首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The peripheral blood progenitor cell (PBPC) mobilization capacity of EPO in association with either G-CSF or sequential GM-CSF/G-CSF was compared in a randomized fashion after epirubicin, paclitaxel, and cisplatin (ETP) chemotherapy. STUDY DESIGN AND METHODS: Forty patients with stage IIIB, IIIC, or IV ovarian carcinoma were enrolled in this randomized comparison of mobilizing capacity and myelopoietic effects of G-CSF + EPO and GM-/G-CSF + EPO following the first ETP chemotherapy treatment. After ETP chemotherapy (Day 1), 20 patients received G-CSF 5 microg per kg per day from Day 2 to Day 13 and 20 patients received GM-CSF 5 microg per kg per day from Day 2 to Day 6 followed by G-CSF 5 microg per kg per day from Day 7 to Day 13. EPO (150 IU per kg) was given every other day from Day 2 to Day 13 to all patients in both arms of the study. Apheresis (two blood volumes) was performed during hematologic recovery. RESULTS: The magnitude of CD34+ cell mobilization and the abrogation of patients' myelosuppression were comparable in both study arms; however, GM-/G-CSF + EPO patients had significantly higher CD34+ yields because of a higher CD34+ cell collection efficiency (57.5% for GM-/G-CSF + EPO and 46.3% for G-CSF + EPO patients; p = 0.0009). Identical doses of PBPCs mobilized by GM-/G-CSF + EPO and G-CSF + EPO drove comparable hematopoietic recovery after reinfusion in patients treated with identical high-dose chemotherapy. CONCLUSION: The sequential administration of GM-CSF and G-CSF in combination with EPO is feasible and improves the PBPC collection efficiency after platinum-based intensive polychemotherapy, associating high PBPC mobilization to high collection efficiency during apheresis.  相似文献   

2.
BACKGROUND: The optimal time for postchemotherapy granulocyte-colony stimulating factor (G-CSF) administration before peripheral blood stem and progenitor cell (PBPC) collection is not well defined. The impact of G-CSF scheduling on the number of CD34+ cells collected by leukapheresis from 65 patients with malignant disease was studied retrospectively. STUDY DESIGN AND METHODS: Chemotherapy was performed on Days 1 and 2 and was followed by G-CSF to mobilize PBPCs. In Group 1, 30 patients received the first dose of G-CSF immediately after the end of chemotherapy, as commonly recommended. In Group 2, 35 patients received the first G-CSF dose after the end of chemotherapy (Days 7 or 8). RESULTS: No difference was observed between the two groups in white cell recovery and the median number of CD34+ cells harvested. The number of leukapheresis procedures necessary to obtain the minimal number of 3 x 10(6) CD34+ cells per kg was the same. The proportion of patients with a failure of PBPC collection was similar, and G-CSF consumption was reduced in Group 2 without increasing infectious risks. CONCLUSION: Early administration of G-CSF after chemotherapy appears not to be a prerequisite for satisfactory PBPC collection. This approach could allow significant savings in terms of medical cost. A randomized and prospective study would be necessary, however, to assess the validity of these conclusions.  相似文献   

3.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte-colony-stimulating factor (G-CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 microg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G-CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies. STUDY DESIGN AND METHODS: Various doses of G-CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G-CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G-CSF (median, 3.6 [range, 2.8-4.6] microg/kg/day). Group 2 included 45 patients who received a standard G-CSF dose of 6.0 (5.5-8. 1) microg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens. RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group.The number of leukapheresis procedures necessary to obtain a minimum of 3 x 10(6) CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups. CONCLUSION: The administration of low-dose G-CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection.This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

4.
BACKGROUND: Mobilization with chemotherapy and G-CSF may result in poor peripheral blood HPC collection, yielding <2 x 10(6) CD34+ cells per kg or <10 x 10(4) CFU-GM per kg in leukapheresis procedures. The best mobilization strategy for oncology patients remains unclear. STUDY DESIGN AND METHODS: In 27 patients who met either the CD34 (n = 3) or CFU-GM (n = 2) criteria or both (n = 22), the results obtained with two successive strategies-that is, chemotherapy and G-CSF at 10 microg per kg (Group 1, n = 7) and G-CSF at 10 microg per kg alone (Group 2, n = 20) used for a second mobilization course-were retrospectively analyzed. The patients had non-Hodgkin's lymphoma (5), Hodgkin's disease (3), multiple myeloma (5), chronic myeloid leukemia (1), acute myeloid leukemia (1), breast cancer (6), or other solid tumors (6). Previous therapy consisted of 10 (1-31) cycles of chemotherapy with additional chlorambucil (n = 3), interferon (n = 3), and radiotherapy (n = 7). RESULTS: The second collection was undertaken a median of 35 days after the first one. In Group 1, the results of the two mobilizations were identical. In Group 2, the number of CD34+ cells per kg per apheresis (0.17 [0.02-0.45] vs. 0.44 [0.11-0.45], p = 0. 00002), as well as the number of CFU-GM (0.88 [0.00-13.37] vs. 4.19 [0.96-21.61], p = 0.00003), BFU-E (0.83 [0.00-12.72] vs. 8.81 [1. 38-32.51], p = 0.00001), and CFU-MIX (0.10 [0.00-1.70] vs. 0.56 [0. 00-2.64], p = 0.001134) were significantly higher in the second peripheral blood HPC collection. However, yields per apheresis during the second collection did not significantly differ in the two groups. Six patients in Group 1 and 18 in Group 2 underwent transplantation, and all but one achieved engraftment, with a median of 15 versus 12 days to 1,000 neutrophils (NS), 22 versus 16 days to 1 percent reticulocytes (NS), and 26 versus 26 days to 20,000 platelets (NS), respectively. However, platelet engraftment was particularly delayed in many patients. CONCLUSION: G-CSF at 10 microg per kg alone may constitute a valid alternative to chemotherapy and G-CSF to obtain adequate numbers of peripheral blood HPCs in patients who previously failed to achieve mobilization with chemotherapy and G-CSF. This strategy should be tested in prospective randomized trials.  相似文献   

5.
BACKGROUND: Defining the optimum regimen and time for repeat peripheral blood progenitor cell mobilization would have important clinical applications. STUDY DESIGN AND METHODS: Remobilization with SCF and G-CSF at 2 weeks after an initial mobilization in mice and at 2 or 4 weeks after an initial mobilization in nonhuman primates was examined. In mice, competitive repopulation assays were used to measure long-term progenitor cell-repopulating activity. In monkeys, mobilization of hematopoietic progenitor CFUs was used as a surrogate marker for progenitor cell-repopulating ability. RESULTS: Efficacy of progenitor cell remobilization differed in the two animal species. In mice, peripheral blood progenitor cell-repopulating ability with repeat mobilization at 2 weeks was 70 percent of that with the initial mobilization. In monkeys, there was no significant difference in peripheral blood progenitor cell mobilization between the initial and the repeat mobilizations at 2 weeks. In mobilizations separated by 4 weeks, however, peripheral blood progenitor cell mobilization was higher than that with initial mobilizations. CONCLUSION: In animal models, mobilization of peripheral blood progenitor cells with remobilization after a 2-week interval is similar to or moderately decreased from that with the initial mobilization. Progenitor cell collection at this time point may be useful in certain clinical circumstances. A 4-week interval between remobilizations may be preferable. Clinical trials in humans would be useful to clarify these issues.  相似文献   

6.
Liles WC  Rodger E  Dale DC 《Transfusion》2000,40(6):642-644
BACKGROUND: The clinical utility of neutrophil (polymorphonuclear leukocyte, PMN) transfusion therapy has been compromised, in part, by the inability to obtain sufficient quantities of functional neutrophils from donors. Mobilization of PMNs in the peripheral blood of normal volunteers has been shown to be superior when G-CSF is administered in conjunction with dexamethasone to that when either agent is administered alone. The current study was conducted to determine the optimal dosages of G-CSF and dexamethasone to be administered to donors in a granulocyte transfusion program. STUDY DESIGN AND METHODS: Five normal subjects were randomly assigned to each of the following single-dose regimens over five consecutive weeks: 1) subcutaneous (SC) G-CSF at 600 microg and oral (PO) dexamethasone at 8 mg; 2) SC G-CSF at 450 microg and PO dexamethasone at 8 mg; 3) SC G-CSF at 450 microg and PO dexamethasone at 12 mg; 4) SC G-CSF at 450 microg; and 5) PO dexamethasone at 12 mg. Venous blood was collected at 0, 6, 12, and 24 hours after drug administration for determination of absolute neutrophil count (ANC). Side effects of drug administration were recorded by using a standardized symptom questionnaire. RESULTS: Maximal ANC was achieved at 12 hours after administration of drugs under each regimen. All four regimens containing G-CSF caused greater than 10-fold increases in the ANC. When administered in conjunction with dexamethasone, G-CSF resulted in statistically similar PMN mobilization at dosages of 450 microg and 600 microg. The combined single-dose regimen of SC G-CSF at 450 microg and PO dexamethasone at 8 mg increased the mean ANC from a baseline value of 2800 per microL to 37,900 per microL at 12 hours after administration. This regimen was well tolerated by the normal volunteers. CONCLUSION: In a single-dose format designed for clinical granulocyte transfusion programs, optimal PMN mobilization can be achieved in normal donors with a combined regimen of SC G-CSF at 450 microg, and PO dexamethasone at 8 microg.  相似文献   

7.
BACKGROUND: A clinical study was performed to evaluate the peripheral blood progenitor cell (PBPC) collection, transfusion, and engraftment characteristics associated with use of a blood cell separator (Amicus, Baxter Healthcare). STUDY DESIGN AND METHODS: Oncology patients (n = 31) scheduled for an autologous PBPC transplant following myeloablative therapy were studied. PBPCs were mobilized by a variety of chemotherapeutic regimens and the use of G-CSF. As no prior studies evaluated whether PBPCs collected on the Amicus separator would be viable after transfusion, to ensure patient safety, PBPCs were first collected on another cell separator (CS-3000 Plus, Baxter) and stored as backup. The day after the CS-3000 Plus collections were completed, PBPC collections intended for transfusion were performed using the Amicus instrument. For each transplant, >2.5 x 10(6) CD34+ PBPCs per kg of body weight were transfused. RESULTS: Clinical data collected on the donors immediately before and after PBPC collection with the Amicus device were comparable to donor data similarly obtained for the CS-3000 Plus collections. While the number of CD34+ cells and the RBC volume in the collected products were equivalent for the two devices, the platelet content of the Amicus collections was significantly lower than that of the CS-3000 Plus collections (4.35 x 10(10) platelets/bag vs. 6.61 x 10(10) platelets/bag, p<0.05). Collection efficiencies for CD34+ cells were 64 +/- 23 percent for the Amicus device and 43 +/- 14 percent for the CS-3000 Plus device (p<0.05). The mean time to engraftment for cells collected via the Amicus device was 8.7 +/- 0.7 days for >500 PMNs per microL and 9.7 +/- 1.5 days to attain a platelet count of >20,000 per microL-equivalent to data in the literature. No CS-3000 Plus backup cells were transfused and no serious adverse events attributable to the Amicus device were encountered. CONCLUSIONS: The mean Amicus CD34+ cell collection efficiency was better (p<0.05) than that of the CS-3000 Plus collection. Short-term engraftment was durable. The PBPCs collected with the Amicus separator are safe and effective for use for autologous transplant patients requiring PBPC rescue from high-dose myeloablative chemotherapy.  相似文献   

8.
BACKGROUND: Limited information is available on the mobilization kinetics of autologous PBPCs after induction with various chemotherapy regimens. With PBPC mobilization in patients with breast cancer used as a model for chemotherapy-induced PBPC recruitment, the kinetics of progenitor cells mobilized either with cyclophosphamide (CY) or epirubicin/paclitaxel (EPI-TAX) followed by the administration of G-CSF was compared. STUDY DESIGN AND METHODS: The study included a total of 86 patients with breast cancer (stage II-IV) receiving either CY (n = 39) or EPI-TAX (n = 47), both followed by G-CSF support. The progenitor cell content in peripheral blood and apheresis components was monitored by flow cytometric enumeration of CD34+ cells. PBPC collection was started when the threshold of >20 x 10(6) CD34+ cells per L of peripheral blood was reached. RESULTS: The PBPC collection was begun a median of 9 days after the administration of EPI-TAX followed by G-CSF support, as compared to a median of 13 days after mobilization with CY plus G-CSF. After treatment with CY, the total numbers of PBPCs peaked on Day 1 of apheresis, and they rapidly declined thereafter. In contrast, treatment with EPI-TAX followed by G-CSF administration led to a steady mobilization of CD34+ cells during leukapheresis. The difference in the mobilization patterns with CY and EPI-TAX resulted in a greater yield of CD34+ cells per L of processed blood volume. Compared to EPI-TAX, mobilization with CY required the overall processing of 30 percent less whole-blood volume to reach the target yield of > or = 10 x 10(6) CD34+ cells per kg of body weight. After a median of three apheresis procedures, however, both CY+G-CSF and EPI-TAX+G-CSF were equally effective in obtaining this target yield. CONCLUSION: These results imply that specific PBPC mobilization as part of a given chemotherapy regimen should be taken into consideration before the planning of a PBPC harvest.  相似文献   

9.
BACKGROUND: The impact of amifostine on PBPC mobilization with paclitaxel and ifosfamide plus G-CSF was assessed. STUDY DESIGN AND METHODS: Forty patients with a median age of 34 years (range, 19-53) who had germ cell tumor were evaluated for high-dose chemotherapy. Patients were randomly assigned to receive either a single 500-mg dose of amifostine (Group A, n = 20) or no amifostine (Group B, n = 20) before mobilization chemotherapy with paclitaxel (175 mg/m(2)) given over 3 hours and ifosfamide (5 g/m(2)) given over 24 hours (TI) on Day 1. G-CSF at 10 microg per kg per day was given subsequent to TI with or without amifostine from Day 3 until the end of leukapheresis procedures. RESULTS: In 2 (10%) of 20 patients receiving amifostine and 3 (15%) of 20 patients not receiving it, no PBPC separation was performed because of mobilization failure. No significant differences were observed in the study arms with regard to the time from chemotherapy until first PBPC collection or the number of apheresis procedures needed to harvest more than 2.5 x 10(6) CD34+ cells per kg. Furthermore, leukapheresis procedures yielded comparable doses of CD34+ cells per kg (3.4 x 10(6) vs. 3.6 x 10(6); p = 0.82), MNCs per kg (2.7 x 10(8) vs. 2.6 x 10(8); p = 0.18), and CFU-GM per kg (15.9 x 10(4) vs. 19.3 x 10(4); p = 0.20). Patients in Group A had higher numbers of circulating CD34+ cells on Day 10 (103.0/microL vs. 46.8/microL; p = 0.10) and on Day 11 (63.0/microL vs.14.3/microL; p = 0.04) than did patients in Group B. CONCLUSION: Administration of a single dose of amifostine before chemotherapy with TI mobilized higher numbers of CD34 cells in the circulation, but did not enhance the overall collection efficiency in the present trial.  相似文献   

10.
BACKGROUND: The mechanism of HPC mobilization in humans is unclear. In this study, the relationship between PBPC mobilization and blood levels of G-CSF, endogenous cytokines (IL-8, SCF, thrombopoietin [TPO]), and the vascular cell adhesion molecule-1 (VCAM-1) was analyzed in patients with malignancy who were undergoing a PBPC mobilization regimen. STUDY DESIGN AND METHODS: Fifty-four patients with multiple myeloma (MM) and 29 with breast cancer (BC) underwent a mobilization regimen combining conventional chemotherapy and G-CSF up to the last day of PBPC collection. The CD34+ cell count was determined on each day when leukapheresis was scheduled. Venous blood samples (n = 117) were drawn before apheresis for CD34+ cell count (flow cytometry) and cytokine (G-CSF, IL-8, SCF, TPO) and VCAM-1 measurements (ELISA). RESULTS: In multiple regression analysis, SCF was a significant determinant of CD34+ cell levels in BC patients (R = 0.50, p = 0.03) and of VCAM-1 levels in MM patients (R = 0.32, p = 0.02). SCF was negatively correlated with CD34+ cell count in patients with BC. SCF and VCAM-1 blood levels were correlated in MM and BC patients. CONCLUSION: SCF and VCAM-1 could play a role in PBPC mobilization in patients and could be useful measures by which to study patients undergoing a mobilization regimen.  相似文献   

11.
BACKGROUND: Information on the safety and efficacy of allogeneic peripheral blood progenitor cell (PBPC) collection in filgrastim-mobilized normal donors is still limited. STUDY DESIGN AND METHODS: The PBPC donor database from a 42-month period (12/94-5/98) was reviewed for apheresis and clinical data related to PBPC donation. Normal PBPC donors received filgrastim (6 microg/kg subcutaneously every 12 hours) for 3 to 4 days and subsequently underwent daily leukapheresis. The target collection was > or =4 x 10(6)CD34+ cells per kg of recipient's body weight. RESULTS: A total of 350 donors were found to be evaluable. Their median age was 41 years (range, 4-79). Their median preapheresis white cell count was 42.8 x 10(9) per L (range, 18.3-91.6). Of these donors, 17 (5%) had inadequate peripheral venous access. Leukapheresis could not be completed because of apheresis-related adverse events in 2 donors (0.5%). Of the 324 donors evaluable for apheresis yield data, 221 (68%) reached the collection target with one leukapheresis. The median CD34+ cell dose collected (first leukapheresis) was 462 x 10(6) (range, 29-1463).The main adverse events related to filgrastim administration in donors evaluable for toxicity (n = 341) were bone pain (84%), headache (54%), fatigue (31%), and nausea (13%). These events were rated as moderate to severe (grade 2-3) by 171 (50%) of the donors. In 2 donors (0.5%), they prompted the discontinuation of filgrastim administration. CONCLUSION: PBPC apheresis for allogeneic transplantation is safe and well tolerated. It allows the collection of an "acceptable" PBPC dose in most normal donors with one leukapheresis, with minimal need for invasive procedures.  相似文献   

12.
目的 多中心临床研究糖基化的G CSF联合中剂量环磷酰胺 (Cy)或增大针对性联合化疗中Cy剂量动员自体外周血造血祖细胞的效果。方法 北京地区 4所医院 30例患者纳入方案。其中非霍奇金淋巴瘤 (NHL) 2 1例 ,霍奇金病 (HD) 1例 ,乳腺癌 7例及卵巢癌 1例。采用中剂量Cy或以增大Cy剂量为基础的针对性化疗联合G CSF动员自体外周血造血祖细胞 (APBPC)。在化疗后白细胞计数达最低值时开始应用G CSF。当白细胞升至 5 .0× 10 9 L以上时 ,用血细胞分离机采集。结果 Cy平均实际使用剂量为 3.95g(2 .3g m2 ) ;G CSF的剂量分别为 2 5 0 μg d(2 9例 ) ,5 0 0 μg d(1例 ) ,实际剂量3 1~ 6 .4 μg·kg- 1 ·d- 1 。 30例患者平均采集 2 .7次 ,其中 13例采集 2次 ,14例采集 3次 ,3例采集 4次。达到目标采集量单个核细胞≥ 6× 10 8 kg为 2 1例 (70 .0 % ) ,CD34 + 细胞≥ 2× 10 6 kg为 30例 (10 0 % ) ,CFU GM≥ 2× 10 5 kg为 2 4例中 15例 (6 2 .5 % )。 1次采集后 2 7例 (90 .0 % )、2次采集后 2 9例 (96 .7% )患者达到了CD34+ 细胞数目标采集量。结论 G CSF 2 5 0 μg d联合中剂量Cy或以增大Cy剂量为基础的针对性化疗可采集到足够数量的APBPC。  相似文献   

13.
化疗加G-CSF和GM-CSF联合动员自体外周血干细胞   总被引:6,自引:1,他引:5  
目的 探讨化疗加粒细胞集落刺激因子 (G CSF)和粒 巨噬细胞集落刺激因子 (GM CSF)联合动员自体外周血干细胞 (APBSC)的效果。方法 卡铂 (CBP) 35 0mg m2 ,第 1天静滴 ;足叶乙甙(Vp16 ) 35 0mg m2 ,第 1~第 3天静滴 ;白细胞降至最低点又回升到 (2 .4~ 6 .4)× 10 9 L时 ,皮下注射G CSF 5 μg·kg- 1 ·d- 1 (早 6∶0 0 ) GM CSF 5 μg·kg- 1 ·d- 1 (晚 6∶0 0 ) 地塞米松 5mg d(采集日 10mg d)直到采集结束前 1天 ;白细胞上升到 (2 9.80± 5 .98)× 10 9 L ,开始用CS30 0 0plus血细胞分离机连续 2d采集APBSC。结果  2 0例患者连续采集APBSC 2次 ,共采集到MNC(5 .93± 1.6 2 )× 10 8 kg ,CD34 细胞 (2 3.10± 11.5 3)× 10 6 kg ,CFU GM(3.44± 2 .85 )× 10 5 kg。无严重不良反应。 9例 10次自体外周血干细胞移植(APBSCT)造血功能均获满意重建。结论 以化疗联合G CSF和GM CSF能高效、安全地动员APBSC ,1次动员采集 2次可满足 1~ 2次的APBSCT。  相似文献   

14.
Factors influencing mobilization and engraftment of PBSC were analyzed in 38 patients with metastatic breast cancer who were undergoing PBSC transplantation. None of these patients had had previous chemotherapy for metastatic disease. PBSC were mobilized with cyclophosphamide (CY) and G-CSF (n = 21) or CY and etoposide (CY-etoposide) and G-CSF (n = 17). All received cyclophosphamide 6000 mg/m2, thiotepa 500 mg/m2, and carboplatin 800 mg/m2 (CTCb) as preparative regimen. PBSC infusion was followed by G-CSF at 5 microg/kg in 30 patients or 10 microg/kg in 8 patients. A median number of 27 x 10(6) CD34+ cells/kg was obtained with a median of four aphereses. Previous chemotherapy, radiation therapy, marrow disease, time from previous chemotherapy to mobilization, and type of mobilization regimen did not have a statistically significant effect on collection efficiency (CE). CE was defined as the total number of CD34+ collected/number of collections. Engraftment was rapid, with patients reaching a neutrophil count of 0.5 x 10(9)/L a median of 9 days (range 7-23) and a platelet count of 20 x 10(9)/L a median of 12 days (range 8-28) after transplantation. Shorter times to platelet recovery were associated with a higher number of CD34+ cells infused (p = 0.012), CY mobilization (p = 0.033), and a lower number of prior chemotherapy cycles (p = 0.022). When the number of CD34+ cells was included in the proportional hazard model, no other variables were found to be significant predictors of platelet engraftment. Time to neutrophil recovery was negatively associated with the dose of G-CSF used after transplantation (p = 0.036) CD34 cell dose is an important predictor of engraftment kinetics. A posttransplant dose of G-CSF improves neutrophil recovery. For patients with metastatic breast cancer and no previous chemotherapy for metastatic disease, we have no evidence for a difference between CY and CY-Etoposide as the mobilization regimen.  相似文献   

15.
BACKGROUND: The transplantation of autologous peripheral blood progenitor cells (PBPCs) after high-dose chemotherapy is a valuable therapy for patients with hematologic and solid malignancies. Several methods are used for harvesting PBPCs. The efficiency of intermittent- and continuous-flow blood cell separators in collecting progenitor cells from the blood of patients undergoing myeloablative treatment for cancer was compared. STUDY DESIGN AND METHODS: PBPC components (n = 133) were obtained from 72 patients by leukapheresis with continuous-flow machines (Spectra, COBE; CS 3000 Plus, Baxter) and with an intermittent-flow machine (MCS 3P, Haemonetics). The data were analyzed retrospectively. Blood samples obtained from the patients before leukapheresis and samples of the leukapheresis components themselves were analyzed for their content of RBCs, WBCs, platelets, and CD34+ cells. RESULTS: The Spectra processed more than twice the blood volume in the shortest time (15 L in 178 min), whereas the Baxter CS 3000 Plus (10 L in 185 min) and the MCS 3P (4.8 L in 239 min) processed significantly smaller volumes in a longer time. The mean ACD consumption was 403 mL with the MCS 3P, 900 mL with the CS 3000 Plus, and 1000 mL with the Spectra. The product volumes were 50 mL (CS 3000 Plus), 69 mL (MCS 3P), and 166 mL (Spectra). In all groups, differences in the preapheresis hemograms were not significant, but the Spectra group had fewer CD34+ cells than the other groups. Despite this, the differences in the number of CD34+ cells in the leukapheresis components of all groups were without statistical significance. In the Spectra group, the collection of MNCs of 104 percent and CD34+ cells of 154 percent was significantly more efficient than that in the MCS 3P group (42.2% and 56%, respectively) or the CS 3000 Plus group (50.8% and 47.15%) as related to the patients' blood volume. CONCLUSION: PBPC collection can be performed successfully with continuous-flow and intermittent-flow blood cell separators. The Spectra had the best recovery of CD34+ cells within the shortest time. Leukapheresis with the MCS 3P is indicated if only a single venous access is available.  相似文献   

16.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte–colony-stimulating factor (G–CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 μg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G–CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies.
STUDY DESIGN AND METHODS: Various doses of G–CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G–CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G–CSF (median, 3.6 [range, 2.8-4.6] μg/kg/day). Group 2 included 45 patients who received a standard G–CSF dose of 6.0 (5.5-8.1) μg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens.
RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group. The number of leukapheresis procedures necessary to obtain a minimum of 3 × 106 CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups.
CONCLUSION: The administration of low-dose G–CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection. This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

17.
BACKGROUND: G-CSF with or without dexamethasone is becoming the standard agent for mobilizing granulocytes for transfusion. The purpose of this study was to determine if the toxicities of G--CSF with or without dexamethasone are offset by greater collection yields and to define the minimum interval that should separate sequential collections. STUDY DESIGN AND METHODS: Twenty donors were studied on three occasions. They were given either dexamethasone (8 mg, by mouth) plus a placebo injection, G--CSF (5 microg/kg, given subcutaneously) plus placebo capsules, or G--CSF plus dexamethasone. Granulocytes were collected by apheresis. A donor symptom survey was administered, and cell counts and blood chemistries were assessed before collection and 1, 2, 7, 14, 21, 28, and 35 days after collection. RESULTS: More granulocytes were collected when G--CSF was given than when dexamethasone was given (41.1 +/- 20.4 x 10(9) vs. 21.0 +/- 10.0 x 10(9); p<0.001), but the use of G--CSF plus dexamethasone produced the greatest yields (67.1 +/- 22.0 x 10(9); p<0.002). When the donors were given dexamethasone alone, 58 percent experienced at least one symptom, compared to 85 percent of those given G--CSF and 75 percent of those given G--CSF plus dexamethasone. In all three regimens, platelet counts fell 19 percent to 24 percent after collection and remained below baseline for 7 to 14 days. Granulocyte counts returned to baseline within 3 to 7 days, but, in all three regimens, a mild granulocytopenia occurred 21 days after collection. With each of the regimens, blood chemistries changed, but the changes were mild and most returned to baseline within 7 days; however, changes in albumin, bilirubin, and AST persisted until 28 days after collection. CONCLUSION: These results support the use of G--CSF plus dexamethasone in granulocyte donors. G--CSF plus dexamethasone resulted in greater granulocyte yields than either agent alone and was associated with donor symptoms and changes in blood cell counts and chemistries similar to those seen with G--CSF alone or dexamethasone alone. Granulocytes can be safely collected a second time after a 7-day interval; however, for regular donors, it may be best to separate collections by 4 weeks.  相似文献   

18.
BACKGROUND: Ex vivo expansion of cord blood (CB) hematopoietic stem and progenitor cells increases cell dose and may reduce the severity and duration of neutropenia and thrombocytopenia after transplantation. This study's purpose was to establish a clinically applicable culture system by investigating the use of cytokines, serum-free media, and autologous plasma for the expansion of CB cells and the engraftment of expanded product in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. STUDY DESIGN AND METHODS: Enriched CB CD34+ cells were cultured in four media (Iscove's modified Dulbecco's medium with FCS, Gibco; X-Vivo-10, BioWhittaker; QBSF-60, Quality Biological; and StemSpan SFEM, Stem Cell Technologies) with four cytokine combinations (thrombopoietin [TPO], SCF, Flt-3 ligand [FL] with and without G-CSF, and/or IL-6). The effect of autologous CB plasma was also investigated. The read-out measures were evaluated on Days 8 and 12. After expansion at the optimized condition, cultured cells were transplanted into sublethally irradiated NOD/SCID mice. The engraftment of human CD45+ cells and subsets in the bone marrow, spleen, and peripheral blood was determined. RESULTS: QBSF-60 or StemSpan SFEM supported high yields of early progenitors (CD34+ cells, 相似文献   

19.
BACKGROUND: The aim of this study was to assess the feasibility of freezing mobilized peripheral blood progenitor cell (PBPC) components at higher cell concentrations than are classically recommended for bone marrow. This approach might have potential benefits, such as lower cost of processing and storage and less risk of the complications associated with the transfusion of large component volumes and large quantities of DMSO. STUDY DESIGN AND METHODS: In the first phase, small aliquots of 19 apheresis components were cryopreserved at standard and higher cell concentrations (Aliquots A and B, respectively). In the second phase, 21 apheresis components were split into two bags each and frozen at standard (Bag A) and high (Bag B) cell concentrations. The differences in viability, cloning efficiency, and nucleated cell recovery in Bags A and B were examined. Finally, the hematologic recovery of 10 patients who underwent autologous transplantation with PBPC components frozen at high cell concentrations was analyzed. RESULTS: The median cell concentration at freezing was 94 (57-100) x 10(6) per mL and 291 (220-467) x 10(6) per mL for Aliquots A and B, respectively, and 90.9 (45.4-92) x 10(6) per mL and 332 (171-582) x 10(6) per mL for Bags A and B, respectively. The viability was significantly lower in samples frozen at higher cell concentrations: 92 versus 83 percent (p = 0.001) and 87 versus 77 percent (p<0.001) for Aliquots and Bags A and B, respectively. Significant differences were not observed in the recovery of total nucleated cells (102 vs. 101% and 98 vs. 105%) or the cloning efficiency after thawing (13 vs. 16% and 27 vs. 23%) for Aliquots and Bags A and B, respectively. The time to granulocyte engraftment >0.5 x 10(9) per L and platelet engraftment >20 x 10(9) per L was 9 (8-11) and 10.5 (7-21) days, respectively. CONCLUSION: The cryopreservation of PBPC components at standard concentrations and 3.3 (1.8-6.2)-fold cell concentrations has no adverse effect on the function of HPCs after thawing.  相似文献   

20.
BACKGROUND: The cytokine network in peripheral blood progenitor cell (PBPC) grafts may affect hematopoietic reconstitution or the risk of postransplant relapse of malignant disorders through effects on normal progenitor cells or contaminating malignant cells. Whether thrombopoietin (TPO), SCF, and platelet-secreted mediators are parts of this network was investigated. STUDY DESIGN AND METHODS: Peripheral blood and PBPC plasma samples were collected consecutively from patients with malignant disorders who underwent PBPC harvest. Blood samples were collected immediately before and after apheresis. Patients underwent mobilization by chemotherapy plus G-CSF, except for one patient who received only G-CSF. Plasma levels were also determined for healthy controls. RESULTS: PBPC grafts had greater levels of platelet-secreted platelet factor 4 (PF4), beta-thromboglobulin, and platelet-derived growth factor isoform AB, as compared with venous levels in patients and controls. Although platelet and PF4 levels in autografts were significantly correlated, the graft:blood ratio was higher for PF4 than for platelets. In both the patients' blood and the autografts, TPO levels were increased from the levels in normal controls. Blood and graft levels of SCF were within the normal range. CONCLUSION: The cytokine network of PBPC autografts includes increased levels of TPO and several platelet-derived mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号