首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have determined the agonist activity of a number of natural prostaglandins and prostaglandin analogs at the FP prostaglandin receptor cloned from a human ciliary body cDNA library using phosphoinositide (PI) turnover assays. Travoprost acid (EC50 = 3.2 +/- 0.6 nM) was the most potent agonist in these cells followed by bimatoprost free acid (17-phenyl-trinor PGF2alpha; EC50 = 5.8 +/- 2.6 nM), fluprostenol (EC50 = 6.1 +/- 1.5 nM), and latanoprost free acid (PHXA85; EC50 = 54.6 +/- 12.4 nM) which was 17-fold weaker (p < 0.001) than travoprost acid. Unoprostone and S-1033 were significantly (p < 0.001) weaker than travoprost acid. The amide prodrug, bimatoprost (EC50 = 694 +/- 293 nM), activated this FP receptor with an intermediate potency. The isopropyl ester prodrugs, travoprost (EC50 = 42.3 +/- 6.7 nM), latanoprost (EC50 = 126 +/- 347 nM) and unoprostone isopropyl ester (EC50 = 9,100 +/- 2,870 nM), also exhibited FP agonist activity. However, other compounds such as PGI2, bradykinin, histamine, and serotonin were inactive. The agonist activities of bimatoprost, unoprostone (UF-021), fluprostenol and acids of travoprost and latanoprost were antagonized by AL-8810 (11beta-fluoro- 15-epi-15-indanyl-PGF2alpha), an FP-receptor-selective antagonist (Ki = 1.0 - 2.1 microM; n = 3). These studies have demonstrated, for the first time, agonist activities of the currently known and marketed ocular hypotensive prostaglandin analogs at the cloned human ciliary body FP prostaglandin receptor.  相似文献   

2.
Travoprost is the isopropyl ester prodrug of a high affinity, selective FP prostaglandin full receptor agonist. In contrast to travoprost acid's high affinity and efficacy at the FP receptor, there is only sub-micromolar affinity for the DP, EP1, EP3, EP4, IP, and TP receptors. Travoprost produced a lower incidence of ocular irritation than PGF20 isopropyl ester at a dose of 1 microg in the New Zealand albino (NZA) rabbit. Topical ocular application of travoprost produced a marked miotic effect in cats following doses of 0.01, 0.03 and 0.1 microg. In the ocular hypertensive monkey, b.i.d. application of 0.1 and 0.3 microg of travoprost afforded peak reduction in intraocular pressure (IOP) of 22.7% and 28.6%, respectively. Topical application of travoprost was well tolerated in rabbits, cats and monkeys, causing no ocular irritation or discomfort at doses up to 1 microg. Travoprost is a promising ocular hypotensive prostaglandin FP derivative that has the ocular hypotensive efficacy of PGF2alpha isopropyl ester but with less severe ocular side effects.  相似文献   

3.
The structure-activity studies that led to the identification of travoprost, a highly selective and potent FP prostaglandin analog, and AL-6598, a DP prostaglandin analog, are detailed. In both series, the 1-alcohol analogs are very effective and are thought to be acting as prodrugs for the biologically active carboxylic acids. The efficacy of amide prodrugs depends on the degree of substitution and the size of the substituents. Selected compounds are profiled in vitro and in vivo preclinically. Clinical studies show that travoprost 0.004% (isopropyl ester) provided intraocular pressure control superior to timolol 0.5% when used as monotherapy in patients with open-angle glaucoma or ocular hypertension. In clinical studies, AL-6598 0.01% provided a sustained intraocular pressure reduction with q.d. application; b.i.d. provided greater intraocular pressure control. The acute and, apparently, conjunctival hyperemia associated with topical ocular AL-6598 can be attenuated while maintaining intraocular pressure-lowering efficacy by formulating with brimonidine.  相似文献   

4.
PURPOSE: This study analyzes additional mechanisms behind the ocular hypotensive effect of prostaglandin F (PGF) receptor (FP receptor) agonists PGF2alpha and fluprostenol (fluprostenol-isopropyl ester [travoprost]), which reduce intraocular pressure (IOP) in patients with glaucoma probably by enhancing uveoscleral flow. The trabecular meshwork (TM) is actively involved in IOP regulation through contractile mechanisms. Contractility of TM is induced by endothelin (ET)-1, a possible pathogenic factor in glaucoma. The involvement of FP receptor agonists in the ET-1 effects on TM function was studied. METHODS: The effects of FP receptor agonists on contractility of bovine TM (BTM) were investigated using a force-length transducer. The effects of PGF2alpha on intracellular Ca2+ ([Ca2+]i) mobilization in cultured cells were measured using fura-2AM. The expression of the FP receptor protein was examined using Western blot analysis. RESULTS: The ET-1-induced (10(-8) M) contraction in isolated BTM was inhibited by PGF2alpha (10(-6) M) and fluprostenol (10(-6) M). This effect was blocked by FP receptor antagonists. Carbachol-induced contraction or baseline tension was not affected by PGF2alpha or fluprostenol. In cultured TM cells, ET-1 caused a transient increase in [Ca2+]i that was reduced by PGF2alpha. No reduction occurred in the presence of the FP receptor antagonist Al-8810. Western blot analysis revealed the expression of the FP receptor in native and cultured TM. CONCLUSIONS: FP receptor agonists operate by direct interaction with ET-1-induced contractility of TM. This effect is mediated by the FP receptor. Thus, FP receptor agonists may decrease IOP by enhancing aqueous humor outflow through the TM by inhibiting ET-1-dependent mechanisms.  相似文献   

5.
6.
7.
目的:研究人重组肿瘤坏死因子-α(rhTNF-α)对人小梁细胞(humantrabecularmeshworkcells,HTM)凋亡的影响,探讨其在原发性青光眼发病中的作用机制。方法:组织块法原代培养人小梁细胞,取第3~5代细胞用于实验。不同浓度的rhTNF-α与细胞共同孵育24h,采用Annexin-ⅴ联合PI双染流式细胞术,测定细胞凋亡率,结合荧光显微镜来观查凋亡细胞。结果:浓度低于0.01MU/L的肿瘤坏死因子-α作用24h对人小梁细胞凋亡无明显影响,浓度0.01MU/L及以上的肿瘤坏死因子-α作用24h可明显增加人小梁细胞凋亡率,凋亡率与肿瘤坏死因子-α浓度成正比。结论:肿瘤坏死因子-α可以诱导体外培养的人小梁细胞发生凋亡,可能参与了青光眼发病中小梁细胞的损害过程。  相似文献   

8.
9.
Natural prostaglandins (PGs) such as PGD2, PGE2, PGF2(2alpha), and PGI2 exhibited the highest affinity for their respective cognate receptors, but were the least selective agents when tested in receptor binding assays. Travoprost acid ([+]-fluprostenol) was the most FP-receptor-selective compound, exhibiting a high affinity (Ki = 35 +/- 5 nM) for the FP receptor, and minimal affinity for DP (Ki = 52,000 nM), EP1 (Ki = 9540 nM), EP3 (Ki = 3501 nM), EP4 (Ki = 41,000 nM), IP (Ki > 90,000 nM), and TP (Ki = 121,000 nM) receptors. Travoprost acid was the most potent PG analog tested in FP receptor functional phosphoinositide turnover assays in the following cell types: human ciliary muscle (EC50 = 1.4 nM), human trabecular meshwork (EC50 = 3.6 nM), and mouse fibroblasts and rat aortic smooth muscle cells (EC50 = 2.6 nM). Although latanoprost acid exhibited a relatively high affinity for the FP receptor (Ki = 98 nM), it had significant functional activity at FP (EC50 = 32-124 nM) and EP1 (EC50 = 119 nM) receptors. Bimatoprost acid was less selective, exhibiting a relatively high affinity for the FP (Ki = 83 nM), EP1 (Ki = 95 nM), and EP3 (Ki = 387 nM) receptors. Bimatoprost acid exhibited functional activity at the EP1 (EC50 = 2.7 nM) and FP (EC50 = 2.8-3.8 nM in most cells) receptors. Bimatoprost (nonhydrolyzed amide) also behaved as an FP agonist at the cloned human FP receptor (EC50 = 681 nM), in h-TM (EC50 = 3245 nM) and other cell types. Unoprostone and S-1033 bound with low affinity (Ki = 5.9 microM to > 22 microM) to the FP receptor, were not selective, but activated the FP receptor. In conclusion, travoprost acid has the highest affinity, the highest FP-receptor-selectivity, and the highest potency at the FP receptor as compared to the other ocular hypotensive PG analogs known so far, including free acids of latanoprost, bimatoprost, and unoprostone isopropyl ester.  相似文献   

10.
PURPOSE: To establish a mouse model for the pharmacological analysis of antiglaucoma drugs, considering the effect of variations in IOP during 24 hours on the drugs' effects, and to evaluate the effect of a newly developed FP agonist, tafluprost, on mouse IOP, in comparison with three clinically available prostaglandin (PG) analogues. METHODS: Inbred adult ddY mice were bred and acclimatized under a 12-hour light-dark cycle. With mice under general anesthesia, a microneedle method was used to measure IOP. A single drop of 3 muL of either drug or vehicle solution was topically applied once into one eye in each mouse, in a blinded manner, with the contralateral, untreated eye serving as the control. IOP reduction was evaluated by the difference in IOP between the treated and untreated eyes in the same mouse. First, to determine the period feasible for demonstrating a larger magnitude of ocular hypotensive effect, the 24-hour diurnal variation in mouse IOP was measured, and 0.005% latanoprost was applied at the peak or trough time of variation in 24-hour IOP. The time point of the most hypotensive effect was selected for further studies, to evaluate the effects of PG analogues. Second, mice received tafluprost (0.0003%, 0.0015%, 0.005%, or 0.015%), latanoprost (0.001%, 0.0025%, or 0.005%), travoprost (0.001%, 0.002%, or 0.004%), or isopropyl unoprostone (0.03%, 0.06%, or 0.12%), and each corresponding vehicle solution. IOP was then measured at 1, 2, 3, 6, 9, and 12 hours after drug administration. The ocular hypotensive effects of the other three PG analogues were compared with that of tafluprost. All experiments were conducted in a masked study design. RESULTS: The IOP in the untreated mouse eye was higher at night than during the day. Latanoprost significantly lowered IOP at night (21.4%), compared with the IOP in the untreated contralateral eye 2 hours after administration. The maximum IOP reduction was 20.2% +/- 2.0%, 18.7% +/- 2.5%, and 11.2% +/- 1.8% of that in the untreated eye 2 hours after administration of 0.005% tafluprost, 0.005% latanoprost, and 0.12% isopropyl unoprostone, respectively, whereas it was 20.8% +/- 4.6% at 6 hours with 0.004% travoprost (n = 7 approximately 17). The order of ocular hypotensive effects of three clinically used PG analogues in mice was comparable to that in humans. Area under the curve (AUC) analysis revealed dose-dependent IOP reductions for each PG analogue. Tafluprost 0.005% decreased IOP more than 0.005% latanoprost at 3, 6, and 9 hours (P = 0.001-0.027) or 0.12% unoprostone at 2, 3, and 6 hours (P = 0.0004-0.01). CONCLUSIONS: The 24-hour variation in mouse eyes should be taken into consideration when evaluating the reduction of IOP. The mouse model was found to be useful in evaluating the pharmacological response to PG analogues. A newly developed FP agonist, 0.005% tafluprost, lowered normal mouse IOP more effectively than did 0.005% latanoprost.  相似文献   

11.
12.
PURPOSE: To compare the intraocular pressure-lowering effect of unoprostone isopropyl (unoprostone) 0.12% and latanoprost 0.005%. A correlation between the intraocular pressure-lowering effect of unoprostone and latanoprost was also evaluated. METHODS: A single-masked randomized study included 18 patients between 49 and 68 years (mean, 60.7 +/- 5.1 years) with an intraocular pressure of both eyes from 21 to 27 mm Hg. The patients were prospectively randomized to receive latanoprost in the right eye and unoprostone in the left eye, or unoprostone in the right eye and latanoprost in the left eye. The patients were followed up for 8 weeks. This study evaluated the intraocular pressure-lowering effect and incidence of drug-related side effects. RESULTS: Mean baseline intraocular pressure was 22.8 +/- 1.2 mm Hg in latanoprost-treated eyes and 22.4 +/- 1.0 mm Hg in unoprostone-treated eyes; there was no statistically significant difference between these groups. Mean intraocular pressure at 8 weeks after the start of the administration was 16.7 +/- 2.0 mm Hg in latanoprost-treated eyes and 19.0 +/- 1.5 mm Hg in unoprostone-treated eyes. Patients in the latanoprost-treated group showed a greater intraocular pressure reduction compared with those in the unoprostone-treated group. Mean intraocular pressure changes in latanoprost-treated eyes were significantly greater at every visit (P < 0.0001). A change of intraocular pressure at 8 weeks in the latanoprost-treated eyes was significantly correlated with that in the contralateral unoprostone-treated eyes (r = 0.665, P = 0.0013) (Figure). There was no significant difference in the rate of ocular side effects between latanoprost- and unoprostone-treated eyes. CONCLUSIONS: Latanoprost appears to have a more beneficial effect for intraocular pressure control compared with unoprostone. An intraocular pressure reduction in the latanoprost-treated eyes was significantly correlated with that in the contralateral unoprostone-treated eyes. There was no significant difference in the incidence of ocular side effects between both drugs. Further investigation using more cases and longer follow-up periods are needed.  相似文献   

13.
14.
The pharmacological differences between isopropyl unoprostone (referred to as unoprostone) and latanoprost, concerning their induction of endogenous prostaglandin E(2)(PGE(2)) and affinity to a human prostaglandin transporter (PGT), were investigated.Freshly dissected bovine iris tissues were incubated with major intraocular metabolites of unoprostone, M1 and M2, acid of latanoprost, or PGF(2 alpha), and PGE(2)induction was measured. Affinities of M1, M2, latanoprost, acid of latanoprost, and PGF(2 alpha)to PGT molecule were measured using PGT-cDNA transfected HeLa cells by an isotopic influx assay.(3)H-unoprostone was incubated with freshly prepared serum, aqueous humor, or frozen stored fetal bovine serum (FBS), and the radioactivity of supernatants was measured to investigate their metabolism of(3)H-unoprostone.M2, acid of latanoprost, and PGF(2 alpha)significantly increased a release of PGE(2)compared with the control. 10 microM indomethacin completely inhibited PGE(2)induction by acid of latanoprost and PGF(2 alpha), while 100 microM indomethacin was required to inhibit PGE(2)induction completely by M1 and M2. Unoprostone, M1, M2, and latanoprost showed little affinity to PGT, while acid of latanoprost had an affinity to PGT. Freshly prepared serum and aqueous humor metabolized unoprostone, but frozen stored FBS did not. The release of endogenous PGE(2)may play an important role of action by means of PG analogs, and differences in indomethacin-related inhibition of PGE(2)release and in affinities to PGT may in part cause their different actions.  相似文献   

15.
16.
PURPOSE: To localize the collagen type VI, laminin et fibrillin in glaucomatous and non-glaucomatous trabecular meshworks. MATERIAL: Twenty-four trabeculectomy specimens from patients suffering of primary open angle glaucoma (POAG, 15 cases), pigmentary glaucoma (PG, 2 cases), pseudo-exfoliative glaucoma (PEG, 7 cases) and 2 non glaucomatous aged trabeculums of enucleated eyes. METHODS: Post-embedding immunogold indirect labelings on 4% paraformaldehyde-0.1% glutaraldehyde fixed and LRWhite embedded samples. RESULTS: Labeling of type VI collagen was observed on the 64 nm collagen fibers in all samples, less intensively on POAG or PG disorganised microfibril areas, and especially on PEG pseudo-exfoliative material deposits. Laminin labeling was strongly positive on healthy basal membranes and less intense on POAG and PG abnormal basal membranes. Fibrillin labeling was found on POAG or PG disorganized microfibril areas, especially around pigment granules, around 64 nm striated collagen fibers and with a mild intensity on POAG and PG juxtacanalicular microgranular substance areas. No labeling was found on pseudo-exfoliative substance deposits. CONCLUSION: Collagen type VI abundance in pseudo-exfoliative substance deposits could result from a fibrillogenesis abnormality. POAG and PG basal membrane ultrastructural abnormalities and weak laminin content could share the origin. The abundance of fibrillin in disorganized microfibrils could result from the chronic elevated tensile strength due to ocular hypertony.  相似文献   

17.
Time-averaged human electroretinogram (ERG) responses were determined for several workplace visual stimuli which are temporally modulated at rates exceeding the perceptual critical fusion frequency (CFF). A clearly identifiable synchronous response was in evidence for a video display terminal (VDT) stimulus operating with a refresh rate as high as 76 Hz. A directly viewed fluorescent luminaire with controllable driving frequency elicited a synchronous response at rates as high as 145 Hz. In addition, an intense stimulus created by modulating the light from a slide projector produced responses at least as high as 162 Hz. The implications of these high-frequency responses are representing a potential basis for visual symptoms are discussed.  相似文献   

18.
19.
Phospholipase C induced phosphoinositide (PI) turnover, intracellular Ca(2+) ([Ca(2+)](i)) mobilization and mitogen-activated protein (MAP) kinase activation by FP-class prostaglandin analogs was studied in normal human ciliary muscle (h-CM) cells. Agonist potencies obtained in the PI turnover assays were: travoprost acid ((+)-fluprostenol; EC(50) = 2.6 +/- 0.8 nM) > bimatoprost acid (EC(50) = 3.6 +/- 1.2 nM) > (+/-)-fluprostenol (EC(50) = 4.3 +/- 1.3 nM) > prostaglandin F(2 alpha) (PGF(2 alpha)) (EC(50) = 134 +/- 17 nM) > latanoprost acid (EC(50) = 198 +/- 83 nM) > S-1033 (EC(50) = 2930 +/- 1420 nM) > unoprostone (EC(50) = 5590 +/- 1490 nM) > bimatoprost (EC(50) = 9600 +/- 1100 nM). Agonist potencies in h-CM cells correlated well with those previously obtained for the cloned human ciliary body-derived FP receptor (r = 0.96, p< 0.001) and that present on h-TM cells (r = 0.94, p< 0.0001). Travoprost acid, PGF(2 alpha) and unoprostone also stimulated [Ca(2+)](i) mobilization in h-CM cells with travoprost acid being the most potent agonist. MAP kinase activity was stimulated in the h-CM cells with the following rank order of activity (at 100 nM): travoprost acid > PGF(2 alpha) > latanoprost acid > PGD(2) > bimatoprost > latanoprost = bimatoprost acid = fluprostenol > PGE(2) = S-1033 > unoprostone > PGI(2). The PI turnover, [Ca(2+)](i) mobilization and MAP kinase activation induced by several of these agonists was blocked by the FP receptor antagonist, AL-8810 (11 beta-fluoro-15-epiindanyl PGF(2 alpha)) (e.g. K(i) = 5.7 microM versus PI turnover). These studies have characterized the biochemical and pharmacological properties of the native FP prostaglandin receptor present on h-CM cells using three signal transduction mechanism assays and a broad panel of FP-class agonist analogs (including free acids of bimatoprost, travoprost and latanoprost) and the FP receptor antagonist, AL-8810.  相似文献   

20.
This study was designed to determine the activity of bremazocine (BRE), a relatively selective kappa opioid receptor agonist, on intraocular pressure (IOP), aqueous humor formation and pupil diameter (PD) in conscious, normal, dark-adapted New Zealand white (NZW) rabbits. IOP was measured in normal and unilaterally sympathectomized rabbits using a calibrated pneumatonometer and the aqueous flow rate was determined by the use of a Fluorotron Master. A masked-design study was conducted in which the rabbits' eyes were treated with BRE topically and unilaterally; the fellow eyes received vehicle. IOP and PD measurements were taken at 0.5 hr and 0 time before BRE and 0.5, 1, 2, 3, 4 and 5 hr post-treatment. Fluorophotometry recordings were taken at 1 hr before and 0.5, 1.5, 2.5 and 3.5 hr after topical application of the drug or vehicle. The effect of the relatively selective kappa opioid receptor antagonist, nor-binaltorphimine (nor-BNI), on bremazocine-induced changes in IOP, PD and aqueous flow was also determined. BRE (10 and 100 micrograms 25 microliters-1 vehicle) produced dose-related, bilateral reductions in IOP, PD and aqueous humor flow. A large increase in IOP (14 mmHg) was observed when BRE (100 micrograms) was applied to sympathectomized eyes. This ocular hypertensive effect was antagonized when the sympathectomized eyes were pretreated with naloxone (200 micrograms), a non-selective opioid receptor antagonist. BRE (10 and 100 micrograms) decreased the aqueous humor flow rate bilaterally by approximately 48 and 60%, respectively, at 0.5 hr after administration to the ipsilateral eye. Nor-BNI (100 micrograms) antagonized the effect of BRE (10 micrograms) on IOP and aqueous flow rates more effectively than on PD. These data indicate that bremazocine causes reductions in IOP by suppressing aqueous flow, but the ocular hypotensive effects are dependent on the presence of intact sympathetic nerves. Antagonism of BRE's effects on aqueous humor dynamics by nor-BNI suggests that the mechanism of IOP and aqueous flow reduction may involve, in part, an action on kappa receptors. Further experiments are necessary to fully define the opioid receptor populations in the ciliary body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号