首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate whether moderate exogenous hypercalcemia influences the release of gonadotropin from human gonadotrophs, 6 normal men were given 50 micrograms GnRH iv on two occasions. On one of these occasions GnRH was administered on an iv background infusion of calcium gluconate, on the other GnRH was injected on a background infusion of saline. The calcium infusion induced moderate hypercalcemia (2.7-2.9 mmol/l) during the GnRH stimulation, whereas normocalcemia prevailed (2.1-2.2 mmol/l) when saline was infused over an identical time period. Similar FSH and LH responses to GnRH were obtained during normo- and hypercalcemia. Moreover, serum testosterone (T) and estradiol (E2) remained unchanged by the hypercalcemia. These results imply that moderate exogenous hypercalcemia does not affect hormone release from pituitary gonadotrophs, and fails to affect peripheral cells involved in the production of T and E2.  相似文献   

2.
The dependence of LH responses to GnRH on extracellular calcium was investigated in cultured rat pituitary cells exposed to GnRH for 3 h in static culture or for 2 min during column perifusion. During static culture in normal medium, LH release was stimulated by GnRH with an ED50 of 0.3 nM and by K+ with an ED50 of 32 mM. Incubation in Ca2+-deficient (no added Ca2+) or Ca2+-free medium (containing 100 microM EGTA) substantially decreased, but did not abolish, the LH responses to 10 and 100 nM GnRH, whereas K+-induced LH release was almost completely abolished in Ca2+-deficient medium. The Ca2+ channel agonist (BK 8644) and antagonists (nifedipine, nicardipine, verapamil, and Co2+) respectively enhanced or reduced the LH responses to both GnRH and K+. However, the calcium antagonists completely abolished the LH response to depolarization by K+, but only partially inhibited the LH response to GnRH, confirming the existence of a significant component of GnRH action that is not dependent on extracellular Ca2+. In perifused pituitary cells, exposure to Ca2+-deficient medium or normal medium containing 5 mM EGTA or 5 mM EDTA, reduced the initial rapid LH response to 2-min pulses of 10 nM GnRH and abolished the second phase of LH release. Reintroduction of Ca2+-containing medium at the end of the GnRH pulse caused recovery of the second phase of LH secretion, demonstrating that influx of extracellular Ca2+ is not required for the early phase of the LH response to GnRH but, rather, appears to be essential for its prolongation. The release of LH in response to arachidonic acid, which has been implicated in the mechanism of the secretory action of GnRH, was completely independent of extracellular Ca2+ and unaffected by addition of 10 nM BK 8644. These observations indicate that the initiation of the secretory response to GnRH is largely independent of calcium entry, whereas the prolongation of gonadotropin secretion is maintained by calcium influx, in part through voltage-sensitive calcium channels. The role of arachidonic acid metabolites in GnRH action is probably related to the calcium-independent component of GnRH-induced LH secretion. Since GnRH is secreted episodically and for short periods, much of its physiological action on pulsatile gonadotropin release could be independent of calcium influx from the extracellular fluid.  相似文献   

3.
The purpose of the present study was to determine whether gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus of the prepubertal monkey may be prematurely provoked into producing a sustained train of intermittent GnRH release N-methyl-DL-aspartic acid (NMA), an analog of the putative excitatory neurotransmitter aspartate, was used to stimulate the hypothalamus. In order to utilize pituitary luteinizing hormone (LH) secretion as a bioassay of hypothalamic GnRH release, juvenile males were castrated and the responsiveness of their gonadotrophs to GnRH was enhanced prior to the study with a chronic intermittent intravenous infusion of the synthetic decapeptide (0.1 microgram/min for 3 min every hour). Treatment with this regimen of GnRH, which appears to provide the pituitary gonadotrophs with a hypophysiotropic stimulus similar to that produced by the hypothalamus of castrated adults, elicited a pattern of pulsatile LH secretion in prepubertal animals similar to that observed in the open-loop situation in adults. This episodic pattern of LH release was sustained without decrement following termination of GnRH priming and initiation of an intermittent intravenous infusion of NMA (4.5-6.5 mg NMA/kg body weight/pulse, administered over 1 min) delivered at a frequency of 1 pulse/1 h for 50 h. In contrast, an intermittent infusion of the vehicle employed to administer NMA (saline) failed to maintain LH secretion. Administration of the same dose of NMA at a slower frequency of 1 pulse/2 h for 52 h, while also sustaining LH secretion without decrement, resulted in an exaggeration in the LH response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Pituitary adenylate cyclase-activating polypeptide (PACAP) releases LH and FSH from anterior pituitary cells. Although this effect is relatively weak, it has a strong sensitizing action on GnRH-induced gonadotropin secretion. Here we investigated the possibility that ovarian steroids, which are well-known modulators of LH secretion, interact with PACAP and GnRH in pituitary gonadotrophs. Rat pituitary cells were treated for 48 h with vehicle, 1 nmol/l estradiol, 1 nmol/l estradiol + 100 nmol/l progesterone or 48 h with 1 nmol/l estradiol and 4 h with 100 nmol/l progesterone. The cells were stimulated for 3 h with 1 nmol/l GnRH or 100 nmol/l PACAP. Estradiol treatment alone enhanced basal as well as GnRH- or PACAP-stimulated LH secretion. LH release was facilitated by additional short-term progesterone treatment. Long-term treatment with estradiol and progesterone led to reduced LH responses to GnRH and PACAP. Neither treatment paradigms affected cAMP production. However, estradiol treatment led to enhanced cAMP accumulation in quiescent or GnRH-stimulated cells. PACAP-induced increases of cAMP production were inhibited by estradiol treatment. After 7-h preincubation with 10 nmol/l PACAP, cells responded with enhanced LH secretion to GnRH stimulation. When steroid pretreatment was performed the responsiveness of gonadotrophs to low concentrations of GnRH was still increased. In contrast, at high concentrations of GnRH the sensitizing action of PACAP on agonist-induced LH secretion was lost in steroid-treated cells. There were no significant differences between the steroid treatment paradigms. It is concluded that estradiol but not progesterone acts as a modulator of adenylyl cyclase in gonadotrophs. The stimulatory effect of estradiol is thought to be involved in its sensitizing action on agonist-induced LH secretion. The inhibitory effect of estradiol on PACAP-stimulated adenylyl cyclase activities seems to be responsible for the loss of its action to sensitize LH secretory responses to GnRH.  相似文献   

5.
The stimulatory action of GnRH on gonadotropin secretion from cultured rat pituitary cells is modulated by estradiol (E) and progesterone (P). Since secretory responses to GnRH are initiated by phosphoinositide hydrolysis and Ca2+ mobilization, the effects of gonadal steroids on the pattern of Ca2+ signaling were analyzed in single pituitary gonadotrophs. Increasing concentrations of GnRH elicited a spectrum of [Ca2+]i signals in single gonadotrophs, ranging from subthreshold to threshold-oscillatory and biphasic (spike & plateau) responses. In E-treated gonadotrophs, short-term P treatment shifted subthreshold [Ca2+]i responses to oscillatory and oscillatory to biphasic responses, whereas long-term P treatment shifted oscillatory to subthreshold [Ca2+]i response profiles. These changes parallel the effects of P on GnRH-induced LH release, and indicate that the modulatory effects of ovarian steroids on gonadotropin secretion include a significant action on the Ca2+ signaling pathway.  相似文献   

6.
It has been hypothesized that the secretion of gonadotropins, i.e. luteinizing hormone (LH) and follicle-stimulating hormone (FSH), is driven by a synchronized neural network ('pulse generator'). This network, regulated in part by alpha-adrenergic activity, ultimately generates bursts of hypothalamic gonadotropin-releasing hormone (GnRH) release. In this study, we used the push-pull (PP) perfusion technique in ovariectomized rabbits to investigate three aspects of the ('GnRH/gonadotropin pulse generator') hypothesis. The objectives were to determine: (1) if plasma LH and FSH pulses occur concomitantly with mediobasal hypothalamic (MBH-) GnRH pulses, (2) changes in the patterns of pulsatile LH and FSH secretion when pulsatile MBH GnRH signals are interrupted by either local immunoneutralization of GnRH or intravenous infusion of the alpha-adrenergic antagonist phentolamine (PHEN, 4 mg/kg BW), and (3) whether third cerebroventricular (3VT-) GnRH patterns reflect neuronal GnRH release from the MBH. We found that while both plasma LH and FSH patterns were pulsatile, MBH GnRH pulses were significantly coupled only with LH pulses (94% coincidence). Both the local immunoneutralization of MBH GnRH pulses and the PHEN-induced suppression of MBH GnRH pulses obliterated the pulsatile secretion of LH, but not FSH. Neither MBH GnRH nor plasma LH or plasma FSH pulses were concurrent with 3VT GnRH pulses. However, the PP perfusion of the 3VT appeared to alter the pulsatile release of MBH GnRH and pituitary LH. The results support the hypothesis that in the absence of ovarian signals, the 'pulse generator' is maintained by tonic alpha-adrenergic input and that a 'cellular unity' of MBH GnRH release (GnRH pulses) drives the gonadotrophs to secrete LH in pulses. In contrast, the pulsatile release of FSH appears to involve additional nonovarian regulatory events to those controlling LH secretion.  相似文献   

7.
Gonadotropin release in rat pituitary monolayer cultures was stimulated by phospholipase A2, as well as by its activator melittin. A dose-dependent stimulation of luteinizing hormone secretion by melittin was observed in a dose range of 10(-8) to 10(-4) M. A higher dose (1 mM) melittin had a sub-optimal effect. The stimulatory action of melittin was calcium-dependent and blocked by phospholipase A2 inhibitors, chloroquine and quinacrine. Similar to melittin, phospholipase A2 enhanced the effect of LH release in a dose range of 0.1-100 units/ml. The effect of this enzyme was also calcium-dependent with optimal calcium concentrations at 1.5 mM, as obtained also for melittin. In superfusion experiments, the stimulatory action of melittin and phospholipase A2 was reproducible in their effects on LH release in gonadotrophs. In addition, melittin (10(-7) M) stimulated LH and 3H-arachidonic acid efflux in superfused pituicytes following prelabelling with radiolabelled arachidonate. These data suggest that phospholipase A2, which releases arachidonic acid from phospholipids, may participate in controlling gonadotropin secretion in gonadotrophs, since arachidonic acid and its metabolites have previously been found to enhance gonadotropin release.  相似文献   

8.
Z Naor  A M Leifer  K J Catt 《Endocrinology》1980,107(5):1438-1445
The effects of gonadotropin-releasing hormone (GnRH) on cGMP production and LH release in cultured rat pituitary cells are markedly dependent upon the extracellular calcium concentration. The absence of calcium from incubation media caused almost complete loss of the GnRH effects on cGMP production and LH release but did not change the stimulation of cAMP accumulation by GnRH in the pituitary of the adult male rat. In female rat pituitary cells, reduction of the extracellular calcium concentration increased the concentration of GnRH required to produce half-maximal LH release and decreased the maximal gonadotropin output but had no significant effect on basal LH release. The divalent cation ionophore A23187 stimulated LH release, and this action was dependent on extracellular calcium. Both GnRH and A23187 were found to have maximal effects when the calcium concentration was 0.6 mM, and their actions were not additive. The calcium antagonists, verapamil and lanthanum, caused concentration-dependent inhibition of the actions of GnRH, with half-maximal blockade values of 10(-5) and 3 X 10(-6) M, respectively, and had no effect on basal LH release. The binding of a radioiodinated GnRH analog, [D-Ser(t-Bu)6]des-Gly10-GnRH-N-ethylamide, to pituitary GnRH receptors was unchanged in the absence of extracellular calcium. These observations demonstrate that stimulation of pituitary cGMP production and LH release by GnRH is dependent on extracellular calcium. The site at which calcium is required during GnRH action is at a postreceptor locus before cGMP formation.  相似文献   

9.
10.
T M Plant  A K Dubey 《Endocrinology》1984,115(6):2145-2153
The site and mode of the feedback actions of testicular hormones on gonadotropin secretion in the adult rhesus monkey were investigated using the arcuate-lesioned preparation previously employed by others to study cognate problems in the female. The negative feedback loop that governs LH and FSH release in the male monkey was opened without changing either the frequency or amplitude of intermittent GnRH stimulation of the pituitary gonadotrophs, which was clamped by exogenous GnRH replacement at a level that approximated the intact or closed loop hypophysiotropic signal. In this manner, the relative importance of adenohypophysial vs. hypothalamic sites of feedback action of testicular hormones on LH and FSH secretion was assessed. To accomplish the foregoing, radiofrequency lesions were placed in the region of the arcuate nucleus to abolish endogenous hypothalamic GnRH secretion. Patterns of temporally coupled episodes of pituitary LH and testicular testosterone discharge that in nonlesioned animals characteristically occur, on the average, once every 3 h throughout the 24-h light-dark cycle were restored in lesioned animals by an intermittent iv infusion of GnRH (0.1 micrograms/min for 3 min every 3 h). Bilateral orchidectomy in this experimental paradigm elicited only small increments in LH pulse amplitude and mean plasma LH concentration, a response in striking contrast to the dramatic postcastration LH hypersecretion observed in animals with intact hypothalami that respond to the opening of the negative feedback loop with an apparent acceleration in the endogenous frequency of intermittent GnRH secretion. A marked rise in mean plasma LH concentration in arcuate-lesioned males, however, was forth-coming when the frequency of intermittent exogenous GnRH stimulation was increased 2-3 weeks after castration from one pulse every 3 h (intact frequency) to one pulse per h (castrate frequency). These findings fail to provide evidence for a major inhibitory feedback action of the testes on LH secretion at the level of the adenohypophysis. They are entirely consistent, however, with the hypothesis that the negative feedback control of LH release by the male gonad is mediated, principally, via the central nervous system by an action of testicular hormone, most probably testosterone, to retard the frequency of the neural timing mechanism that governs the intermittent pattern of GnRH release by the hypothalamus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Reproduction is controlled by the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons play a central role in this axis through production of GnRH, which binds to a membrane receptor on pituitary gonadotrophs and stimulates the biosynthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Multiple factors affect GnRH neuron migration, GnRH gene expression, GnRH pulse generator, GnRH secretion, GnRH receptor expression, and gonadotropin synthesis and release. Among them anosmin is involved in the guidance of the GnRH neuron migration, and a loss-of-function mutation in its gene leads to a failure of their migration from the olfactory placode to the hypothalamus, with consequent anosmic hypogonadotropic hypogonadism (Kallmann syndrome). There are also cases of hypogonadotropic hypogonadim with normal sense of smell, due to mutations of other genes. Another protein, kisspeptin plays a crucial role in the regulation of GnRH pulse generator and the pubertal development. GnRH is the main hypothalamic regulator of the release of gonadotropins. Finally, FSH and LH are the essential hormonal regulators of testicular functions, acting through their receptors in Sertoli and Leydig cells, respectively. The main features of the male HPG axis will be described in this review.  相似文献   

12.
The role of protein kinase C (PKC) in the mechanism of action of gonadotropin-releasing hormone (GnRH) upon gonadotropin secretion is controversial and therefore was investigated in primary cultures of rat anterior pituitary cells. A relatively selective PKC inhibitor, staurosporine, inhibited both GnRH- and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced luteinizing hormone (LH) release with half-maximal inhibition (IC50) of about 80 nM. Inhibition of GnRH action was not complete suggesting also a PKC-insensitive component in GnRH-induced gonadotropin release. Staurosporine had no effect on basal LH release, or on cellular LH content, neither did the drug interfere with the binding of [125I]iodo-[D-Ser(t-Bu)6]des-Gly10-GnRH N-ethylamide to its receptor in pituitary cells. When cultured pituitary cells were incubated with TPA (1 microM) for 24-48 h no measurable cellular PKC activity could be detected. The decrease in total PKC activity was accompanied by an increase in Ca2+, phosphatidylserine (PS), diacylglycerol (DG)-insensitive activity suggesting the release of a portion of the catalytic domain of PKC (M-kinase) by the phorbol ester treatment. TPA-induced LH release was nearly abolished in PKC-depleted cells and the response to GnRH was markedly reduced (40%). The stimulatory effect of the Ca2+ ionophore, ionomycin, was not impaired in PKC-depleted cells. Impaired responses to GnRH in PKC-depleted cells were only noticed at a later phase (2-4 h) of the exocytotic response of the neurohormone. The data strongly suggest a role for PKC during the second phase of GnRH-induced gonadotropin secretion.  相似文献   

13.
Z Naor 《Endocrine reviews》1990,11(2):326-353
Multiple (at least seven) steps are involved in GnRH-induced gonadotropin secretion and gonadotropin gene expression. After binding to specific receptors located exclusively on pituitary gonadotrophs, GnRH stimulates a rapid phosphodiesteric hydrolysis of phosphoinositides for which no rise in [Ca2+]i is required. Activation of PLC is most likely mediated by a pertussis toxin-insensitive GTP-binding protein (Gp). In its activated state (Gp-GTP) the binding affinity of GnRH to is receptor is reduced. Rapid formation of IP3 will enhance Ca2+ release from intracellular sources most likely via a specific IP3 receptor. The transient Ca2+ rise might be responsible for a burst phase of LH release lasting for about 100 sec, which is not dependent on extracellular Ca2+. The backbone moiety of the phosphoinositides, DG, and the elevated [Ca2+]i are most likely responsible for translocation of PKC subspecies from the cytosol to the membrane. The most likely candidates are alpha- and beta II-PKC. The activated PKC subspecies phosphorylate substrate proteins which activate secretory reactions and participate in gonadotropin gene expression. In parallel Ca2(+)-influx via nifedipine-sensitive and insensitive channels further elevates [Ca2+]i, which participates in the sustained phase of gonadotropin secretion in concert with the activated PKCs. GnRH also triggers the release of AA and the formation of lipoxygenase and/or epoxygenase products of the fatty acid which are also involved in the process of the exocytosis. We predict that the continuous supply of DG and AA needed for GnRH action is also provided via activated PLD which will also supply phosphatidic acid, the role of which is as yet unclear. The interaction of the various second messengers involved in GnRH action (IP3, Ca2+, DG, AA) and their relative roles in gonadotropin secretion and gonadotropin gene expression await further investigation. In several aspects GnRH action on gonadotropin secretion is unique when compared to other Ca2(+)-mobilizing ligands: 1) At physiological concentrations GnRH up-regulates its own receptors whereas most ligands down-regulate the respective receptor; 2) PKC up-regulates GnRH receptors whereas in most cases PKC down-regulates the ligand receptor; 3) GnRH stimulation of PLC activity is most likely mediated by Gp whereas some Ca2(+)-mobilizing ligands operate via Gi; 4) Activated PKC does not exert negative feedback upon GnRH-induced inositol phosphate production as is the case with several other peptides; 5) Activated PKC might be responsible for Ca2+ influx whereas in several other systems PKC is inhibitory to Ca2+ influx.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The inhibitory time course and dose-related characteristics of a new potent GnRH antagonist peptide, [N-acetyl-D-pCl-Phe1,2-D-Trp3-D-Lys6-D-Ala10]GnRH, on gonadotropin secretion were studied in nine postmenopausal women. Effective suppression of gonadotropin secretion was correlated with increased circulating concentrations of immunoassayable GnRH antagonist. Inhibition of gonadotropin secretion was achieved by a parenteral dose of 300 micrograms/kg GnRH antagonist. This dose reduced plasma bioactive LH concentrations by 49-59%, immunoactive LH by 41-46%, and immunoactive FSH by 25-40%. Blockade of gonadotropin secretion was sustained for 10-28 h after a single injection of the synthetic decapeptide. This prolonged action was associated with significant plasma protein binding of the GnRH antagonist and mean plasma half-times of disappearance of 1.5 and 21 h for the fast and slow components, respectively. In summary, we have described the biological actions of a potent GnRH antagonist that binds avidly to serum proteins, has a prolonged plasma residence time, and exerts sustained inhibitory effects on bio- and immunoactive LH release in man. The extended duration of action of this compound may reflect in part its significant binding to circulating plasma proteins.  相似文献   

15.
We have examined the pharmacology of the voltage-sensitive Ca2+ channels (VSCCs) that mediate gonadotropin secretion from primary cultures of rat pituitary cells, stimulated by either cell depolarization or by binding of gonadotropin-releasing hormone (GnRH). We also measured single-cell [Ca2+]i transients using fura-2 in gonadotropes identified by a reverse hemolytic plaque assay employing an antiserum to luteinizing hormone (LH). Cell depolarization evoked by either 50 mM K+ or 30 microM veratridine induced 2- to 6-fold increases in gonadotropin secretion over basal levels. GnRH caused 6- to 20-fold increases in follicle-stimulating hormone (FSH) and LH secretion, respectively, with maximal stimulation at 100 nM GnRH. K(+)- or GnRH-induced FSH release was largely prevented by co-incubation with 1 mM CdCl. Tetrodotoxin (TTX, 5 microM) prevented the veratridine-, but not the K(+)- or GnRH-induced, stimulation of FSH secretion. Nitrendipine (Ntd, 1 microM) produced 35-50% inhibition (NS) of both FSH and LH release stimulated by either 50 mM K+ or 100 nM GnRH. Ntd also inhibited the K(+)-induced [Ca2+]i rise (greater than 90%), as well as the secondary, plateau phase of the GnRH-induced elevation of [Ca2+]i (100% inhibition). Omega-conotoxin (omega-CgTx, 100 nM) partially suppressed FSH and LH release (NS) due to both K+ (33% each) and GnRH (44% and 18%, respectively). omega-CgTx showed variable effects on [Ca2+]i transients evoked by K+ or GnRH ranging from clear inhibition to no effect. We conclude that influx of extracellular Ca2+ is one of several fundamental events underlying the depolarization- or receptor-activated release of LH and FSH, and that this influx can be inhibited by dihydropyridine-sensitive ('L') Ca2+ channels. Two classes of L-channels may exist in gonadotropes, that differ in their sensitivity to omega-CgTx.  相似文献   

16.
Gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone (LH) release and cyclic guanosine 3',5-cyclic monophosphate (cGMP) production in rat anterior pituitary cells through a calcium-dependent activation mechanism that involves increased phospholipid turnover and liberation of arachidonic acid. In enriched pituitary gonadotrophs, LH release was stimulated by arachidonic acid and its oxygenated metabolite, 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), in a dose-dependent manner. The prominent LH responses of purified gonadotrophs to arachidonic acid suggest that the secretory actions of arachidonate are exerted primarily on the gonadotroph and do not involve the participation of other pituitary cell types. Preincubation of pituitary cells with stimulatory concentrations of arachidonic acid for up to 120 min did not alter the subsequent LH responses elicited by GnRH, indicating that the secretory mechanism was unimpaired by arachidonate treatment and that no cross-desensitization occurs during sequential exposure of gonadotrophs to the two stimuli of LH release. Cyclic adenosine 3',5-monophosphate (cAMP) production was stimulated by 10 microM arachidonic acid to the same degree (about 2-fold) as by GnRH, but did not parallel the progressive LH response to higher arachidonate concentrations. cGMP production was initially stimulated by addition of arachidonic acid but returned to the control value after 5 min, whereas GnRH typically elicited a prolonged cGMP response. In contrast to the calcium-independent action of arachidonic acid, the stimulatory effect of 5-HETE on LH release required the presence of extracellular Ca2+, as previously observed for GnRH. These findings demonstrate that arachidonic acid and its metabolite, 5-HETE, partially reproduce the actions of GnRH upon LH release and cyclic nucleotide production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) stimulated the formation of two major metabolites of the 5-lipoxygenase pathway, leukotriene (LT) B4 and LTC4, as well as luteinizing hormone (LH) release in primary cultures of rat anterior pituitary cells. Several lines of evidence suggested the presence of a GnRH-dependent pituitary endocrine system in which LTs act as second messengers for LH release: (i) GnRH-dependent LT formation was observed within 1 min and immediately preceded GnRH-induced LH release, whereas exogenous LTs stimulated LH release at low concentrations; (ii) the dose responses of GnRH-induced LT production and LH release were similar and both effects required the presence of extracellular Ca2+ ions; (iii) GnRH-induced LH release was blocked by up to 45% following the administration of several LT receptor antagonists; (iv) LTE4 action on LH secretion was entirely abolished by LT receptor antagonists; and (v) an activator of protein kinase C acted synergistically with LTE4 to induce LH release. The major source of LT formation in the pituitary cell cultures appeared to be the gonadotrophs, as shown by GnRH receptor desensitization experiments. The results demonstrate the presence of a GnRH-activatable 5-lipoxygenase pathway in anterior pituitary cells and provide strong support for the hypothesis that LTs play a role in LH release in the GnRH signaling pathway.  相似文献   

18.
BACKGROUND: It is well established that ovarian steroids modulate gonadotropin secretion from anterior pituitary cells. It has been speculated that insulin and IGF-I might influence gonadotropin secretion. OBJECTIVE: To investigate the effects of IGF-I and estradiol alone, or combinations of IGF-I with insulin and estradiol on GnRH-stimulated LH release from female rat pituitary cells in serum-supplemented and serum-free culture conditions. METHODS: Pituitary cells were incubated for 24 h or 48 h with a series of increasing concentrations of IGF-I or estradiol and stimulated with 1 nmol/l GnRH for 3 h. To determine the interaction of IGF-I and estradiol on GnRH-stimulated LH secretion, cells were exposed to increasing concentrations of IGF-I and 100 pmol/l estradiol for 24 h. We also investigated the effects of combined treatment with IGF-I and insulin on GnRH-stimulated LH secretion. RESULTS: Our findings indicate that long-term IGF-I treatment (24 h) alone has a significant augmenting effect on GnRH-stimulated LH release in serum-free medium only, with a maximum at low concentrations (10 and 100 pmol/l). Estradiol significantly increased GnRH-induced LH release in a dose-dependent manner. The extent of GnRH-stimulated LH secretion by long-term estradiol treatment (24 h) was significantly greater in serum-supplemented (+42%) medium than in serum-free medium. Estradiol facilitated IGF-I-primed LH responses to GnRH in serum-free medium. In contrast, in serum-supplemented medium, the facilitating potential of estradiol was lower. We also found that, in GnRH-stimulated cells, LH release was augmented by insulin treatment, in contrast to quiescent cells that had been pretreated with 100 pmol/l IGF-I alone and 1 nmol/l insulin alone. CONCLUSIONS: IGF-I and to a lesser extent insulin stimulate GnRH-induced LH secretion from pituitary gonadotrophs. This action is enhanced by estradiol treatment of the cells. However, the well known stimulatory action of estradiol on LH secretion is dependent on the presence of growth factors.  相似文献   

19.
Follicle-stimulating hormone (FSH)-suppressing protein (FSP) or follistatin, a novel gonadal glycoprotein hormone, has been shown to have chronic inhibitory effects on the secretion of both FSH and luteinizing hormone (LH) in response to gonadotropin-releasing hormone (GnRH) in vitro. The present study was designed to investigate the acute effects of bovine FSP on GnRH-stimulated gonadotropin secretion and to examine the potential subcellular sites of this action of FSP using cultured pituitary cells. Anterior pituitaries from adult male Sprague-Dawley rats were enzymatically dispersed and cultured for 48 h, after which the cells were treated with bovine FSP for 6 h, followed by a 4 h stimulation with secretagogues in the continued presence of FSP. Results showed that the 35 kDa form of bovine FSP (0.1-3 nM) dose-dependently suppressed GnRH-stimulated FSH and LH secretion, with inhibition of 38 and 25%, respectively, at 3 nM. In addition, FSP suppressed gonadotropin secretion in response to activators of protein kinase C (phorbol 12-myristate 13-acetate (PMA) and mezerein) and a calcium ionophore (A23187). However, FSP had no effect on gonadotropin secretion evoked by melittin, an activator of phospholipase A2. Furthermore, 35 kDa bovine FSP did not compete with GnRH for GnRH binding sites in a direct competition study and treatment of cultured pituitary cells with FSP (0.1-3 nM) for 10 h did not alter the number of GnRH binding sites on the cell membranes. Finally, similar inhibitory effects on gonadotropin secretion in response to GnRH, PMA and mezerein were obtained with the 31 and 39 kDa forms of bovine FSP, each at a concentration of 1 nM. We conclude from the present study that FSP acutely inhibits GnRH-stimulated gonadotropin secretion in cultured pituitary cells, and that FSP exerts its action beyond the GnRH receptor, possibly by affecting the protein kinase C and/or the calcium-calmodulin systems.  相似文献   

20.
To investigate whether food deprivation affects hormone release from pituitary gonadotrophs, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responses to intravenous (IV) administration of 50 micrograms gonadotropin-releasing hormone (GnRH) were determined in 12 healthy subjects (six women and six men) after an overnight fast and after a fasting period of 56 hours. In the female participants, these GnRH tests were performed early in the follicular phase of the menstrual cycle. Blood glucose declined during the fast from 4.4 +/- 0.1 (mean +/- SEM) to 3.3 +/- 0.1 mmol/L (P less than .001). LH and FSH responsiveness to GnRH--as reflected by hormone incremental areas--increased from 1973 +/- 256 to 3267 +/- 450 (IU/L X min) for LH (P less than .001), and from 376 +/- 44 to 705 +/- 112 (IU/L X min) for FSH (P less than .01). When control studies were carried out in nonfasted subjects in exactly the same way as in the fasted participants, the gonadotropin responsiveness to GnRH did not change significantly between the tests. To explore possible mechanisms behind the increased gonadotropin responsiveness in fasted subjects, six of the above mentioned healthy women were given nine small oral doses of glucose (each dose 0.5 g/kg) during an additional 56-hour fast to prevent blood glucose from falling significantly during the period of food deprivation. This did not change the hormone response pattern at all, since both the LH and the FSH responses to GnRH increased significantly during the glucose-supplemented fasting period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号