首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the regenerative pattern of cutaneous nerves in simian immunodeficiency virus (SIV)‐infected and uninfected macaques, excisional axotomies were performed in nonglabrous skin at 14‐day intervals. Samples were examined after immunostaining for the pan‐axonal marker PGP 9.5 and the Schwann cell marker p75 nerve growth factor receptor. Collateral sprouting of axons from adjacent uninjured superficial dermal nerve bundles was the initial response to axotomy. Both horizontal collateral sprouts and dense vertical regeneration of axons from the deeper dermis led to complete, rapid reinnervation of the epidermis at the axotomy site. In contrast to the slower, incomplete reinnervation previously noted in humans after this technique, in both SIV‐infected and uninfected macaques epidermal reinnervation was rapid and completed by 56 days postaxotomy. p75 was densely expressed on the Schwann cells of uninjured nerve bundles along the excision line and on epidermal Schwann cell processes. In both SIV‐infected and uninfected macaques, Schwann cell process density was highest at the earliest timepoints postaxotomy and then declined at a similar rate. However, SIV‐infection delayed epidermal nerve fiber regeneration and remodeling of new sprouts at every timepoint postaxotomy, and SIV‐infected animals consistently had lower mean epidermal Schwann cell densities, suggesting that Schwann cell guidance and support of epidermal nerve fiber regeneration may account for altered nerve regeneration. The relatively rapid regeneration time and the completeness of epidermal reinnervation in this macaque model provides a useful platform for assessing the efficacy of neurotrophic or regenerative drugs for sensory neuropathies including those caused by HIV, diabetes mellitus, medications, and toxins. J. Comp. Neurol. 514:272–283, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Human immunodeficiency virus (HIV)-associated sensory neuropathy (HIV-SN) is the most common neurological complication of HIV infection. Currently, the pathogenesis of HIV-SN is unknown. Because there is no convincing evidence of neuronal infection, HIV neurotoxicity is likely to be effected either by secreted viral proteins such as the envelope glycoprotein gp120 or by neurotoxic cytokines released from infected/activated glial cells. We describe a model of gp120 toxicity to primary sensory neurons, in which gp120 induces neuritic degeneration and neuronal apoptosis. We show that Schwann cells, the cells that ensheath peripheral nerve axons, and which traditionally have been viewed as having a passive, supporting role, mediate this neurotoxicity. Ligation of the chemokine receptor CXCR4 on Schwann cells by gp120 resulted in the release of RANTES, which induced dorsal root ganglion neurons to produce tumor necrosis factor-alpha and subsequent TNFR1-mediated neurotoxicity in an autocrine fashion. This newly described Schwann cell-neuron interaction may be pathogenically relevant not only in HIV-SN but also in other peripheral neuropathies.  相似文献   

3.
Building upon previous in vitro studies, the present investigation involves an in vivo examination of Schwann cell programmed cell death (PCD) and development in the brachial spinal ventral roots of embryonic mice. The period of Schwann cell PCD was found to occur between embryonic days (E) 11.5 and 18.5, which is in close coincidence with the PCD period of associated brachial motoneurons (E13.5-E18.5). Additionally, Schwann cells exhibited a peak in proliferation at E11.5, and differentiation from the precursor to the immature Schwann cell stage between E12.5 and E14.5. Axon-mediated Schwann cell survival was demonstrated in vivo by excitotoxic elimination of motoneurons and their axons, via NMDA treatment in utero. This treatment increased apoptotic Schwann cell death within degenerating ventral roots. Conversely, in utero co-treatment of glial growth factor (GGF) with NMDA resulted in decreased Schwann cell death, a finding which supports previous reports of the promotion of Schwann cell survival by GGF. Analysis of mice lacking Bax, a pro-apoptotic Bcl-2 protein, revealed that Schwann cell PCD occurred independently of Bax. However, owing to the lack of motoneuron PCD in Bax-knockout mice, and the corresponding increase in the number of ventral root axons, a decrease in Schwann cell PCD was observed during the normal period of motoneuron PCD. In conclusion, our findings regarding the regulation of Schwann cell development in vivo are consistent with the conclusions from in vitro studies, including a dependency on axons for survival and proliferation signals, timing of differentiation, and a dependency on GGF.  相似文献   

4.
Vasculitis causing peripheral neuropathy may be the first sign of HIV infection. We report four such cases in whom the onset of peripheral neuropathy led to the detection of HIV infection. Two patients presented with features of mononeuritis multiplex, while the other two had a lumbosacral polyradiculopathy. A prior history of blood transfusion was forthcoming in one of the patients. Sural nerve biopsies in all the four cases and the muscle biopsy in two, histologically showed evidence of vasculitis. Immunohistochemically, the viral antigen was not demonstrable in any of the biopsies, but on electron microscope, virus-like particles were identifiable in the Schwann cell cytoplasm and the perivascular macrophages in one case. To the best of our knowledge, this is the only report that has documented the virus in the Schwann cells as well as the perivascular macrophages lending credence to the fact that these viruses are neurotropic as well as lymphotropic. Immunoglobulin deposits were not demonstrable in any of the cases, suggesting that direct viral invasion may have a role in the pathogenesis of peripheral nerve vasculitis.  相似文献   

5.
Axon regeneration in vivo is blocked at boundaries between Schwann cells and astrocytes, such as occur at the dorsal root entry zone and around peripheral nerve or Schwann cell grafts. We have created a tissue culture model of these boundaries in Schwann cell - astrocyte monolayer co-cultures. Axon behaviour resembles that in vivo, with axons showing a strong preference for Schwann cells over astrocytes. At boundaries between the two cell types, axons growing on astrocytes cross readily onto Schwann cells, but only 15% of axons growing on Schwann cells are able to cross onto astrocytes. Treatment with chondroitinase or chlorate to reduce inhibition by proteoglycans did not change this behaviour. The neural adhesion molecule L1 is present on Schwann cells and not astrocytes, and manipulation of L1 by application of an antibody, L1-Fc in solution, or adenoviral transduction of L1 into astrocytes increased the proportion of axons able to cross onto astrocytes to 40-50%. Elevating cAMP levels increased crossing from Schwann cells onto astrocytes in live and fixed cultures, and had a co-operative effect with NT-3 but not with NGF. Inactivation of Rho with a cell-permeant form of C3 exoenzyme also increased crossing from Schwann cells to astrocytes. Our experiments indicate that the preference of axons for Schwann cells is largely mediated by the presence of L1 on Schwann cells but not astrocytes, and that manipulation of growth cone signalling pathways can allow axons to disregard boundaries between the two cell types.  相似文献   

6.
Schwann cell-axon contacts in developing and regenerating peripheral nerve in situ contain high levels of the recognition molecules L1 and N-CAM, while the molecules are not detectable at the ab-axonal cell surface of Schwann cells. To investigate whether Schwann cells, axons, or both contribute to the localization of the molecules at Schwann cell-axon contacts, a heterologous cell culture system consisting of Schwann cells from mice and neurons from chicken was investigated by immunoelectron microscopy using species-specific L1 and N-CAM antibodies. We showed that Schwann cells expressed both molecules only at sites of contact between Schwann cells and neurites and other Schwann cells. Schwann cells not in contact with other cells expressed both molecules on their entire cell surface. In contrast, neurites expressed G4, an L1-related molecule in chicken, on their entire cell surface independently of whether they were in contact with other cells or not. Thus, cultured Schwann cells localize L1 and N-CAM selectively at cell contact sites and may thereby stabilize their attachment to the neighboring cellular partners. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Schwann cells transplantation has considerable promise in spinal cord trauma to bridge the site of injury and for remyelination in demyelinating conditions. They support axonal regeneration and sprouting by secreting growth factors and providing a permissive surface and matrix molecules while shielding axons from the inhibitory environment of the central nervous system. However, following transplantation Schwann cells show limited migratory ability and they are unable to intermingle with the host astrocytes. This in turn leads to formation of a sharp boundary and an abrupt transition between the Schwann cell graft and the host tissue astrocytes, therefore preventing regenerating axons from exiting the graft. The objective of this study was to identify inhibitory elements on astrocytes involved in restricting Schwann cell migration. Using in vitro assays of cell migration, we show that aggrecan produced by astrocytes is involved in the inhibition of Schwann cell motility on astrocytic monolayers. Knockdown of this proteoglycan in astrocytes using RNAi or digestion of glycosaminglycan chains on aggrecan improves Schwann cell migration. We further show aggrecan mediates its effect by disruption of integrin function in Schwann cells, and that the inhibitory effects of aggrecan can overcome by activation of Schwann cell integrins. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Neurons regulate Schwann cell proliferation, but little is known about the molecular basis of this interaction. We have examined the possibility that cyclin D1 is a key regulator of the cell cycle in Schwann cells. Myelinating Schwann cells express cyclin D1 in the perinuclear region, but after axons are severed, cyclin D1 is strongly upregulated in parallel with Schwann cell proliferation and translocates into Schwann cell nuclei. During development, cyclin D1 expression is confined to the perinuclear region of proliferating Schwann cells and the analysis of cyclin D1-null mice indicates that cyclin D1 is not required for this type of Schwann cell proliferation. As in the adult, injury to immature peripheral nerves leads to translocation of cyclin D1 to Schwann cell nuclei and injury-induced proliferation is impaired in both immature and mature cyclin D1-deficient Schwann cells. Thus, our data indicate that the molecular mechanisms regulating proliferation of Schwann cells during development or activated by axonal damage are fundamentally different.  相似文献   

9.
Schwann cell cultures prepared from postnatal Sprague-Dawley rat sciatic nerves were used to demonstrate the presence of specific receptors for the beta-subunit of nerve growth factor (NGF) on rat Schwann cells. Indirect immunofluorescence microscopy with a monoclonal antineuronal NGF receptor (NGFR) antibody indicated that NGFR antigen was expressed on the surface of Schwann cells but not of endoneurial fibroblasts. Studies with 125I-NGF confirmed this distribution of NGFR in the cultures and showed that the Schwann cell NGFR had a single NGF binding affinity (Kd of 1.8 x 10(-9) M). 125I-NGF binding by the cultured Schwann cells increased with time in vitro, reaching a plateau level on the 4th day, but decreased with increasing age, reaching 40% of the neonatal value in Schwann cells isolated from 12-day-old rats. Treatment of the cultures with NGF did not alter Schwann cell phenotype, survival or proliferation.  相似文献   

10.
Successful mammalian peripheral nerve regeneration is dependent on activated Schwann cells. Schwann cells facilitate neuronal regrowth through the production of tropic cell membrane molecules, neurotrophins, and extracellular matrix components. To better understand Schwann cell function in the regenerating nerve, we have designed a method of isolating proliferating adult Schwann cells from the injured rat sciatic nerve. Relying on the mitotic signal that is present after a crush injury, we can obtain sufficient numbers of dividing Schwann cells within one week of initial culture. A spontaneously immortal Schwann cell clone (iSC) was observed in and isolated from one of these primary cultures. These cells were transformed at a time of maximal Schwann cell activation in response to injury. Both the primary Schwann cells and the iSC have been characterized as Schwann cells by morphology, immunohistochemistry and gene expression.  相似文献   

11.
Mechanisms regulating Schwann cell proliferation during development are unclear. Schwann cell division is known to be driven by an unidentified mitogen present on the surface of axons, but it is not known whether other molecules play a role in regulating this proliferation. Transforming growth factor-beta (TGF-β) which is found in the developing peripheral nervous system (PNS) and is mitogenic for neuron-free Schwann cells in vitro could be involved. We have investigated the effects of TGF-β 1, TGF-β 2 and antibodies to TGF-β and TGF-β 2 on axon driven Schwann cell proliferation. Rat embryonic dorsal root ganglion neurons (DRG) neurons and Schwann cells from the sciatic nerve were isolated, purified and recombined in vitro. Confirming earlier reports by others, we observed that TGF-β 1 and TGF-β 2 added to the culture medium stimulated the proliferation of Schwann cells in the absence of neurons. However, when added to neuron-Schwann cell co-cultures, TGFβ caused a variable response ranging from no effect to moderate inhibition of Schwann cell proliferation in different experiments. A stimulation of Schwann cell proliferation by TGFβ was never observed in neuron-Schwann cell co-cultures. Antibodies to TGF-β and TGF-β 2 did not influence axon driven Schwann cell proliferation. To further determine the role of TGF-β in Schwann cell proliferation and myelination, we studied Schwann cell proliferation in cultures from mice in which the TGF-β 1 gene was delected by homologous recombination. Neuron-Schwann cell cultures from wild-type, heterozygous and homozygous mice were used. No differences were observed in either Schwann cell proliferation or myelination between cultures obtained from homozygous mutants and their heterozygous and wild-type controls. These findings suggest that TGF-β does not function as a part of the mitogenic mechanism presented by neurons to Schwann cells, but that the presence of active TGFβ in the cellular environment might regulate the degree of proliferation induced by neuronal contact. Copy 1995 Wiley-Liss, Inc.  相似文献   

12.
Schwann cell precursors and their development.   总被引:10,自引:0,他引:10  
K R Jessen  R Mirsky 《Glia》1991,4(2):185-194
During development of peripheral nerves, an apparently homogeneous pool of embryonic Schwann cells gives rise to two morphologically and antigenically distinct mature Schwann cell types. These are the myelin-forming cells associated with axons of larger diameter and the non-myelin-forming cells associated with axons of smaller diameter. The development of these cells from precursors that can be identified in early embryonic nerves can be followed with the help of antigenic differentiation markers. This development depends on Schwann cells retaining a close association with axons. The effect of axons can be mimicked in vitro by agents that elevate cAMP levels. This has given rise to the idea that the effects of axon-associated signals in Schwann cell development are to a significant extent mediated via elevation in Schwann cell cAMP levels. In vitro, the cAMP induced progression of cells from a premyelination state to a myelination state depends on withdrawal from the cell cycle. It is therefore possible that in vivo, the timing of myelin formation by individual Schwann cells is determined by signals that suppress proliferation.  相似文献   

13.
14.
Explants from embryonic rat retina plated on Schwann cell monolayers were used to examine the mechanisms by which these central neurons interact with Schwann cell surfaces. Embryonic retinal explants extend neurites reliably on Schwann cell surfaces (Kleitman et al., 1988, J. Neurosci. 8: 653). Antibodies to molecules thought to be present on Schwann cell surfaces (laminin and the 217C antigen), on retinal neurite surfaces (Thy-1.1), or on both surfaces (L1) were tested for their ability to influence this neurite growth. Of these, only antibodies to L1 were effective in blocking retinal neurite extension on Schwann cells. Inhibition of neurite growth by anti-L1 was shown to be specific to growth on Schwann cell surfaces because neurite growth on air-dried collagen (a substratum known to support retinal neurite outgrowth) was not affected. This blockage was dose-dependent. At a low titer of anti-L1 Fab fragments defasciculation of neurites was prominent; at high titers 95% of neurite outgrowth was inhibited. This virtual elimination of the ability of Schwann cell surfaces to support embryonic retinal neurite growth in the presence of antibodies to L1 indicates that binding of the L1 molecule is a critical component of the mechanism by which Schwann cells foster the growth of these neurites. The present experiments concur with the growing body of evidence that L1 plays an important role in supporting neurite growth on cell surfaces and raise the possibility that L1 may also mediate the striking ability of adult retinal axons to regenerate in a peripheral nerve environment.  相似文献   

15.
Chronic nerve compression (CNC), as in carpal tunnel syndrome, is a common cause of peripheral nerve dysfunction in humans. Previous studies using animal models have demonstrated progressive demyelination and a slowing of nerve conduction velocity. To characterize the Schwann cell response to CNC, we evaluated total Schwann cell number, apoptosis, and proliferation in an animal model of CNC. Design-based stereologic techniques revealed a striking transient increase in Schwann cell number following CNC. Schwann cell number increased sixfold relative to the normal nerve at the site of compression at 1 month and then slowly declined toward control levels. Nevertheless, assays of apoptosis (TUNEL and an antipoly-ADP-ribose polymerase labeling assays) revealed extensive Schwann cell apoptosis at 2 weeks postcompression, which is during the time when Schwann cell number was increasing. Electron microscopic analysis confirmed that these dramatic changes in Schwann cells occurred in the absence of axon degeneration and axonal swelling and before there were any detectable alterations in nerve conduction velocity. Counts of bromodeoxyuridine-labeled Schwann cells revealed that proliferation occurred concurrently with ongoing apoptosis. To define further the possible mitogenic properties of mechanical stimuli on Schwann cells, we used an in-vitro model to deliver shear stress in the form of laminar fluid flow to pure populations of Schwann cells and confirmed that mechanical stimuli induce Schwann cell proliferation. Our findings indicate that chronic nerve compression induces Schwann cell turnover with minimal axonal injury and support the idea that mechanical stimuli have a direct mitogenic effect on Schwann cells.  相似文献   

16.
Schwann cells develop within the ventral gray matter following exposure of lumbosacral spinal cords to x-rays in early postnatal rats. These ventral gray matter Schwann cell aggregates occurred in about 40% of the animals 8 or more weeks following irradiation. Light microscopically these cells appeared to be apposed to somata of large motor neurons, raising a question regarding the fate of axo-somatic synapses. This study focused on neuron-Schwann cell relationships and demonstrated ultrastructurally that the intraspinal Schwann cells established a variety of relationships with the neuronal somata and primary dendrites. These relationships ranged from direct contact without an intervening basal lamina to the presence of synaptic contacts intervening between neuron and Schwann cell basal lamina. Occasionally, the Schwann cells occupied an intermediate position between neurons and blood vessels, suggesting functions similar to those carried out by astrocytes. In these instances, as in all cases of Schwann cell-blood vessel contact, the vessels lacked their normal investiture by astrocytes. Light microscopic evaluation of synaptophysin-immunostained sections revealed decreased immunoreactivity in neuropil occupied by the Schwann cells but confirmed the presence of synapses on neuronal somata. Possible mechanisms underlying Schwann cell induction in the ventral gray matter are discussed. An understanding of the interactions between Schwann cells and the cellular constituents of the gray matter is important in light of attempts to enhance repair in the central nervous system by transplanting Schwann cells into that environment. © 1996 Wiley-Liss, Inc.  相似文献   

17.
P Dubovy  I Svízenská 《Glia》1992,6(4):281-288
We have examined the migratory capacity of Schwann cells from the distal stump of a 1-week transected sciatic nerve of adult rat for a distance of 10 mm. The distal stump was introduced into the open end of a silicone chamber packed with artificial fibrin sponge (Gelaspon) soaked in phosphate-buffered saline (control chambers), cytosine arabinoside (Ara-C) (0.05 mM), or insulin (40 U/ml). Migrating Schwann cells were distinguished from fibroblasts by the presence of non-specific cholinesterase (nChE) activity and glial fibrillary acidic protein (GFAP). The cells of distal stumps including Schwann cells accepted Gelaspon as a suitable adhesive substratum. In the chambers filled with Gelaspon soaked in phosphate-buffered saline alone Schwann cells were outnumbered by fibroblasts. The addition of Ara-C resulted in greater numbers of Schwann cells, which migrate longer distances into the chambers. The application of insulin enhanced Schwann cell migration as well. These morphologic observations were further supported by biochemical measurements of nChE activity. The results suggest an influence on Schwann cell migration by fibroblasts of connective tissue sheaths and a stimulation of Schwann cell migration by insulin.  相似文献   

18.
Chernousov MA  Kaufman SJ  Stahl RC  Rothblum K  Carey DJ 《Glia》2007,55(11):1134-1144
The Schwann cell basal lamina acts as an organizer of peripheral nerve tissue and influences many aspects of cell behavior during development and regeneration. A principal component of the Schwann cell basal lamina is laminin-2. This study was undertaken to identify Schwann cell receptors for laminin-2. We found that among several Schwann cell integrins that can potentially interact with laminin-2, only alpha7beta1 bound to laminin-2-Sepharose. Dystroglycan, a non-integrin Schwann cell receptor for laminin-2 identified previously, was also found to bind to laminin-2-Sepharose. Antibody to the alpha7 integrin subunit partially inhibited Schwann cell adhesion to laminin-2. Small interfering RNA-mediated suppression of either alpha7 integrin or dystroglycan expression decreased adhesion and spreading of Schwann cells on laminin-2, whereas knocking down both proteins together inhibited adhesion and spreading on laminin-2 almost completely. alpha7 integrin and dystroglycan both colocalized with laminin-2 containing basal lamina tubes in differentiating neuron-Schwann cell cocultures. The alpha7beta1 integrin also coprecipitates with focal adhesion kinase in differentiating cocultures. These findings strongly suggest that alpha7beta1 integrin is a Schwann cell receptor for laminin-2 that provides transmembrane linkage between the Schwann cell basal lamina and cytoskeleton.  相似文献   

19.
Neonatal rat Schwann cells isolated in culture proliferate slowly and do not form a basement membrane although they express laminin continuously. We demonstrate here that isolated Schwann cells express other basement membrane components, including entactin and heparan sulfate proteoglycan. Treatment with ascorbate, and to a lesser extent with cyclic adenosine 3',5'-monophosphate, modulates the synthesis of extracellular matrix components by cultured Schwann cells. After this treatment, fibronectin and collagen type IV are detected on the Schwann cell surface, which form, with the other components, a membrane-bound extracellular matrix. Electron microscopy shows that these elements are organized in a filamentous matrix which resembles a basement membrane and may be a precursor form of a basement membrane. We also show the effect of complete basement membrane matrices on Schwann cell behavior in culture. These matrices support Schwann cell proliferation in both serum-containing and serum-free media. The extracellular matrix from endothelial cells mimics fibronectin and induces a flat phenotype whereas the reconstituted basement membrane gel from the EHS tumor mimics laminin and allows an elongated phenotype. Thus, the basement membrane matrices interact with Schwann cells in vitro and may play an important role in Schwann cell proliferation in vivo.  相似文献   

20.
Michaela Mews  Michael Meyer 《Glia》1993,8(3):208-217
The phenotype of a fully differentiated, mature Schwann cell is appar-ently largely determined by Schwann cell-axon interactions. In vitro, elevation of intra-cellular cAMP levels in Schwann cells induces a phenotype which resembles that of a mature, i.e., axon-related, Schwann cell. Therefore, an important role for cAMP as a second messenger of axon-Schwann cell interactions in vivo is assumed. However, the effects of cAMP on Schwann cells are not restricted to induction of features of a mature phenotype. For example, elevation of intracellular cAMP levels results of also in a markedly increased synthesis of nerve growth factor (NGF) mRNA, which is barely detectable in intact sciatic nerves of adult animals. Furthermore, since cAMP induces myelin gene expression in cultured Schwann cells, additional regulatory mechanisms have to be postulated for the induction and maintenance of a mature non-myelinating Schwann cell phenotype. Here we show that a soluble protein “growth factor” can partially induce a non-myelinating mature Schwann cell phenotype in vitro. Treatment with transforming growth factor β1 (TGF-β1) results in a marked and rapid downregulation of the low affinty NGF receptor (NGFR) on cultured Schwann cells without induction of PO gene expression. In contrast, in agreement with previous studies, an increase in PO mRNA levels and a reduction in NGFR mRNA after cAMP elevation is much slower when compared with the effect of TGF-β1, suggesting the involvement of different intracellular mechanisms. Consistent with this hypothesis, we did not observe an induction of mRNA coding for TGR-β isoforms after cAMP elevation in cultured Schwann cells which constitutively synthesize TGF-β1 mRNA. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号