首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
OBJECT: In previous studies at their laboratory the authors showed that cytidinediphosphocholine (CDP-choline), an intermediate of phosphatidylcholine synthesis, decreases edema formation and blood-brain barrier disruption following traumatic brain injury (TBI). In the present study the authors investigate whether CDP-choline protects hippocampal neurons after controlled cortical impact (CCI)-induced TBI in adult rats. METHODS: After adult male Sprague-Dawley rats had been anesthetized with halothane, a moderate-grade TBI was induced with the aid of a CCI device set at a velocity of 3 m/second, creating a 2-mm deformation. Sham-operated rats, which underwent craniectomy without impact served as controls. The CDP-choline (100, 200, and 400 mg/kg body weight) or saline was injected into the animals twice (once immediately postinjury and once 6 hours postinjury). Seven days after the injury, the rats were neurologically evaluated and killed, and the number of hippocampal neurons was estimated by examining thionine-stained brain sections. By 7 days postinjury, there was a significant amount of neuronal death in the ipsilateral hippocampus in the CA2 (by 53 +/- 7%, p < 0.05) and CA3 (by 59 +/- 9%, p < 0.05) regions and a contusion (volume 34 +/- 8 mm3) in the ipsilateral cortex compared with sham-operated control animals. Rats subjected to TBI also displayed severe neurological deficit at 7 days postinjury. Treating rats with CDP-choline (200 and 400 mg/kg, intraperitoneally) significantly prevented TBI-induced neuronal loss in the hippocampus, decreased cortical contusion volume, and improved neurological recovery. CONCLUSIONS: Treatment with CDP-choline decreased brain damage following TBI.  相似文献   

2.
Prostaglandins, potent mediators of inflammation, are generated from arachidonic acid (AA) via the action of cyclooxygenase-1 and -2 (COX-1 and COX-2). In this study, we report that lateral cortical impact injury in rats significantly increases COX-2 protein levels both in the cortex surrounding the injury site and the ipsilateral hippocampus. COX-2 protein level was elevated as early as 3 h postinjury and persisted for up to 3 days. Increases in immunoreactivity were detected not only in the adjacent cortex and hippocampus, but were also observed in the contralateral cortex and hippocampus, the ipsilateral piriform cortex and the ipsilateral amygdaloid complex. COX-2 immunoreactive cells appear morphologically normal and do not present any of the characteristic features of apoptosis. Double immunostaining experiments using either a neuron-specific or an astroglial-specific marker show that the expression of COX-2 is localized almost exclusively in neuronal cells. Administration of the COX-2 inhibitor 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfona mide (celecoxib, marketed as Celebrex) worsens motor, but not cognitive, performance, suggesting that COX-2 induction following traumatic brain injury may play a protective role.  相似文献   

3.
In this study, we examined the expression and cellular localization of survivin and proliferating cell nuclear antigen (PCNA) after controlled cortical impact traumatic brain injury (TBI) in rats. There was a remarkable and sustained induction of survivin mRNA and protein in the ipsilateral cortex and hippocampus of rats after TBI, peaking at five days post injury. In contrast, both survivin mRNA and protein were virtually undetectable in craniotomy control animals. Concomitantly, expression of PCNA was also significantly enhanced in the ipsilateral cortex and hippocampus of these rats with similar temporal and spatial patterns. Immunohistochemistry revealed that survivin and PCNA were co-expressed in the same cells and had a focal distribution within the injured brain. Further analysis revealed a frequent co-localization of survivin and GFAP, an astrocytic marker, in both the ipsilateral cortex and hippocampus, while a much smaller subset of cells showed co-localization of survivin and NeuN, a mature neuronal marker. Neuronal localization of survivin was observed predominantly in the ipsilateral cortex and contralateral hippocampus after TBI. PCNA protein expression was detected in both astrocytes and neurons of the ipsilateral cortex and hippocampus after TBI. Collectively these data demonstrate that the anti-apoptotic protein survivin, previously characterized in cancer cells, is abundantly expressed in brain tissues of adult rats subjected to TBI. We found survivin expression in both astrocytes and a sub-set of neurons. In addition, the expression of survivin was co-incident with PCNA, a cell cycle protein. This suggests that survivin may be involved in regulation of neural cell proliferative responses after traumatic brain injury.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF), its signal transduction receptor trkB, and its downstream effector, synapsin I, were measured in the hippocampus and occipital cortex of young animals after fluid-percussion brain injury (FPI). Isofluorane anaesthetized postnatal day 19 rats were subjected to a mild lateral FPI or sham injury. Rats were sacrificed at 24 h, 7 days, or 14 days after injury in order to determine mRNA expression. Additional animals were sacrificed at 7 and 14 days after injury for protein analysis. Only FPI animals exhibited hemispheric differences in BDNF levels. These animals exhibited a contralateral increase, ranging from 40% to 75%, in BDNF mRNA within both the hippocampus and occipital cortex at 24 h and 7 days after injury. The increase in message within the occipital cortex was accompanied by an increase in BDNF protein at 7 and 14 days after injury. However, hippocampal BDNF protein increased in both hemispheres at postinjury day 7 and was restricted to the ipsilateral hippocampus at postinjury day 14. At postinjury day 7, both trkB and synapsin I mRNA expression increased ipsilaterally and decreased contralaterally in the occipital cortex. In addition, synapsin I phosphorylation was increased by 20% in the ipsilateral cortex and by 30% in the hippocampus on this day. These results indicate that the developing brain responds to a mild injury by modifying factors related to synaptic plasticity and suggest that regions remote from the site of injury express neurotrophic signals potentially needed for compensatory responses.  相似文献   

5.
The purpose of this study was to investigate the efficacy of a novel steroid, fluasterone (DHEF, a dehydroepiandrosterone (DHEA) analog), at improving functional recovery in a rat model of traumatic brain injury (TBI). The lateral cortical impact model was utilized in two studies of efficacy and therapeutic window. DHEF was given (25 mg/kg, intraperitoneally) at the initial time point and once a day for 2 more days. Study A included four groups: sham injury, vehicle treated (n = 22); injured, vehicle treated (n = 30); injured, pretreated (5-10 min prior to injury, n = 24); and injured, posttreated (initial dose 30 min postinjury, n = 15). Study B (therapeutic window) included five groups: sham injury, vehicle treated (n = 17); injured, vehicle treated (n = 26); and three posttreatment groups: initial dose at 30 min (n = 18), 2 h (n = 23), or 12 h (n = 16) postinjury. Three criteria were used to grade functional recovery. In study A, DHEF improved beam walk performance both with pretreatment (79%) and 30-min posttreatment group (54%; p < 0.01, Dunnett vs. injured vehicle). In study B, the 12-h posttreatment group showed a 97% improvement in beam walk performance (p < 0.01, Dunnett). The 30-min and 12-h posttreatment groups showed a decreased incidence of falls from the beam, which reached statistical significance (p < 0.05, Dunnett). Tests of memory (Morris water maze) and neurological reflexes both revealed significant improvements in all DHEF treatment groups. In cultured rat mesangial cells, DHEF (and DHEA) potently inhibited interleukin-1beta-induced cyclooxygenase-2 (COX2) mRNA and prostaglandin (PGE2) production. In contrast, DHEF treatment did not alter injury-induced COX2 mRNA levels in the cortex or hippocampus. However, DHEF (and DHEA) relaxed ex vivo bovine middle cerebral artery preparations by about 30%, with an IC(50) approximately 40 microM. This was a direct effect on the vascular smooth muscle, independent of the endothelial cell layer. Fluasterone (DHEF) treatments improved functional recovery in a rat TBI model. Possible mechanisms of action for this novel DHEA analog are discussed. These findings suggest an exciting potential use for this agent in the clinical treatment of traumatic brain injury.  相似文献   

6.
Inflammatory mediators are important in traumatic brain injury (TBI). The objective of the present study was to investigate the expression of cyclooxygenase-2 (COX-2), prostaglandin E (PGE) and PGD synthases, and PGH2 metabolism in two rat models of TBI. Fluid percussion injury (FPI) resulted in bilateral induction of COX-2 mRNA in the dentate gyri and the cortex, whereas controlled cortical contusion injury (CCC) induced COX-2 mRNA in the ipsilateral dentate gyrus and intensely in the cortex as judged by in situ hybridization. The induction subsided within 24 h. COX-2 immunoreactivity was detectable in these areas and persisted in the ipsilateral cortex for at least 72 h after CCC. Regions with COX-2 induction co-localized with TUNEL staining, suggesting a link between COX-2 expression and cell damage. COX-2 forms PGH2, which can be isomerized to PGD2, PGE2, and PGF2alpha by enzymatic and non-enzymatic mechanisms. In situ hybridization showed that mRNA of PGD synthase and microsomal PGE synthase were present in the choroid plexus. The microsomal PGE synthase was induced bilaterally after FPI and unilaterally after CCC. Liquid chromatography-mass spectrometry showed that low speed supernatant of normal and traumatized cortex and hippocampus transformed PGH2 to PGD2 as main product. PGD2 was dehydrated in brain homogenates to biological active compounds, for example, 15-deoxy-delta12,14-PGJ2. Thus COX-2 increases in certain neurons following TBI without neuronal induction of PGD and microsomal PGE synthases, suggesting that PGH2 may decompose to PGD2 and its dehydration products by nonenzymatic mechanisms or to PGD2 by low constitutive levels of PGD synthase.  相似文献   

7.
A cleavage product of 28S rRNA was isolated from ipsilateral hippocampus of rat brain subjected to lateral fluid percussion induced traumatic brain injury (TBI). Northern blot analysis demonstrated that the corresponding cDNA fragment hybridized to 28S rRNA and three cleavage products. Two of the cleaved rRNA fragments (1.3 kb and 0.9 kb) were also observed in differentiated PC12 cells undergoing apoptosis induced by NGF withdrawal. The third fragment (0.6 kb) was detected only in rat brain tissue subjected to trauma, suggesting specific cleavage of 28S following TBI. The 0.6-kb fragment was found only in cortex and hippocampus ipsilateral to the trauma site, but not in brain stem, contralateral cortex or contralateral hippocampus. 28S rRNA cleavage was detected beginning 2 h after trauma and reflected injury severity. Although cleavage of 28S rRNA has been reported in association with apoptosis in white blood cells and apoptosis occurs in the experimental head injury model used, the pattern of 28S rRNA cleavage observed with TBI differs from those observed in apoptotic PC12 cells or those reported for white blood cells. Thus, whereas 28S rRNA fragmentation appears to be a marker of posttraumatic brain injury, its precise role in the secondary injury process remains to be established.  相似文献   

8.
Lei Z  Deng P  Li J  Xu ZC 《Journal of neurotrauma》2012,29(2):235-245
Traumatic brain injury (TBI) is associated with cognitive deficits, memory impairment, and epilepsy. Previous studies have reported neuronal loss and neuronal hyperexcitability in the post-traumatic hippocampus. A-type K+ currents (I(A)) play a critical role in modulating the intrinsic membrane excitability of hippocampal neurons. The disruption of I(A) is reportedly linked to hippocampal dysfunction. The present study investigates the changes of I(A) in the hippocampus after TBI. TBI in rats was induced by controlled cortical impact. The impact induced a reproducible lesion in the cortex and an obvious neuronal death in the ipsilateral hippocampus CA3 region. At one week after TBI, immunohistochemical staining and Western blotting showed that the expression of I(A) channel subunit Kv4.2 was markedly decreased in the ipsilateral hippocampus, but remained unchanged in the contralateral hippocampus. Meanwhile, electrophysiological recording showed that I(A) currents in ipsilateral CA1 pyramidal neurons were significantly reduced, which was associated with an increased neuronal excitability. Furthermore, there was an increased sensitivity to bicuculline-induced seizures in TBI rats. At 8 weeks after TBI, immunohistochemical staining and electrophysiological recording indicated that I(A) returned to control levels. These findings suggest that TBI causes a transient downregulation of I(A) in hippocampal CA1 neurons, which might be associated with the hyperexcitability in the post-traumatic hippocampus, and in turn leads to seizures and epilepsy.  相似文献   

9.
This study documents the regional and temporal patterns of glial fibrillary acidic protein (GFAP) RNA and protein expression after parasagittal fluid-percussion (F-P) brain injury (1.7 to 2.2 atm) in male Sprague-Dawley rats. In situ hybridization was conducted in 28 rats with a 35S-labeled antisense riboprobe to GFAP at 0.5, 2, and 6 hours and 1, 3, and 30 days after traumatic brain injury (TBI) or sham procedures. Immunocytochemical staining of GFAP was conducted in 20 rats at 1, 3, 7, and 30 days after TBI or sham procedures. At 0.5 and 2 hours after TBI, increased GFAP mRNA was restricted to superficial cortical areas underlying the impact site. At 24 hours, increased GFAP mRNA was observed throughout the traumatized hemisphere except within the histopathologically vulnerable lateral parietal cortex and external capsule. Contralateral expression within the hippocampus and cingulate and lateral cortices was also observed. Three days after TBI, GFAP mRNA expression was prominent overlying pial surfaces, in cortical regions surrounding the contusion, and within the hippocampus and lateral thalamus. Immunocytochemical visualization of GFAP at 1 and 3 days demonstrated reactive astrocytes overlying the pial surface, surrounding the cortical contusion, and within ipsilateral white matter tracts, hippocampus, and lateral thalamus. At 30 days, GFAP mRNA and protein expression were present within the deeper cortical layers of the lateral somatosensory cortex and lateral thalamus and throughout ipsilateral white matter tracts. These data demonstrate a complex pattern of GFAP mRNA and protein expression within gray and white matter tracts following F-P brain injury. Patterns of GFAP gene expression may be a sensitive molecular marker for evaluating the global response of the brain to focal injury in terms of progressive neurodegenerative as well as regenerative processes.  相似文献   

10.
Despite a preponderance of studies demonstrating gene expression and/or enzymatic activation of calpain and caspase proteases after traumatic brain injury (TBI), no studies have examined the effects of injury magnitude on expression levels of these cell death effectors after TBI. Determination of the degree to which injury severity affects specific expression profiles is critical to understanding the relevant pathways contributing to post-trauma pathology and for developing targeted therapeutics. This investigation tested the hypothesis that different injury magnitudes (1.0, 1.2, and 1.6 mm) cause alterations in the regional and temporal patterns of mRNA expression of calpain-related (calpain-1 and -2, calpastatin) and caspase-related (caspases -3, -8, -9, BID) gene products after cortical impact in rats. Quantitative RT-PCR was used to compare effects of injury severity on mRNA levels in ipsilateral (injured) cortex and hippocampus, 6 h to 5 days post-injury. TBI caused increases in mRNA expression of all proteins examined, with the highest expression detected in the cortex. Generally, injury magnitude and levels of gene expression were positively correlated. High levels of gene induction were observed with BID, caspase-3, and -8, while caspase-9 mRNA had the lowest level of induction. Interestingly, although calpains are activated within minutes of TBI, calpain mRNA expression was highest 72 h to 5 days post-TBI. This study is the first analysis of the regional and temporal expression of calpains and caspases after TBI. These data provide insight into the inter-relationship of these two protease families and on the distinct but overlapping cascades of cell death after TBI.  相似文献   

11.
Changes in regional cerebral blood flow (rCBF) and glucose metabolism are commonly associated with traumatic brain injury (TBI). Reactive oxygen species (ROS) have been implicated as key contributors to the secondary injury process after TBI. Here, pretreatment with the nitrone radical scavengers (alpha-phenyl-N-tert-butyl nitrone (PBN) or its sulfonated analogue sodium 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) were used as tools to study the effects of ROS on rCBF and glucose metabolism after moderate (2.4-2.6 atm) lateral fluid percussion injury (FPI) in rats. S-PBN has a half-life in plasma of 9 min and does not penetrate the blood-brain barrier (BBB). In contrast, PBN has a half-life of 3 h and readily penetrates the BBB. Regional cerebral blood flow (rCBF) and glucose metabolism was estimated by using (99m)Tc-HMPAO and [(18)F]Fluoro-2-deoxyglucose (FDG) autoradiography, respectively, at 42 min (n = 37) and 12 h (n = 34) after the injury. Regions of interest were the parietal cortex and hippocampus bilaterally. As expected, FPI produced an early (42-min) hypoperfusion in ipsilateral cortex and an increase in glucose metabolism in both cortex and hippocampus, giving way to a state of hypoperfusion and decreased glucose metabolism at 12 h postinjury. On the contralateral side, a hypoperfusion in the cortex and hippocampus was seen at 12 h only, but no significant changes in glucose metabolism. Both S-PBN and PBN attenuated the trauma-induced changes in rCBF and glucose metabolism. Thus, the early improvement in rCBF and glucose metabolism correlates with and may partly mediate the improved functional and morphological outcome after TBI in nitrone-treated rats.  相似文献   

12.
Glutamate toxicity, mediated via ion channel-linked receptors, plays a key role in traumatic brain injury (TBI) pathophysiology. Excessive glutamate release after TBI also activates protein G-linked metabotropic glutamate receptors (mGluRs). We performed Western blot and immunohistochemical analysis with antibodies for group 1 and 2 mGluRs in hippocampal and cortex tissue at 7 and 15 days after lateral fluid-percussion TBI in rats. Protein homogenates of brain tissue were separated on 7.5% sodium dodecyl sulfate (SDS)-polyacrylamide gels, transferred to nitrocellulose, and incubated with either antibodies recognizing both mGluR2 and mGluR3 or antibodies against mGluR5. Equivalent protein loading of lanes was confirmed by using beta-actin antibody. Immunoreactive proteins were revealed with enhanced chemiluminescence and relative optical density of Western blots quantified by computerized image analysis. At 7 days after TBI, mGluR2/3 immunobinding ipsilateral to the fluid-percussion injury was reduced by 28% in hippocampus and 25% in cortex in comparison with the contralateral hemisphere (p < .05). mGluR5 immunobinding ipsilateral to the fluid-percussion injury was reduced by 20% in hippocampus and 27% in cortex (p < .05). At 15 days after TBI, the decreases in immunobinding were no longer significant. Immunohistochemical staining with the same antibodies revealed density changes congruent with the Western blot results. These data suggest that TBI produces an alteration in receptor protein expression that spontaneously recovers by 15 days after injury.  相似文献   

13.
Microtubule-associated protein 2 (MAP2) is important for microtubule stability and neural plasticity and appears to be among the most vulnerable of the cytoskeletal proteins under conditions of neuronal injury. To evaluate the acute effects of moderate severity traumatic brain injury on MAP2, anesthetized, adult male C57BL/6 mice were subjected to controlled cortical impact brain injury. At 5 min, 15 min, 90 min, 4 h, and 24 h following brain injury (n = 4 injured and n = 1 sham-injured per time point), mice were sacrificed and immunohistochemistry was performed on coronal brain sections. Profound decreases in MAP2 immunolabeling were observed in the ipsilateral cortex and hippocampal dentate hilus at 5 min postinjury and in the ipsilateral hippocampal CA3 area by 4 h postinjury. Decreases in MAP2 labeling occurred prior to notable neuronal cell loss. Interestingly, cortical MAP2 immunoreactivity returned by 90 min postinjury, but the recovery was short-lived within the core in comparison to the periphery of the impact site. Partial restoration of MAP2 immunoreactivity was also observed in the ipsilateral CA3 and dentate hilus by 24 h postinjury. Our data corroborate that MAP2 is an early and sensitive marker for neuronal damage following traumatic brain injury. Acute MAP2 loss, however, may not necessarily presage neuronal death, even following moderate severity traumatic brain injury. Rather, to the best of our knowledge, our data are the first to suggest an intrinsic ability of the traumatized brain for MAP2 recovery after injury of moderate severity.  相似文献   

14.
Previous studies have demonstrated that traumatic brain injury (TBI) increases the vulnerability of the brain to an acute episode of hypoxia-ischemia. The objective of the present study was to determine whether TBI alters the vulnerability of the brain to a delayed episode of ischemia and, if so, to identify contributing mechanisms. Sprague-Dawley rats were subjected to lateral fluid-percussion (FP) brain injury (n = 14) of moderate severity (2.3-2.5 atm), or sham-injury (n = 12). After recovery for 24 h, all animals underwent an 8-min episode of forebrain ischemia, followed by survival for 6 days. Ischemic damage in the hippocampus and cerebral cortex of the FP-injured hemisphere was compared to that in the contralateral hemisphere and to that in sham-injured animals. Remarkably, the number of surviving CA(1) neurons in the middle and lateral segments of the hippocampus in the FP-injured hemisphere was significantly greater than that in the contralateral hemisphere and sham-injured animals (p < 0.05). Likewise, in the cerebral cortex the number of damaged neurons tended to be lower in the FP-injured hemisphere than in the contralateral hemisphere. These results suggest that TBI decreased the vulnerability of the brain to a delayed episode of ischemia. To determine whether TBI triggers protective metabolic alterations, glycogen levels were measured in cerebral cortex and hippocampus in additional animals 24 h after FP-injury (n = 13) or sham-injury (n = 7). Cortical glycogen levels in the ipsilateral hemisphere increased to 12.9 +/- 6.4 mmol/kg (mean +/- SD), compared to 6.4 +/- 1.8 mmol/kg in the opposite hemisphere and 5.7 +/- 1.3 mmol/kg in sham-injured animals (p < 0.001). Similarly, in the hippocampus glycogen levels in the FP-injured hemisphere increased to 13.4 +/- 4.9 mmol/kg, compared to 8.1 +/- 2.4 mmol/kg in the contralateral hemisphere (p < 0.004) and 6.2 +/- 1.5 mmol/kg in sham-injured animals (p < 0.001). These results demonstrate that TBI triggers a marked accumulation of glycogen that may protect the brain during ischemia by serving as an endogenous source of metabolic energy.  相似文献   

15.
The present study examined the neuropathology of the lateral controlled cortical impact (CCI) traumatic brain injury (TBI) model in mice utilizing the de Olmos silver staining method that selectively identifies degenerating neurons and their processes. The time course of ipsilateral and contralateral neurodegeneration was assessed at 6, 24, 48, 72, and 168 h after a severe (1.0 mm, 3.5 M/sec) injury in young adult CF-1 mice. At 6 hrs, neurodegeneration was apparent in all layers of the ipsilateral cortex at the epicenter of the injury. A low level of degeneration was also detected within the outer molecular layer of the underlying hippocampal dentate gyrus and to the mossy fiber projections in the CA3 pyramidal subregions. A time-dependent increase in cortical and hippocampal neurodegeneration was observed between 6 and 72 hrs post-injury. At 24 h, neurodegeneration was apparent in the CA1 and CA3 pyramidal and dentate gyral granule neurons and in the dorsolateral portions of the thalamus. Image analysis disclosed that the overall volume of ipsilateral silver staining was maximal at 48 h. In the case of the hippocampus, staining was generalized at 48 and 72 h, indicative of damage to all of the major afferent pathways: perforant path, mossy fibers and Schaffer collaterals as well as the efferent CA1 pyramidal axons. The hippocampal neurodegeneration was preceded by a significant increase in the levels of calpain-mediated breakdown products of the cytoskeletal protein alpha-spectrin that began at 6 h, and persisted out to 72 h post-injury. Damage to the corpus callosal fibers was observed as early as 24 h. An anterior to posterior examination of neurodegeneration showed that the cortical damage included the visual cortex. At 168 h (7 days), neurodegeneration in the ipsilateral cortex and hippocampus had largely abated except for ongoing staining in the cortical areas surrounding the contusion lesion and in hippocampal mossy fiber projections. Callosal and thalamic neurodegeneration was also very intense. This more complete neuropathological examination of the CCI model shows that the associated damage is much more widespread than previously appreciated. The extent of ipsilateral and contralateral neurodegeneration provides a more complete anatomical correlate for the cognitive and motor dysfunction seen in this paradigm and suggests that visual disturbances are also likely to be involved in the post-CCI neurological deficits.  相似文献   

16.
Primary insults to the brain can initiate glutamate release that may result in excitotoxicity followed by neuronal cell death. This secondary process is mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in vivo and requires new gene expression. Neuronal cyclooxygenase-2 (COX2) expression is upregulated following brain insults, via glutamatergic and inflammatory mechanisms. The products of COX2 are bioactive prostanoids and reactive oxygen species that may play a role in neuronal survival. This study explores the role of neuronal COX2 in glutamate excitotoxicity using cultured cerebellar granule neurons (day 8 in vitro). Treatment with excitotoxic concentrations of glutamate or kainate transiently induced COX2 mRNA (two- and threefold at 6 h, respectively, p < 0.05, Dunnett) and prostaglandin production (five- and sixfold at 30 min, respectively, p < 0.05, Dunnett). COX2 induction peaked at toxic concentrations of these excitatory amino acids. Surprisingly, NMDA, L-quisqualate, and trans-ACPD did not induce COX2 mRNA at any concentration tested. The glutamate receptor antagonist NBQX (5 microM, AMPA/kainate receptor) completely inhibited kainate-induced COX2 mRNA and partially inhibited glutamate-induced COX2 (p < 0.05, Dunnett). Other glutamate receptor antagonists, such as MK-801 (1 microM, NMDA receptor) or MCPG (500 microM, class 1 metabotropic receptors), partially attenuated glutamate-induced COX2 mRNA. These antagonists all reduced steady-state COX2 mRNA (p < 0.05, Dunnett). To determine whether COX2 might be an effector of excitotoxic cell death, cerebellar granule cells were pretreated (24 h) with the COX2-specific enzyme inhibitor, DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2((5)H)-furanone) prior to glutamate challenge. DFU (1 to 1000 nM) completely protected cultured neurons from glutamate-mediated neurotoxicity. Approximately 50% protection from NMDA-mediated neurotoxicity, and no protection from kainate-mediated neurotoxicity was observed. Therefore, glutamate-mediated COX2 induction contributes to excitotoxic neuronal death. These results suggest that glutamate, NMDA, and kainate neurotoxicity involve distinct excitotoxic pathways, and that the glutamate and NMDA pathways may intersect at the level of COX2.  相似文献   

17.
This study examined whether NMDA-stimulated cyclic GMP levels were altered at two different time points following lateral fluid percussion injury. At 60 min and 15 days postinjury, the left and right hippocampi were dissected and chopped into mini-prisms. Each hippocampus was divided into five equal parts and incubated with either the phosphodiesterase inhibitor IBMX (3-isobutyl-1-methylxanthine, 500 microM) alone, IBMX and N-methyl-D-aspartic acid (NMDA) OR IBMX, NMDA, and glycine (10 MM). Two concentrations of NMDA were used: 500 or 1,000 microM. Tissues were then assayed for levels of cyclic GMP. Results indicated that there were no changes in basal levels of cyclic GMP at either postinjury time point. At 60 min postinjury, there were no significant main effects for injury or drug concentration. There was a significant injury x side interaction effect with increased levels of NMDA-stimulated cyclic GMP in the hippocampus ipsilateral to the injury impact and decreased cyclic GMP levels in the contralateral hippocampus. There were no significant alterations in NMDA-stimulated cyclic GMP levels at 15 days postinjury. The data from this study indicated that NMDA-stimulated cyclic GMP accumulation is differentially altered in the hippocampus ipsilateral and contralateral to the site of the injury at 1 h after injury, but is normalized by 15 days postinjury. These findings implicate NMDA-mediated intracellular signaling processes in the acute excitotoxic response to injury.  相似文献   

18.
Understanding tissue alterations at an early stage following traumatic brain injury (TBI) is critical for injury management and limiting severe consequences from secondary injury. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) at 2 and 4?h following a controlled cortical impact injury in the rat brain using a 7.0 Tesla animal MRI system and compared profiles to baseline. Significant decrease in mean diffusivity (MD) and increased fractional anisotropy (FA) was found near the impact site (hippocampus and bilateral thalamus; p<0.05) immediately following TBI, suggesting cytotoxic edema. Although the DTI parameters largely normalized on the contralateral side by 4?h, a large inter-individual variation was observed with a trend towards recovery of MD and FA in the ipsilateral hippocampus and a sustained elevation of FA in the ipsilateral thalamus (p<0.05). Significant reduction in metabolite to total creatine ratios of N-acetylaspartate (NAA, p=0.0002), glutamate (p=0.0006), myo-inositol (Ins, p=0.04), phosphocholine and glycerophosphocholine (PCh+GPC, p=0.03), and taurine (Tau, p=0.009) were observed ipsilateral to the injury as early as 2?h, while glutamine concentration increased marginally (p=0.07). These metabolic alterations remained sustained over 4?h after TBI. Significant reductions of Ins (p=0.024) and Tau (p=0.013) and marginal reduction of NAA (p=0.06) were also observed on the contralateral side at 4?h after TBI. Overall our findings suggest significant microstructural and metabolic alterations as early as 2?h following injury. The tendency towards normalization at 4?h from the DTI data and no further metabolic changes at 4?h from MRS suggest an optimal temporal window of about 3?h for interventions that might limit secondary damage to the brain. Results indicate that early assessment of TBI patients using DTI and MRS may provide valuable information on the available treatment window to limit secondary brain damage.  相似文献   

19.
In models of focal cerebral ischemia, adenoviral gene transfer is often attenuated or delayed versus naive. After controlled cortical impact (CCI)-induced traumatic brain injury in mice, CA1 and CA3 hippocampus exhibit delayed neuronal death by 3 days, with subsequent near complete loss of hippocampus by 21 days. We hypothesized that adenoviral-mediated expression of the reporter gene beta-Galactosidase (beta-Gal) in hippocampus would be attenuated after CCI in mice. C57BL6 mice (n = 16) were subjected to either CCI to left parietal cortex or sham (burr hole). Adenovirus carrying the beta-Gal gene (AdlacZ; 1 x 10(9) plaque-forming units [pfu]/mL) was then injected into left dorsal hippocampus. At 24 or 72 h, beta-Gal expression was quantified (mU/mg protein). Separate mice (n = 10) were used to study beta-Gal spatial distribution in brain sections. Beta-Gal expression in left hippocampus was similar in shams at 24 h (48.4 +/- 4.1) versus 72 h (68.8 +/- 8.8, not significant). CCI did not reduce beta-Gal expression in left hippocampus (68.8 +/- 8.8 versus 88.1 +/- 7.0 at 72 h, sham versus CCI, not significant). In contrast, CCI reduced beta-Gal expression in right (contralateral) hippocampus versus sham (p < 0.05 at both 24 and 72 h). Beta-Gal was seen in many cell types in ipsilateral hippocampus, including CA3 neurons. Despite eventual loss of ipsilateral hippocampus, adenovirus-mediated gene transfer was surprisingly robust early after CCI providing an opportunity to test novel genes targeting delayed hippocampal neuronal death.  相似文献   

20.
Treatment window for hypothermia in brain injury.   总被引:15,自引:0,他引:15  
OBJECT: The goal of this study was to evaluate the therapeutic window for hypothermia treatment following experimental brain injury by measuring edema formation and functional outcome. METHODS: Traumatic brain injury (TBI) was produced in anesthetized rats by using cortical impact injury. Edema was measured in the ipsilateral and contralateral hemispheres by subtracting dry weight from wet weight, and neurological function was assessed using a battery of behavioral tests 24 hours after TBI. In injured rats, it was found that brain water levels were elevated at I hour postinjury, compared with those in sham-injured control animals, and that edema peaked at 24 hours and remained elevated for 4 days. Hypothermia (3 hours at 30 degrees C) induced either immediately after TBI or 60 minutes after TBI significantly reduced early neurological deficits. Delay of treatment by 90 or 120 minutes postinjury did not result in this neurological protection. Immediate administration of hypothermia also significantly decreased the peak magnitude of edema at 24 hours and 48 hours postinjury, compared with that in normothermic injured control animals. When delayed by 90 minutes, hypothermia did not affect the pattern of edema formation. CONCLUSIONS: When hypothermia was administered immediately or 60 minutes after TBI, injured rats showed an improvement in functional outcome and a decrease in edema. Delayed hypothermia treatment had no effect on functional outcome or on edema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号