as a neuroleptic for nearly 4 decades. In vitro data show comparable affinity to dopamine D2, D1 and 5-HT2A receptors and recently, FLX showed to be not inferior to risperidone in schizophrenic patients with predominant negative symptomatology, which was implicated with flupentixol’s interaction with 5-HT2A and/or D1 receptors. Objectives To assess in vivo receptor occupancy (RO) in patients clinically treated with FLX (n = 13, 5.7 ± 1.4 mg/day) in comparison with risperidone (RIS, n = 11, 3.6 ± 1.3 mg/day) and haloperidol (HAL, n = 11, 8.5 ± 5.5 mg/day). Materials and methods Each patient underwent two PET scans with 3-N-[11C]methylspiperone (target: frontal 5-HT2A), [11C]SCH23390 (striatal D1) or [11C]raclopride (striatal D2). RO was calculated as the percentage reduction of specific binding in comparison with healthy controls. Results D2-RO under FLX was between 50% and 70%, indicating an ED50 of about 0.7 ng/ml serum. 5-HT2A and D1-RO was 20 ± 10% and 20 ± 5% (mean, SEM). Under HAL, D1-RO was 14 ± 6% and under RIS not significantly different from zero. Conclusions We were able to demonstrate a moderate 5-HT2A and D1 occupancy under clinically relevant doses of flupentixol, albeit lower than expected from in vitro data and clearly below saturation. Therefore, if flupentixol’s efficacy on negative symptoms is based on its interaction with 5-HT2A and/or D1 receptors, it should be highly dependent on serum concentration and thus on dosage and metabolism. However, these data suggest that mechanisms other than D1 or 5-HT2A antagonism may contribute to flupentixol’s efficacy on negative symptoms.  相似文献   

3.
Rationale [18F]Fallypride is a new and promising radiotracer, suitable for imaging D2 receptors with Positron Emission Tomography (PET) in both striatal and extrastriatal regions. The high signal to noise ratio of [18F]fallypride has been attributed to its high affinity for D2 receptors (KD of 0.03 nM, measured in vitro at room temperature).Objectives We sought to further characterize this tracer in terms of its in vivo affinity, possible affinity differences between brain regions and dependence of in vitro affinity on temperature.Methods PET scans were performed in baboons over a wide range of concentrations to measure the in vivo KD of [18F]fallypride in striatal and extrastriatal regions. Several analytical approaches were used, including nonlinear kinetic modeling and equilibrium methods. Also, in vitro assays were performed at 22 and 37°C.Results No significant differences in the in vivo KD were detected between regions. In vivo KD of [18F]fallypride was 0.22±0.05 nM in striatum, 0.17±0.05 nM in thalamus, and 0.21±0.07 nM in hippocampus. These values were intermediate between in vitro KD measured at 22 (0.04±0.03 nM) and 37 degrees (2.03±1.07 nM).Conclusion The in vivo affinity of [18F]fallypride was not as high as previously estimated from in vitro values. This property might contribute to the favorable kinetic properties of the tracer. The in vivo affinity was similar between striatal and extrastriatal regions. This result indicates that the measured regional in vivo affinities of this tracer are not affected by putative regional differences in endogenous dopamine, and that [18F]fallypride is an appropriate tool to provide unbiased estimates of the occupancy of D2 receptors by antipsychotic drugs in striatal and extrastriatal regions.  相似文献   

4.
Rationale Among other monoamine neurotransmitters, dopamine is implicated in the pathophysiology of major depression. Experimental studies suggest the involvement of the mesolimbic dopamine system in the mechanism of action of antidepressant drugs. Previous in vivo imaging studies have studied striatal dopamine D2 receptor availability in depression but the results are equivocal thus far. Objective To study the striatal and thalamic dopamine D2 receptor availability in drug-naive patients with major depression was the aim of this study. Materials and methods Caudate, putamen, and thalamic dopamine D2 receptor availability was estimated using positron emission tomography and [11C]raclopride in 25 treatment-seeking drug-free patients (of whom 24 were drug-naive) with major depression (primary care patients) as well as in 19 demographically similar healthy control subjects. Receptor availability was expressed as the binding potential (BPND), and analyses were carried out based on both regional and voxel-level BPND estimates. Results No statistically significant differences in [11C]raclopride BPND were observed between the groups either in the caudate nucleus (+1.7%, CI −4.8% to +8.3%), putamen (−1.0%, CI −7.2% to 5.1%), thalamus (−2.4%, CI −8.7% to 4.0%), or ventral striatum (−3.8%, CI −9.3% to +1.6%). In the patients, depressive symptoms were not associated with [11C]raclopride BPND in any region. Conclusions The findings in this sample of treatment-seeking, drug-naive and predominantly first-episode patients with major depression do not support the involvement of striatal dopamine D2 receptors in the pathophysiology of the illness, but do not exclude the potential importance of dopaminergic mechanisms in antidepressant drug action.  相似文献   

5.
Rationale Social rank has been shown to influence dopamine (DA) D2 receptor function and vulnerability to cocaine self-administration in cynomolgus monkeys. The present studies were designed to extend these findings to maintenance of cocaine reinforcement and to DA D1 receptors.Objective Examine the effects of a high-efficacy D1 agonist on an unconditioned behavior (eyeblinking) and a low-efficacy D1 agonist on cocaine self-administration, as well as the effects of cocaine exposure on D2 receptor function across social ranks, as determined by positron emission tomography (PET).Methods Effects of the high-efficacy D1 agonist SKF 81297 and cocaine (0.3–3.0 mg/kg) on spontaneous blinking were characterized in eight monkeys during 15-min observation periods. Next, the ability of the low-efficacy D1 agonist SKF 38393 (0.1–17 mg/kg) to decrease cocaine self-administration (0.003–0.1 mg/kg per injection, IV) was assessed in 11 monkeys responding under a fixed-ratio 50 schedule. Finally, D2 receptor levels in the caudate and putamen were assessed in nineteen monkeys using PET.Results SKF 81297, but not cocaine, significantly increased blinking in all monkeys, with slightly greater potency in dominant monkeys. SKF 38393 dose-dependently decreased cocaine-maintained response rates with similar behavioral potency and efficacy across social rank. After an extensive cocaine self-administration history, D2 receptor levels did not differ across social ranks.Conclusions These results suggest that D1 receptor function is not substantially influenced by social rank in monkeys from well-established social groups. While an earlier study showed that dominant monkeys had higher D2 receptor levels and were less sensitive to the reinforcing effects of cocaine during initial exposure, the present findings indicate that long-term cocaine use changed D2 receptor levels such that D2 receptor function and cocaine reinforcement were not different between social ranks. These findings suggest that cocaine exposure attenuated the impact of social housing on DA receptor function.  相似文献   

6.
Rationale Cyamemazine (Tercian) is an antipsychotic drug with anxiolytic properties. Recently, an in vitro study showed that cyamemazine possesses high affinity for serotonin 5-HT2A receptors, which was fourfold higher than its affinity for dopamine D2 receptors (Hameg et al. 2003).Objectives The aim of this study is to confirm these previous data in vivo in patients treated with clinically relevant doses of Tercian.Methods Eight patients received 37.5, 75, 150 or 300 mg/day of Tercian depending on their symptomatology. Dopamine D2 and serotonin 5-HT2A receptor occupancies (RO) were assessed at steady-state plasma levels of cyamemazine with positron emission tomography (PET), using [11C]raclopride and [11C]N-methyl-spiperone, respectively. The effective plasma level of the drug leading to 50% of receptor occupancy was estimated by fitting RO with plasma levels of cyamemazine at the time of the PET scan.Results Cyamemazine induced near saturation of 5-HT2A receptors (RO=62.1–98.2%) in the frontal cortex even at low plasma levels of the drug. On the contrary, occupancy of striatal D2 receptors increased with plasma levels, and no saturation was obtained even at high plasma levels (RO=25.2–74.9%). The effective plasma level of cyamemazine leading to 50% of D2 receptor occupancy was fourfold higher than that for 5-HT2A receptors. Accordingly, individual 5-HT2A/D2 RO ratios ranged from 1.26 to 2.68. No patients presented relevant increased prolactin levels, and only mild extrapyramidal side effects were noticed on Simpson and Angus Scale.Conclusion This in vivo binding study conducted in patients confirms previous in vitro findings indicating that cyamemazine has a higher affinity for serotonin 5-HT2A receptors compared to dopamine D2 receptors. In the dose range 37.5–300 mg, levels of dopamine D2 occupancy remained below the level for motor side effects observed with typical antipsychotics and is likely to explain the low propensity of the drug to induce extrapyramidal side effects.  相似文献   

7.
Interaction with dopamine D2-like receptors plays a major role in the therapeutic effects of antipsychotic drugs. We examined in vivo dopamine D2 receptor occupancy of various established and potential antipsychotics in mouse striatum and olfactory tubercles 1 h after administration of the compound, using [3H]nemonapride as a ligand. All the compounds reduced in vivo binding of [3H]nemonapride in the striatum. When administered systemically, conventional antipsychotics, D2 antagonists, nemonapride (ID50: 0.034 mg/kg), eticlopride (0.047), haloperidol (0.11) and raclopride (0.11) potently inhibited [3H]nemonapride binding. The ‘atypical’ antipsychotics, risperidone (0.18), ziprasidone (0.38), aripiprazole (1.6), olanzapine (0.99), and clozapine (11.1) were less potent for occupying D2-like receptors. New compounds, displaying marked agonism at 5-HT1A receptors in addition to D2 receptor affinity, exhibited varying D2 receptor occupancy: bifeprunox (0.25), SLV313 (0.78), SSR181507 (1.6) and sarizotan (6.7). ID50 values for inhibition of [3H]nemonapride binding in the striatum correlated with those in the olfactory tubercles (r=0.95, P<0.0001). These values also correlated with previously-reported in vitro affinity of the compounds at rat D2 receptors (r=0.85, P=0.0001) and with inhibition of apomorphine-induced climbing in mice (r=0.79 P=0.0005). In contrast, there was no significant correlation between ID50 values herein and previously-reported ED50 values for catalepsy in mice. These data indicate that: (1) there is no difference in D2 receptor occupancy in limbic versus striatal regions between most classical and atypical or potential antipsychotics; and (2) high occupancy of D2 receptors can be dissociated from catalepsy, if the drugs also activate 5-HT1A receptors. Taken together, these data support the strategy of simultaneously targeting D2 receptor blockade and 5-HT1A receptor activation for new antipsychotics.  相似文献   

8.
Rationale Recent studies have reported antidepressant-like activities of the dopamine D2/D3 agonist pramipexole in the chronic mild stress model and in the forced swim test, suggesting that D3 receptor agonists may represent a new class of antidepressant drugs. However, the relative contribution of D2 or D3 receptors to the activity of pramipexole in these models is unclear.Objectives The aim of the current studies was to explore the role of dopamine D2 and D3 receptors in the activity of pramipexole in the mouse forced swim test.Methods The effect of pramipexole (0.1–3.2 mg/kg) in the mouse forced swim test was examined both in conjunction with D2 and D3 receptor antagonists (haloperidol (0.1–1 mg/kg) and LU-201640 (A-437203, 5.6–17.8 mg/kg), as well as in D3 receptor knockout mice obtained on two different background strains (C57BL/6J and B6129SF2/J). Locomotor activity was also assessed following pramipexole administration.Results Pramipexole produced dose-dependent reductions in immobility in the forced swim test at doses that did not produce generalized increases in locomotor activity. LU-201640, the D3 selective antagonist, failed to block the antidepressant-like effects of pramipexole. In contrast, the efficacy of pramipexole in the forced swim test was completely blocked by the D2 antagonist, haloperidol. No baseline differences were observed between knockout and wild-type mice from either background strain in locomotor activity or in the forced swim test. Furthermore, in both background strains, pramipexole showed similar efficacy in the forced swim test for both wild-type and knockout mice.Conclusions Taken together, these studies suggest that the D2 receptor rather than the D3 receptor is important for the antidepressant-like activity observed for pramipexole in the mouse forced swim test.Portions of this work were presented at the 36th Winter Conference on Brain Research, Snowbird, UT, January 26–31, 2003.  相似文献   

9.
Rationale The dopamine D3 receptor has been shown to mediate conditioned effects of psychostimulants such as cocaine. The present work was aimed at determining whether drugs acting at D3 receptors alter acquisition of conditioned effects of opiates.Methods We have used the conditioned place preference (CPP) in mice, which permits the measurement of approach behaviour to environmental stimuli previously paired with drug effects. To assess the interaction of morphine and D3 receptor ligands during acquisition of CPP, we have used a particular procedure, in which the animals were given the choice between compartments associated with either morphine alone or the combination of morphine with the tested agent.Results D3 receptor agonists (7-OH-DPAT, quinelorane, BP 897) did not induce, alone, a significant CPP but, all of them, at the doses tested, and notably BP 897, a highly selective partial agonist, significantly enhanced acquisition of morphine-induced CPP when administered together with morphine at each conditioning session. PNU-99194A, a D3 receptor-preferring antagonist, induced a CPP itself at the dose of 10 mg/kg but not at 5 or 15 mg/kg and impaired significantly at 10 and 15 mg/kg the morphine-induced CPP. In contrast, BP 897 did not alter morphine-induced analgesia, an unconditioned effect of this drug.Conclusions These results suggest the stimulation of D3 receptors has no rewarding effect per se, but may synergize upon opiate-induced dopamine release with stimulation of other dopamine receptor subtypes to enhance approach behaviour to morphine-associated environment.  相似文献   

10.
Background The role of dopamine D3/D2 receptors in the control of locomotion is poorly understood.Objectives To examine the influence of selective antagonists at D3 or D2 receptors on locomotion in rats, alone and in interaction with the preferential D3 versus D2 receptor agonist, PD128,907.Methods Affinities of ligands at rat D2 and cloned, human hD3, hD2S, hD2L and hD4 sites were determined by standard procedures. Locomotion was monitored automatically in rats pre-habituated for 30 min to an open-field environment. Extracellular levels of dopamine (DA) were determined by dialysis in the nucleus accumbens and striatum. Drugs were given acutely via the systemic route.Results PD128,907, which preferentially recognised D3 versus D2 sites, biphasically reduced and enhanced locomotion at low (0.01–0.63 mg/kg) and high (2.5–10 mg/kg) doses, respectively. L741,626 and S23199, which behaved as preferential D2 versus D3 receptor antagonists, enhanced the reduction in locomotion evoked by the low dose of PD128,907, blocked the increase provoked by the high dose and suppressed spontaneous locomotion alone. Analogous findings were obtained with haloperidol and raclopride which showed equilibrated affinity at D2 and D3 receptors. UH232 and AJ76, which showed a mild preference for D3 versus D2 sites, did not modify the effect of a low dose of PD128,907, slightly enhanced the hyperlocomotion elicited by the high dose and exerted little influence on locomotion alone. S14297 and U99194, which acted as preferential D3 versus D2 receptor antagonists, abolished the reduction in locomotion elicited by a low dose of PD128,907, potentiated the induction of locomotion by a high dose, and failed to influence locomotion alone. The actions of S14297 were stereoselective inasmuch as they were mimicked by the racemic form, S11566, but not by the inactive enantiomer, S17777. In contrast to S14297, S11566 and U99194, however, S33084, SB269,652, GR218,231 and N-[-4-[-(1-naphtyl)piperazine-1-yl]butyl] anthracene-2-carboxamide (NGB-1), highly selective D3 versus D2 receptor antagonists, were inactive under all conditions. PD128,907 (0.01–10.0 mg/kg) suppressed dialysate levels of DA in the nucleus accumbens and striatum, actions blocked by L741,626 and haloperidol, yet unaffected by S14297 and S33084.Conclusions The facilitatory influence of a high dose of PD128,907 upon locomotion is mediated by postsynaptic D2 receptors and, possibly, countered by their D3 counterparts. Correspondingly, selective blockade of D2 but not of D3 receptors alone suppresses motor function. The reduction in locomotion provoked by a low dose of PD128,907 may be mediated by D2 autoreceptors, but a role of postsynaptic D3 receptors cannot be excluded. Finally, mechanisms underlying the contrasting influence of chemically diverse D3 receptor antagonists upon locomotion remain to be elucidated.  相似文献   

11.
Rationale Paliperidone ER is a novel antipsychotic drug in an extended-release (ER) formulation. As with all antipsychotics, careful dose setting is necessary to avoid side effects. Objectives In this study, we measured striatal and extrastriatal dopamine D2 receptor occupancy during paliperidone ER treatment in patients with schizophrenia using positron emission tomography (PET) to compare regional occupancy and to estimate the optimal dose. Materials and methods Thirteen male patients with schizophrenia participated in this 6-week multiple-dose study. Six of them took 3 mg of paliperidone ER per day, four took 9 mg, and three took 15 mg. Two to 6 weeks after first drug intake, two PET scans, one with [11C]raclopride and one with [11C]FLB 457, were performed in each patient on the same day. The relationship between the dose or plasma concentration of paliperidone and dopamine D2 receptor occupancy was calculated. Results The dopamine D2 receptor occupancies in the striatum measured with [11C]raclopride and the temporal cortex measured with [11C]FLB 457 were 54.2–85.5% and 34.5–87.3%, respectively. ED50 values of the striatum and temporal cortex were 2.38 and 2.84 mg/day, respectively. There was no significant difference in dopamine D2 receptor occupancy between the striatum and the temporal cortex. Conclusions The data from this study suggest that paliperidone ER at 6–9 mg provides an estimated level of dopamine D2 receptor occupancy between 70–80% and that the magnitude of dopamine D2 receptor occupancy is similar between the striatum and temporal cortex.  相似文献   

12.
Rationale Repeated exposure to psychostimulant drugs results in conditioned activity and behavioral sensitization. Nonassociative cellular changes are necessary for behavioral sensitization, while associative processes appear to modify the sensitized response.Objective The purpose of the present study was to determine whether the absence of the D1 receptor would disrupt associative processes modulating sensitization and conditioned activity.Methods Wild-type and D1 receptor knockout mice (i.e., D1-deficient mice) were injected with amphetamine (AMPH; 8 mg/kg, IP) before being placed in a previously novel test chamber (AMPH-Test group) or before being returned to the home cage (AMPH-Home group). Separate groups of mice were injected with saline (SAL) at the same time points. Distance traveled was measured 60 min each day, with the preexposure phase lasting 1 or 7 days. Sensitization was subsequently assessed after an injection of AMPH (1 mg/kg, IP), while conditioned activity was assessed after an injection of SAL.Results After a 1-day preexposure phase, wild-type and D1-deficient mice exhibited similar patterns of sensitization and conditioned activity. After a 7-day preexposure phase, (1) D1-deficient mice exhibited more robust context-specific sensitization than wild-type mice, (2) only D1-deficient mice showed context-independent sensitization, and (3) only D1-deficient mice showed conditioned activity.Conclusions Repeatedly treating D1-deficient mice with AMPH appears to cause a general increase in responsivity. The reason for this hyper-responsivity is uncertain, but it is possible that cues from the testing environment were unable to inhibit responding (i.e., associative processes were disrupted). Alternatively, compensatory mechanisms (e.g., increases in D2-like receptors) may affect processes underlying sensitization and conditioned activity.  相似文献   

13.
Rational Abnormality in the neurotrophic factor for dopamine neurons, epidermal growth factor (EGF), is associated with schizophrenia. Thus, rats treated with EGF as neonates are used as a putative animal model for schizophrenia showing impaired prepulse inhibition (PPI) and other cognitive deficits in the adult stage. Objectives To elucidate the abnormal behavioral traits of this animal model, the EGF effects on the dopaminergic system were analyzed pharmacologically and biochemically at the adult stage. Results We examined the effects of subthreshold doses of dopamine agonists on PPI in this model. A non-selective dopamine agonist, apomorphine (0.1 mg/kg), decreased PPI in EGF-treated rats, but not in controls. Further, a D2-like receptor agonist, quinpirole (0.01 and 0.03 mg/kg), similarly decreased PPI in EGF-treated rats but had no effect in the control animals. In contrast, a D1-like receptor agonist, SKF38393 (3 and 10 mg/kg), had no effect on PPI in both groups. To explore the molecular mechanism underlying the change in sensorimotor gating, we assessed D1 and D2 receptors expression in the prefrontal cortex, striatum and hippocampus and their downstream signaling. Although there were no significant differences in basal receptor levels, quinpirole administration significantly enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) in the striatum of EGF-treated rats. Conclusion These results suggest that circulating EGF in the early development substantially influences D2 receptor-dependent regulation of sensorimotor gating.  相似文献   

14.
Rationale and objectives Signal transduction involving the activation of phospholipase A2 (PLA2) to release arachidonic acid (AA) from membrane phospholipids, when coupled to dopamine D1- and D2-type receptors, can be imaged in rats having a chronic unilateral lesion of the substantia nigra. It is not known, however, if the signaling responses occur in the absence of a lesion. To determine this, we used our in vivo fatty acid method to measure signaling in response to D1 and D2 receptor agonists given acutely to unanesthetized rats. Methods [1-14C]AA was injected intravenously in unanesthetized rats, and incorporation coefficients k* for AA (brain radioactivity/integrated plasma radioactivity) were measured using quantitative autoradiography in 61 brain regions. The animals were administered i.v. the D2 receptor agonist, quinpirole (1 mg kg−1, i.v.), the D1 receptor agonist SKF-38393 (5 mg kg−1, i.v.), or vehicle/saline. Results Quinpirole increased k* significantly in multiple brain regions rich in D2-type receptors, whereas SKF-38393 did not change k* significantly in any of the 61 regions examined. Conclusions In the intact rat brain, D2 but not D1 receptors are coupled to the activation of PLA2 and the release of AA.  相似文献   

15.
Rationale Dopamine D1-like antagonists block several effects of cocaine, including its locomotor-stimulant and discriminative-stimulus effects. Because these compounds generally lack selectivity among the dopamine D1 and D5 receptors, the specific roles of the subtypes have not been determined. Objectives Dopamine D5 receptor knockout (DA D5R KO), heterozygous (HET) and wild-type (WT) mice were used to study the role of D5 dopamine receptors in the effects of cocaine. In addition, effects of the D1-like antagonist, SCH 39166 were also studied to further clarify the roles of D1 and D5 dopamine receptors in the discriminative-stimulus effects of cocaine. Methods DA D5R KO, HET and WT mice were treated with cocaine (3–30 mg/kg) or vehicle and their horizontal locomotor activity was assessed. The mice were also trained to discriminate IP injections of saline from cocaine (10 mg/kg) using a two-lever food-reinforcement (FR10) procedure. Doses of cocaine (1.0–10 mg/kg) were administered 5 min before 15-min test-sessions. Results Cocaine dose-dependently stimulated activity in each genotype, with the highest level of activity induced in the DA D5R WT mice. Both DA D5R KO and HET mice showed reduced levels of horizontal activity compared to WT mice. All three genotypes acquired the discrimination of 10 mg/kg cocaine; doses of 1.0–10.0 mg/kg produced dose-related increases in the number of cocaine-appropriate responses. SCH 39166, at inactive to fully active doses (0.01–0.1 mg/kg) produced predominately saline-appropriate responding. SCH 39166 produced a dose-dependent rightward shift in the cocaine dose-effect curve in all genotypes, with similar apparent affinities. Conclusions The present data suggest an involvement of DA D5R in the locomotor stimulant effects of cocaine. In addition, the data indicate that there is little involvement of the DA D5R in the discriminative-stimulus effects of cocaine. In addition, the antagonism data suggest a role of the D1 receptor in the behavioral effects of cocaine.  相似文献   

16.
Background and rationale Reinstatement of the function of working memory, the cardinal cognitive process essential for human reasoning and judgment, is potentially the most intractable problem for the treatment of schizophrenia. Since deficits in working memory are associated with dopamine dysregulation and altered D1 receptor signaling within prefrontal cortex, we present the case for targeting novel drug therapies towards enhancing prefrontal D1 stimulation for the amelioration of the debilitating cognitive deficits in schizophrenia.Objectives This review examines the role of dopamine in regulating cellular and circuit function within prefrontal cortex in order to understand the significance of the dopamine dysregulation found in schizophrenia and related non-human primate models. By revealing the associations among prefrontal neuronal function, dopamine and D1 signaling, and cognition, we seek to pinpoint the mechanisms by which dopamine modulates working memory processes and how these mechanisms may be exploited to improve cognitive function.Results and conclusions Dopamine deficiency within dorsolateral prefrontal cortex leads to abnormal recruitment of this region by cognitive tasks. Both preclinical and clinical studies have demonstrated a direct relationship between prefrontal dopamine function and the integrity of working memory, suggesting that insufficient D1 receptor signaling in this region results in cognitive deficits. Moreover, working memory deficits can be ameliorated by treatments that augment D1 receptor stimulation, indicating that this target presents a unique opportunity for the restoration of cognitive function in schizophrenia.Dr. Patricia S. Goldman-Rakic passed away July 31, 2003. This review is dedicated to her memory and to her vision of the origins and treatment of cognitive deficits in schizophrenia.  相似文献   

17.
Rationale To examine the D2 occupancy of two commonly used antipsychotic medications and relate this to the D2 occupancy by endogenous dopamine in schizophrenia.Objectives The aim of this study is to compare the occupancy of striatal D2 receptors by the atypical antipsychotic medications risperidone and olanzapine at fixed dosages and to estimate the effect on D2 occupancy by dopamine as a result of these treatments.Methods Seven patients with schizophrenia taking risperidone 6 mg/day and nine patients with schizophrenia taking olanzapine 10 mg/day underwent an [123I]IBZM SPECT scan after 3 weeks of treatment. The specific to non-specific equilibrium partition coefficient (V3) after bolus plus constant infusion of the tracer was calculated as [(striatal activity)/(cerebellar activity)]–1. D2 receptor occupancy was calculated by comparing V3 measured in treated patients to an age-corrected V3 value derived from a group of untreated patients with schizophrenia, previously published, according to the following formula: OCC=1–(V3 treated/V3 drug free).Results V3 was significantly lower in risperidone treated patients compared with olanzapine treated patients (0.23±0.06 versus 0.34±0.08, P=0.01), which translated to a significantly larger occupancy in schizophrenic patients treated with risperidone compared to olanzapine (69±8% versus 55±11%, P=0.01). Data from our previous study were used to calculate the occupancy of striatal D2 receptors by antipsychotic medications required to reduce the occupancy of these receptors by endogenous dopamine to control values. In medication-free patients with schizophrenia, the occupancy of striatal D2 receptors by endogenous dopamine is estimated at 15.8%. In healthy controls, the occupancy of striatal D2 receptors by dopamine is estimated at 8.8%. In order to reduce the dopamine occupancy of striatal D2 receptors in patients with schizophrenia to control values, 48% receptor occupancy by antipsychotic medications is required.Conclusions These data indicate that the dosage of these medications, found to be effective in the treatment of schizophrenia, reduces DA stimulation of D2 receptors to levels slightly lower than those found in unmedicated healthy subjects.  相似文献   

18.
Rationale There is a need for laboratory measures to guide clinical treatment with antipsychotic drugs. For serum concentration of the classical antipsychotic drug perphenzine an optimal therapeutic interval has been identified between 2 and 6 nmol/l. Positron emission tomography (PET) studies have suggested an optimal interval in central dopamine D2 receptor occupancy of between 65 and 80%.Objectives The aim of the present cross-validation study in clinically stable schizophrenic patients was to examine the relationship between the optimal interval in central D2 receptor occupancy and the therapeutic window for serum perphenazine concentration.Methods Six patients who had responded to maintenance treatment with perphenazine decanoate were examined with PET and [11C]raclopride during steady-state conditions. Blood sampling was carried out for minimum serum perphenazine concentration and during the PET examination.Results The serum perphenazine concentration was between 1.8 and 9 nmol/l and the D2 receptor occupancy varied between 66 and 82%. The relationship between central receptor occupancy and serum drug concentration was curvilinear. Mild extrapyramidal symptoms were present in the patient with the highest D2 receptor occupancy.Conclusions The previously suggested therapeutic window in serum perphenazine concentration is in good agreement with the optimal interval suggested for central D2 receptor occupancy. Serum concentrations at low dose levels may therefore serve as a useful tool in clinical monitoring of antipsychotic drug treatment.  相似文献   

19.
Rationale and objective Because of the important role of dopamine in neurotransmission, it would be useful to be able to image brain dopamine receptor-mediated signal transduction in animals and humans. Administering the D1–D2 receptor agonist apomorphine may allow us to do this, as the D2-like receptor is reported to be coupled to cytosolic phospholipase A2 activation and arachidonic acid (AA) release from membrane phospholipid. Methods Unanesthetized adult rats were given intraperitoneally apomorphine (0.5 mg/kg) or saline, with or without pretreatment with 6 mg/kg intravenous raclopride, a D2/D3 receptor antagonist. [1–14C]AA was injected intravenously, then AA incorporation coefficients k*—brain radioactivity divided by integrated plasma radioactivity—markers of AA signaling, were measured using quantitative autoradiography in 62 brain regions. Results Apomorphine significantly elevated k* in 26 brain regions, including the frontal cortex, motor and somatosensory cortex, caudate-putamen, thalamic nuclei, and nucleus accumbens. Raclopride alone did not change baseline values of k*, but raclopride pretreatment prevented the apomorphine-induced increments in k*. Conclusions A mixed D1–D2 receptor agonist, apomorphine, increased the AA signal by activating only D2-like receptors in brain circuits containing regions with high D2-like receptor densities. Thus, apomorphine might be used with positron emission tomography to image brain D2-like receptor-mediated AA signaling in humans in health and disease.  相似文献   

20.
Dopamine D2-like receptors, including D2, D3, and D4 receptors, are involved in the regulation of glomerular hyperfiltration due to diabetes mellitus. These hemodynamic alterations represent a risk factor for the later development of diabetic nephropathy. The aim of the present study was to determine whether the D3 receptor subtype modulates the diabetes-induced increase in glomerular filtration rate (GFR) in rats. Renal function was studied in Sprague–Dawley rats 14 days after induction of a moderate diabetes mellitus (DM) by streptozotocin and in non-diabetic controls (CON). Rats were orally treated either with the peripherally acting, selective dopamine D3 receptor antagonist BSF 135170 (BSF, 10 mg/kg per day for 2 weeks) or with vehicle (VHC). Perfusion-fixed kidneys were used for estimation of glomerular volume. In conscious rats, which were treated with BSF, the DM-induced increase in fluid intake, urinary output, and renal sodium excretion was significantly less pronounced than in the vehicle group (DM-VHC). In the clearance experiments, GFR in CON was about 0.84±0.04 ml/min per 100 g body weight. The DM-VHC group presented a significant glomerular hyperfiltration (1.09±0.04 ml/min per 100 g body weight). Treatment with BSF significantly lowered GFR towards levels of CON. The estimated glomerular volume was 0.73±0.03×106 m3 in the CON-VHC group and 0.86±0.04×106 m3 in the DM-VHC animals. Interestingly, treatment with BSF decreased the glomerular volume in both groups. Irrespective of BSF treatment, kidney wet weight related to body weight was about 36% higher in DM animals compared with CON animals. We conclude that dopamine D3 receptors represent a target for the modulation of diabetes-induced glomerular hyperfiltration. Therefore, the results encourage the testing of the possible beneficial effects of long-term D3 receptor blockade on the development of diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号