首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma, such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety of inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll-like receptors 2 and 4 (TLR2 and TLR4) mediate the inflammatory response to lung injury. In this study, we used chimeric mice generated by adoptive bone marrow transfer between TLR2 or TLR4 and wild-type mice. We found that, in the lung, both bone marrow-derived and nonmyeloid cells contribute to TLR-dependent inflammatory responses after injury in a cell type-specific manner. We also show a novel TLR2-dependent injury mechanism that is associated with enhanced airway epithelial cell apoptosis and increased pulmonary FasL and Fas expression in the lungs from injured mice. Thus, in addition to cardiopulmonary physiological dysfunction, cell type-specific TLR and their differential response to injury may provide novel specific targets for management of patients with pulmonary contusion.  相似文献   

2.
Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We previously demonstrated that toll-like receptor 2 (TLR-2) participates in the inflammatory response to lung injury. We hypothesized that the TLR-4, in an MyD88-dependent manner, may also participate in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function, pulmonary neutrophil recruitment, and the systemic innate immune response. Comparisons were made between wild-type mice and mice deficient in TLR-4 or MyD88. We found TLR-4-dependent responses to pulmonary contusion that include hypoxemia, edema, and neutrophil infiltration. Increased expression of IL-6 and chemokine (C-X-C motif) ligand 1 in the bronchoalveolar lavage and serum was also dependent on TLR-4 activation. We further demonstrated that these responses to pulmonary contusion were dependent on MyD88, an adapter protein in the signal transduction pathway mediated by TLRs. These results show that TLRs have a primary role in the response to acute lung injury. Lung inflammation and systemic innate immune responses are dependent on TLR activation by pulmonary contusion.  相似文献   

3.
Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We report that Toll-like receptor (TLR) 2 participates in the inflammatory response to lung injury. To show this, we use a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans based on histologic, morphologic, and biochemical criteria of acute lung injury. The inflammatory response to pulmonary contusion in our mouse model is characterized by pulmonary edema, neutrophil transepithelial migration, and increased expression of the innate immunity proinflammatory cytokines IL 1beta and IL 6, the adhesion intracellular adhesion molecule 1, and chemokine (CXC motif) ligand 1. Compared with wild-type animals, contused Tlr2(-/-) mice have significantly reduced pulmonary edema and neutrophilia. These findings are associated with decreased levels of circulating chemokine (CXC motif) ligand 1. In contrast, systemic IL 6 levels remain elevated in the TLR2-deficient phenotype. These results show that TLR2 has a primary role in the neutrophil response to acute lung injury. We suggest that an unidentified noninfectious ligand generated by pulmonary contusion acts via TLR2 to generate inflammatory responses.  相似文献   

4.
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4–null (Sdc4–/–) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4–/– mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.  相似文献   

5.
Regulation of pulmonary fibrosis by chemokine receptor CXCR3   总被引:14,自引:0,他引:14       下载免费PDF全文
CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-gamma-inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-gamma production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-gamma by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-gamma or restoration of endogenous IFN-gamma production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-gamma-neutralizing Ab's enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-gamma following lung injury.  相似文献   

6.
Neutrophil infiltration is an insidious feature in septic lung injury, although the specific adhesive mechanisms regulating pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of this present study was to define the role of CD44 in sepsis-induced neutrophil infiltration and lung damage. Mice were treated with a monoclonal antibody against CD44 before cecal ligation and puncture (CLP) induction. Edema formation, bronchoalveolar accumulation of neutrophils, myeloperoxidase activity, and macrophage inflammatory protein 2 (MIP-2) levels in the lung were determined after CLP. Expression of Mac-1 and CD44 on neutrophils was quantified by using flow cytometry. In separate experiments, fluorescent-labeled neutrophils coincubated with an anti-CD44 antibody were adoptively transferred to CLP mice. Cecal ligation and puncture triggered clear-cut lung damage characterized by edema formation, neutrophil infiltration, and increased levels of MIP-2 in the lung. Notably, immunoneutralization of CD44 reduced CLP-induced pulmonary accumulation of neutrophils. In addition, functional inhibition of CD44 decreased CLP-induced lung damage and edema. However, formation of MIP-2 in the lung and neutrophil expression of Mac-1 were intact in septic mice pretreated with the anti-CD44 antibody. Adoptive transfer experiments revealed that neutrophil rather than lung CD44 mediates neutrophil accumulation in septic lung injury. Moreover, administration of hyaluronidase had no effect on CLP-induced neutrophil recruitment and tissue damage in the lung. Our data demonstrate that CD44 contributes to pulmonary infiltration of neutrophils and lung damage associated with abdominal sepsis. Thus, these novel findings suggest that CD44 may serve as a target to protect against lung injury in polymicrobial sepsis.  相似文献   

7.
Acute lung injury and its more severe form, acute respiratory distress syndrome, are major challenges in critically ill patients. Activation of circulating neutrophils and transmigration into the alveolar airspace are associated with development of acute lung injury, and inhibitors of neutrophil recruitment attenuate lung damage in many experimental models. The molecular mechanisms of neutrophil recruitment in the lung differ fundamentally from those in other tissues. Distinct signals appear to regulate neutrophil passage from the intravascular into the interstitial and alveolar compartments. Entry into the alveolar compartment is under the control of CXC chemokine receptor (CXCR)2 and its ligands (CXC chemokine ligand [CXCL]1–8). The mechanisms that govern neutrophil sequestration into the vascular compartment of the lung involve changes in the actin cytoskeleton and adhesion molecules, including selectins, β2 integrins and intercellular adhesion molecule-1. The mechanisms of neutrophil entry into the lung interstitial space are currently unknown. This review summarizes mechanisms of neutrophil trafficking in the inflamed lung and their relevance to lung injury.  相似文献   

8.
ABSTRACT: INTRODUCTION: Acute lung injury (ALI) is a common disease in critically ill patients with a high morbidity and mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme generating 12-hydroxy-eicosatetraenoic acid (12-HETE) and 15-HETE from arachidonic acid. It has been shown that 12/15-LO is involved in the regulation of vascular permeability during ALI. METHODS: To test whether 12/15-LO participates in leukocyte recruitment into the lung, we investigated the role of 12/15-LO in mouse models of lipopolysaccharide (LPS)-induced pulmonary inflammation and acid-induced ALI, a clinically relevant model of acute lung injury. RESULTS: The increase in neutrophil recruitment following LPS inhalation was reduced in 12/15-LO-deficient (Alox15-/-) mice and in wild-type (WT) mice after blocking of 12/15-LO with a pharmacological inhibitor. Bone marrow chimeras revealed that 12/15-LO in hematopoietic cells regulates neutrophil accumulation in the interstitial and alveolar compartments, whereas the accumulation of neutrophils in the intravascular compartment is regulated by non-hematopoietic and hematopoietic cells. Mechanistically, the increased plasma levels of the chemokine CXCL1 in Alox15-/- mice led to a reduced response of the neutrophil chemokine receptor CXCR2 to stimulation with CXCL1, which in turn abrogated neutrophil recruitment. Alox15-/- mice also showed decreased edema formation, reduced neutrophil recruitment, and improved gas exchange in an acid-induced ALI model. CONCLUSIONS: Our findings suggest that 12/15-LO modulates neutrophil recruitment into the lung by regulating chemokine/chemokine receptor homeostasis.  相似文献   

9.
Neutrophil-mediated lung damage is an insidious feature in septic patients, although the adhesive mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of the present study was to define the role of lymphocyte function antigen-1 (LFA-1) and membrane-activated complex 1 (Mac-1) in septic lung injury. Pulmonary edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, and CXC chemokines were determined after cecal ligation and puncture (CLP). Mice were treated with monoclonal antibodies directed against LFA-1 and Mac-1 before CLP induction. Cecal ligation and puncture induced clear-cut pulmonary damage characterized by edema formation, neutrophil infiltration, and increased levels of CXC chemokines in the lung. Notably, immunoneutralization of LFA-1 or Mac-1 decreased CLP-induced neutrophil recruitment in the bronchoalveolar space by more than 64%. Moreover, functional inhibition of LFA-1 and Mac-1 abolished CLP-induced lung damage and edema. However, formation of CXC chemokines in the lung was intact in mice pretreated with the anti-LFA-1 and anti-Mac-1 antibodies. Our data demonstrate that both LFA-1 and Mac-1 regulate pulmonary infiltration of neutrophils and lung edema associated with abdominal sepsis. Thus, these novel findings suggest that LFA-1 or Mac-1 may serve as targets to protect against lung injury in polymicrobial sepsis.  相似文献   

10.
There is emerging evidence that platelets are major contributors to inflammatory processes through intimate associations with innate immune cells. Here, we report that activated platelets induce the formation of neutrophil extracellular traps (NETs) in transfusion-related acute lung injury (TRALI), which is the leading cause of death after transfusion therapy. NETs are composed of decondensed chromatin decorated with granular proteins that function to trap extracellular pathogens; their formation requires the activation of neutrophils and release of their DNA in a process that may or may not result in neutrophil death. In a mouse model of TRALI that is neutrophil and platelet dependent, NETs appeared in the lung microvasculature and NET components increased in the plasma. We detected NETs in the lungs and plasma of human TRALI and in the plasma of patients with acute lung injury. In the experimental TRALI model, targeting platelet activation with either aspirin or a glycoprotein IIb/IIIa inhibitor decreased NET formation and lung injury. We then directly targeted NET components with a histone blocking antibody and DNase1, both of which protected mice from TRALI. These data suggest that NETs contribute to lung endothelial injury and that targeting NET formation may be a promising new direction for the treatment of acute lung injury.  相似文献   

11.
gp49B1 is expressed on mast cells and inhibits immunoglobulin E-dependent activation and inflammation in vivo. We now show that gp49B1 is expressed on neutrophils and prevents neutrophil-dependent vascular injury in response to lipopolysaccharide (LPS). The intradermal (i.d.) injection of LPS into gp49B1-null (gp49B-/-) but not gp49B1-sufficient (gp49B+/+) mice elicited macroscopic hemorrhages by 24 h, which were preceded on microscopic analyses by significantly more intravascular thrombi (consisting of neutrophils, platelets, and fibrin) that occluded venules and by more tissue neutrophils than in gp49B+/+ mice. However, there were no differences in the number of intact (nondegranulating) mast cells or the tissue levels of mediators that promote neutrophil recruitment. Hemorrhage was prevented by depleting neutrophils, blocking beta2 integrin-intercellular adhesion molecule 1 interactions, or inhibiting coagulation. These characteristics indicate that gp49B-/- mice are exquisitely sensitive to a local Shwartzman reaction (LSR) after a single i.d. injection of LPS, whereas in the classic LSR, a second exposure is required for increased beta2 integrin function, intravascular neutrophil aggregation, formation of occlusive thrombi, and hemorrhage. Moreover, LPS increased gp49B1 expression on neutrophils in vivo. The results suggest that gp49B1 suppresses the LPS-induced increase in intravascular neutrophil adhesion, thereby providing critical innate protection against a pathologic response to a bacterial component.  相似文献   

12.
Differential neutrophil traffic in gut and lung after scald injury   总被引:1,自引:0,他引:1  
Neutrophil recruitment to the lung after thermal injury has been reported by various laboratories. Changes in neutrophil populations in the gut and lung have not been examined simultaneously after burn injury. Mice aged 8 to 10 weeks were anesthetized and subjected to 15% topical scald injury. Animals were sacrificed at 30 minutes and 1, 2, 4, 8, 16, and 32 hours after injury with harvesting of terminal ileum and lung for myeloperoxidase (MPO) assay. Lungs were evaluated after bronchoalveolar lavage and lavage of the vascular bed to remove neutrophils in these compartments. Myeloperoxidase activity was compared between groups of sham-injured and burned animals. Although pulmonary neutrophil recruitment was obvious after scald burn; in the ileum, burned animals showed diminished MPO activity. Histology and bronchoalveolar lavage revealed no evidence of gross organ injury apart from obvious changes in cellular content in the lung. Thermal injury is associated with differential neutrophil movement in the lung and the gut in this model. Pulmonary neutrophil recruitment is confirmed, whereas the gut seems to lose neutrophils as indicated by diminished MPO activity in the initial hours after dorsal scald injury.  相似文献   

13.
Two murine monoclonal antibodies (CL-3 and CL-37, both F(ab')2) to human endothelial-leukocyte adhesion molecule-1 (ELAM-1) were found to react immunohistochemically with rat pulmonary artery endothelial cells that had been pretreated with tumor necrosis factor (TNF alpha). CL-3, but not CL-37, blocked in vitro adherence of neutrophils to TNF alpha-treated endothelial cells and the killing of TNF alpha-treated rat endothelial cells by phorbol ester activated neutrophils. In rats treated systemically with CL-3, there was a 70% reduction in accumulation of neutrophils in glycogen-induced peritoneal exudates. Treatment of animals with CL-37 anti-ELAM-1 did not reduce neutrophil accumulation under the same conditions. When IgG immune complex deposition was induced in dermis and in lungs of rats, treatment with CL-3 anti-ELAM-1 markedly reduced vascular injury as measured by changes in vascular permeability (leakage of 125I-albumin) and hemorrhage (extravasation of 51Cr-red blood cells). The protective effects of CL-3 anti-ELAM-1 were related to greatly diminished recruitment of neutrophils (as assessed morphologically, by tissue extraction of myeloperoxidase, and by retrieval, via bronchoalveolar lavage, of neutrophils from lung). CL-37 had no protective effects in vivo after deposition of immune complexes in lung. Using either CL-3 or CL-37 anti-ELAM-1, immunohistochemical analysis of lungs undergoing IgG immune complex-induced injury revealed a striking upregulation of ELAM-1 in the lung vasculature (venules and interstitial capillaries), with a peak intensity developing between 3 and 4 h after deposition of immune complexes in lung. Vascular beds of spleen, liver, and kidney failed to show upregulation of ELAM-1 under these same conditions. The immunohistochemical reactivity of rat lung was abolished if the anti-ELAM-1 preparation was first absorbed with monolayers of human umbilical vein endothelial cells that had been pretreated with TNF alpha. Untreated human endothelial cells failed to cause loss of lung reactivity of the anti-ELAM-1 preparation. These data indicate that ELAM-1 is upregulated in the pulmonary vasculature of rats during deposition of immune complexes and that ELAM-1 appears to play an obligate role in the recruitment of neutrophils.  相似文献   

14.
Excessive neutrophil infiltration is a major component in septic lung injury, although the signaling mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. Herein, we hypothesized that Rho-kinase activity may play a significant role in pulmonary neutrophil recruitment and tissue damage in abdominal sepsis. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 (0.5 or 5 mg/kg) before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets as well as soluble CD40L and matrix metalloproteinase 9 (MMP-9) in plasma. Cecal ligation and puncture triggered significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP upregulated Mac-1 expression on neutrophils, decreased CD40L on platelets, and increased soluble CD40L and MMP-9 in the circulation. Interestingly, inhibition of Rho-kinase dose-dependently decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema, as well as neutrophil infiltration and tissue damage in the lung. Moreover, Rho-kinase inhibition significantly reduced sepsis-provoked gene expression of CXC chemokines in alveolar macrophages. In contrast, Rho-kinase inhibition had no effect on platelet shedding of CD40L or plasma levels of MMP-9 in septic mice. In conclusion, these data demonstrate that the Rho-kinase signaling pathway plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of CXC chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis.  相似文献   

15.
OBJECTIVE: Granulocyte colony-stimulating factor is widely prescribed to hasten recovery from cancer chemotherapy-induced neutropenia and has been reported to induce pulmonary toxicity. However, circumstances and mechanisms of this toxicity remain poorly known. DESIGN: To reproduce a routine situation in cancer patients receiving chemotherapy, we investigated the mechanisms underlying granulocyte colony-stimulating factor-induced exacerbation of alpha-naphthylthiourea-related pulmonary edema. SETTING: Laboratory research unit. SUBJECTS: Male specific-pathogen-free Sprague-Dawley rats. INTERVENTIONS: The effects of granulocyte colony-stimulating factor given alone or after alpha-naphthylthiourea used to induce acute lung injury were investigated. MEASUREMENTS AND MAIN RESULTS: Lung injury was assessed based on neutrophil sequestration (myeloperoxidase activity in lung tissue) and influx into alveolar spaces (bronchoalveolar lavage fluid cell quantification) and on edema formation (wet/dry lung weight ratio) and alveolar protein concentration into bronchoalveolar lavage fluid. Tumor necrosis factor-alpha and interleukin-1beta were measured in serum, lung homogenates, and isolated alveolar macrophage supernatants. In control rats, granulocyte colony-stimulating factor (25 microg/kg) significantly elevated circulating neutrophil counts without producing alveolar recruitment or pulmonary edema. alpha-Naphthylthiourea significantly increased the wet/dry lung weight ratio (4.68 +/- 0.04 vs. 4.38 +/- 0.07 in controls, p=.04) and induced alveolar protein leakage. Adding granulocyte colony-stimulating factor to alpha-naphthylthiourea exacerbated pulmonary edema, causing neutrophil sequestration in pulmonary vessels, significantly increasing lung myeloperoxidase activity (12.7 +/- 2.0 mOD/min/g vs. 1.1 +/- 0.4 mOD/min/g with alpha-naphthylthiourea alone; p<.0001), and increasing proinflammatory cytokine secretion. alpha-Naphthylthiourea-related pulmonary edema was not exacerbated by granulocyte colony-stimulating factor during cyclophosphamide-induced neutropenia or after lidocaine, which antagonizes neutrophil adhesion to endothelial cells. Tumor necrosis factor-alpha and interleukin-1beta concentrations in alveolar macrophage supernatants and lung homogenates were significantly higher with alpha-naphthylthiourea + granulocyte colony-stimulating factor than with either agent alone, and anti-tumor necrosis factor-alpha antibodies abolished granulocyte colony-stimulating factor-related exacerbation of alpha-naphthylthiourea-induced pulmonary edema. In rats with cyclophosphamide-induced neutropenia, tumor necrosis factor-alpha concentrations in alveolar macrophage supernatants and lung homogenates were significantly decreased compared with rats without neutropenia. CONCLUSION: Granulocyte colony-stimulating factor-related pulmonary toxicity may involve migration of neutrophils to vascular spaces, adhesion of neutrophils to previously injured endothelial cells, and potentiation of proinflammatory cytokine expression.  相似文献   

16.
Lipopolysaccharide (LPS)-binding protein (LBP) greatly facilitates LPS activation of monocytic cells through the CD14 receptor, triggering activation of innate immune responses. An acute phase protein, LBP is produced predominantly by the liver; however, we and others have shown that LBP is produced extrahepatically in multiple locations, including the lung. The importance of LBP in the lung has remained unclear. LBP may make the host more acutely sensitive to LPS and development of septic complications; alternatively, it may be protective, aiding in detection, opsonization, and killing of bacteria. Our objective was to determine the role LBP plays in local pulmonary immune defenses to bacterial challenge. LBP knockout mice and age-matched C57BL/6 wild-type controls were challenged with direct intratracheal inoculation of Klebsiella pneumoniae. We observed a significant increase in mortality, earlier onset of bacteremia, and greater pulmonary bacterial loads in LBP knockout mice compared with controls. Total lung myeloperoxidase (MPO) activity, neutrophil recruitment to the alveolar space, and levels of KC--a chemokine involved in neutrophil recruitment--in bronchoalveolar lavage (BAL) fluid and lung homogenates were found to be significantly diminished in knockout mice compared with controls. Together, our findings suggest that LBP is essential in local pulmonary innate immune responses against bacteria.  相似文献   

17.
Pulmonary contusion is a major cause of respiratory failure in trauma patients. This injury frequently leads to immune suppression and infectious complications such as pneumonia. The mechanism whereby trauma leads to an immune-suppressed state is poorly understood. To further study this phenomenon, we developed an animal model of pulmonary contusion (PC) complicated by pneumonia and assessed the effect of PC and pneumonia on toll-like receptor expression in alveolar macrophages. Using a mouse model, PC was induced on the right lung, and pneumonia was induced with Pseudomonas aeruginosa (Pa) injected intratracheally 48 h after injury. Susceptibility to pneumonia was assessed by mortality at 7 days. Uninjured animals were used as controls. Bronchoalveolar lavage fluid and blood were assayed 48 h after injury and 24 h after Pa instillation to look at markers of systemic inflammation. Toll-like receptor expression in the initial inflammatory response was analyzed by flow cytometry. Unexpectedly, injured animals subjected to intratracheal injection of Pa at 48 h after PC demonstrated increased survival compared with uninjured animals. Bronchoalveolar lavage cytokine expression was increased significantly after Pa administration but not after PC alone. Toll-like receptor 4 expression on alveolar macrophages was significantly elevated in the injured group compared with sham but not in neutrophils. Animals subjected to PC are more resistant to mortality from infection with Pa and display an enhanced cytokine response when subsequently subjected to Pa. Increased expression of toll-like receptor 4 on alveolar macrophages and enhanced innate immunity are a possible mechanism of increased cytokine production and decreased susceptibility to pneumonia.  相似文献   

18.
Activation of the complement system within the lung can lead to acute pulmonary damage and dysfunction. Based on a variety of experimental models it is now apparent that lung injury is related to complement-induced generation of oxygen derived free radicals from neutrophils and from macrophages. In addition to the oxygen radicals, it is also possible that the conversion of hydrogen peroxide by myeloperoxidase to hypochlorous acid also contributes to the injury. Exposure of the pulmonary microvasculature to oxygen radicals generated from complement-activated neutrophils causes focal damage and necrosis of endothelial cells. IgG immune complex-induced injury of lung is also complement and neutrophil dependent and oxygen radical mediated. In contrast, lung injury produced by IgA immune complexes is neutrophil independent, complement dependent and oxygen radical mediated. There is now increasing evidence that oxygen radicals are not only directly tissue-toxic but also able to potentiate the activity of leukocytic proteases. In all of these models the lung can be protected from injury by pretreatment of the animals with either scavengers of hydroxyl radical or with agents that prevent its formation (e.g. catalase, iron chelators). Data from these models may have direct clinical relevance to conditions such as adult respiratory distress syndrome where lung injury is probably oxygen radical mediated.  相似文献   

19.
Neutrophils, the prototypic cells of the innate immune system, are recruited to infected sites to protect the human body from invading pathogens. To accomplish this function, neutrophils sense pathogens and endogenous damage-associated molecules via innate immune receptors, such as Toll-like receptors (TLRs) and other pattern recognition receptors. This defence function is essential for the pulmonary microenvironment where the host is faced with millions of particles and pathogens inhaled daily. Chronic lung diseases, such as cystic fibrosis or chronic obstructive pulmonary disease are characterized by a neutrophil accumulation and chronic bacterial colonization of the airways. Consequently, insights into the role of TLRs on neutrophils in chronic lung diseases are of high relevance for further diagnostic and therapeutic approaches. Here we summarize and discuss recent advances in the expression, regulation and functional role of TLRs on neutrophils in chronic lung diseases.  相似文献   

20.
Hemorrhagic shock and subsequent resuscitation can result in acute lung injury and cardiac dysfunction. Previous studies have demonstrated that tissue neutrophil accumulation contributes to cardiopulmonary injury associated with trauma. Thus, suppression of tissue neutrophil recruitment in an early therapeutic window after hemorrhagic shock may protect the cardiopulmonary system. It is unclear whether hemorrhagic shock induces cardiopulmonary recruitment of neutrophils before resuscitation. Intercellular adhesion molecule-1 (ICAM-1) is one of the important factors that mediate tissue neutrophil recruitment. The physiologic significance of ICAM-1 expression after hemorrhage before resuscitation is not well delineated. The present study examined the role of ICAM-1 in neutrophil accumulation in the heart and lung after severe hemorrhage without resuscitation. Mice were subjected to hemorrhagic shock by removal of 30% of total blood volume. Lung neutrophil number as determined by immunofluorescent staining increased by 1 h after hemorrhage and was maximal at 4 h whereas myocardial neutrophil number was not changed. Lung neutrophil accumulation was not associated with an up-regulation of ICAM-1 expression or an alteration in ICAM-1 subcellular distribution. Surprisingly, deletion of the ICAM-1 gene enhanced hemorrhagic shock-induced lung neutrophil accumulation. These results suggest that hemorrhagic shock induces preferential neutrophil accumulation to the lung that appears to occur independent of ICAM-1-expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号