首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of waste tires is a very critical issue, considering their environmental and economic implications. One of the simplest and the least harmful methods is conversion of tires into ground tire rubber (GTR), which can be introduced into different polymer matrices as a filler. However, these applications often require proper modifications to provide compatibility with the polymer matrix. In this study, we examined the impact of GTR oxidation with hydrogen peroxide and potassium permanganate on the processing and properties of flexible polyurethane/GTR composite foams. Applied treatments caused oxidation and introduction of hydroxyl groups onto the surface of rubber particles, expressed by the broad range of their hydroxyl numbers. It resulted in noticeable differences in the processing of the polyurethane system and affected the structure of flexible composite foams. Treatment with H2O2 resulted in a 31% rise of apparent density, while the catalytic activity of potassium ions enhanced foaming of system decreased density by 25% and increased the open cell content. Better mechanical performance was noted for H2O2 modifications (even by 100% higher normalized compressive strength), because of the voids in cell walls and incompletely developed structure during polymerization, accelerated by KMnO4 treatment. This paper shows that modification of ground tire rubber is a very promising approach, and when properly performed may be applied to engineer the structure and performance of polyurethane composite foams.  相似文献   

2.
Ground tire rubber (GTR) is used to decrease the cost of vulcanizates. However, insufficient interactions between GTR particles and rubber matrices make mechanical properties of vulcanizates containing GTR deteriorate. This paper compares original methods of GTR modification. The effects of surface activation of GTR by sulfuric acid (A), its modification by (3-mercaptopropyl)trimethoxy silane (M), or the hybrid treatment—combining both approaches (H), were analyzed in terms of surface energy, specific surface area and morphology of GTR particles. Vulcanizates containing virgin GTR were compared to the rubber filled with the modified GTR particles keeping the same amount of CB in the rubber mix, according to their crosslink density, mechanical and tribological properties. Contrary to the virgin GTR, the addition of modified GTR increases the stiffness of the vulcanizates. The highest changes have been observed for the samples filled with ca. 12 phr of the GTR modified with silane and ca. 25 phr of the GTR subjected to the hybrid treatment, representing the highest crosslink density of rubber vulcanizates filled with GTR. Furthermore, the addition of modified GTR, especially in the case of the samples where 10 phr of rubber was replaced, results in the significant lowering of friction but higher abrasive wear.  相似文献   

3.
Vulcanized and devulcanized ground tire rubber microparticles have been used as a minor phase in acrylonitrile butadiene styrene copolymer (ABS) and thermoplastic polyolefins (TPO) for the development of materials with desired functionalities by 3D printing. These polymers have been selected because they (i) present part of the plastic waste generated by the automotive industry and (ii) have totally different properties (ABS for its stiffness and robustness and TPO for its softness and ductility). The study aims to improve the circular economy of the automotive industry by proposing a promising route for recycling the generated tire rubber waste. In this respect, emergent technology for plastic processing such as 3D printing is used, as part of the additive manufacturing technologies for the prolongated end of life of recycled plastics originated from automotive waste such as ABS and TPO. The obtained results revealed that (i) the composites are suitable for successful filament production with desired composition and diameter required for successful 3D printing by fused deposition modeling, and that (ii) the optimization of the composition of the blends allows the production of materials with interesting mechanical performances. Indeed, some of the investigated ABS-recycled rubber tire blends exhibit high impact properties as TPO-based composites do, which in addition exhibits elongation at break higher than 500% and good compression properties, accompanied with good shape recovery ratio after compression.  相似文献   

4.
Ground rubber from automobile tires is very difficult to recycle due to the cross-linking of the macromolecules and thus the lack of thermoplastic properties. The research consisted of assessing the processing possibility via the injection of highly filled PP/GTR compounds modified with 1.5 wt.% 2.5-dimethyl-2.5-di-(tert-butylperoxy)-hexane. GTR dosing ranged from 30 wt.% up to 90 wt.%. The evaluation of the processing properties of the obtained materials was carried out on the basis of the melt flow index test results and the signals recorded during processing by the injection molding by temperature and pressure sensors placed in the mold. The influence of the applied modifier on the changes in the mechanical properties of PP/GTR was determined with hardness, impact and static tensile tests. Moreover, thermal properties were obtained by the differential scanning calorimetry method. It has been found that it is possible to efficiently process compounds with high GTR content using injection molding. The presence of the filler allows to significantly reduce the cooling time in the injection mold and thus the time of the production cycle. It has been confirmed that 2.5-dimethyl-2.5-di-(tert-butylperoxy)-hexane modifies the rheological properties of PP and thus the PP/GTR composition. The lower viscosity of the matrix results in a more accurate bonding with the developed surface of the GTR grains, which results in better mechanical properties of the rubber-filled polypropylene.  相似文献   

5.
In order to create greener polyurethane (PUR) foams, modified used cooking oils (UCO) were applied as starting resources for the synthesis of bio-polyols. The bio-polyols were produced using transesterification of UCO with diethylene glycol (UCO_DEG) and triethanolamine (UCO_TEA). Next, open-cell PUR foams were synthesized by replacing 20, 40, 60, 80 and 100% of the petrochemical polyol with the bio-polyol UCO_DEG or UCO_TEA. It was observed that an increasing bio-polyol content (up to 60%) led to an increase of the closed cell content. However, a further increase in the bio-polyol content up to 100% resulted in foam cell opening. The bio-foams obtained in the experiment had an apparent density of 13–18 kg/m3. The coefficient of thermal conductivity was determined at three different average temperatures: 10, 0 and −10 °C. The PUR bio-foams modified with bio-polyol UCO_TEA had lower values of thermal conductivity, regardless of the average temperature (35.99–39.57 mW/m·K) than the foams modified with bio-polyol UCO_DEG (36.95–43.78 mW/m·K). The compressive strength of most of the bio-foams was characterized by a higher value than the compressive strength of the reference material (without bio-polyol). Finally, it was observed that the bio-materials exhibited dimensional stability at 70 °C.  相似文献   

6.
In this work, conventional sulfur and two types of organic peroxides (dicumyl peroxide (DCP) and di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB)) curing systems were used to investigate the possibility for tailoring of the performance properties of GTR/NBR blends reinforced with a variable content of highly dispersive silica (0–30 phr). The curing characteristics, static mechanical and acoustical properties, swelling behavior, thermal stability, and microstructure of the prepared composites were investigated. The results show that regardless of the curing system used, increasing the content of highly dispersive silica resulted in the improvement of the mechanical properties of the studied materials. It was observed that sulfur-based systems are the best choice in terms of cross-linking efficiency determined based on torque increment and cross-link density parameters. However, further analysis of the physico-mechanical properties indicated that the cross-linking efficiency does not match the performance of specimens, and the materials obtained using organic peroxides show higher tensile properties. This is due to the improved physical interactions between the GTR/NBR matrix and highly dispersive silica when using peroxide systems. It was confirmed using the analysis of the Wolff activity coefficient, indicating the enhanced synergy.  相似文献   

7.
In the context of protecting the ecological environment and carbon neutrality, high-value recycling of flexible polyurethane foam (F-PUF) scraps, generated in the production process, is of great significance to save petroleum raw materials and reduce energy consumption. In the present study, F-PUF scraps were ground into powder by strong shear regrinding using two-roll mill and then reused as a partial replacement of polyol for re-foaming. A series of characterizations were employed to investigate the effect of milling cycles, roller temperatures, and content of the powder on the properties of the powder and F-PUF containing powder. It was revealed that the mechanochemical effect induced breaking of the cross-linking structure and increased activity of the powder. The volume mean diameter (VMD) of powder prepared with 7 milling cycles, at room temperature, is about 97.73 μm. The microstructure and density of the F-PUF containing powder prepared in the above-mentioned manner to replace up to 15 wt.% polyol, is similar to the original F-PUF, with resilience 49.08% and compression set 7.8%, which indicates that the recycling method will play an important role in industrial applications.  相似文献   

8.
At least 275 million scrap tires exist in stockpiles in the U.S. The practice of dumping scrap tires in landfills has been an environmental concern. To address this concern, many industries—and regional and national environmental protection agencies—have taken major initiatives to recycle scrap tires. One of the major uses of recycled scrap tires is in crumb rubber products, including rubberized asphalt. Rubberized asphalt is produced by blending ground tire rubber with asphalt to beneficially modify its properties for highway construction. The ground tire rubber (GTR) can be used either as part of the asphalt rubber binder (also known as asphalt rubber), seal coat, cap seal spray, joint and crack sealant or as substitute aggregate (rubber-modified asphalt concrete). Therefore, the largest single market for GTR is asphalt rubber, which consumes approximately 12 million tires, annually. Currently, several Departments of Transportation (DOTs) in the U.S. do not allow use of GTR in asphalt mixes. This is partly due to lack of information, laboratory test data and specifications or special provisions on the use of GTR in asphalt pavements. The current study was undertaken to summarize the available wealth of knowledge, identify research needs, and document the major findings of previous pertinent studies focused on GTR use in asphalt. Significant study findings—consisting of laboratory test results, field observations, and common practices—were documented, including: the use of GTR in asphalt mixes, wet and dry processes, characterization of hot mix asphalt (HMA) containing GTR and GTR performance when combined with virgin materials. In order to promote successful use of GTR, it is imperative to help DOTs develop specifications/special provisions for utilizing rubberized asphalt by collecting data, common practices and specifications utilized by other state DOTs. As a part of this effort, we conducted a survey of construction specifications used by different DOTs that currently allow the use of GTR in asphalt. Since some DOT practices are not readily available in the open literature, this survey proved to be an effective tool for gathering data on the current practices, methods and specifications associated with DOT use of GTR in asphalt pavement.  相似文献   

9.
There is great demand for high-performance, low-cost electrode materials for anodes of lithium-ion batteries (LIBs). Herein, we report the recovery of carbon materials by treating waste tire rubber via a facile one-step carbonization process. Electrochemical studies revealed that the waste tire carbon anode had a higher reversible capacity than that of commercial graphite and shows the positive effect of ZnS in the waste tire carbon. When used as the anode for LIBs, waste tire carbon shows a high specific capacity of 510.6 mAh·g−1 at 100 mA·g−1 with almost 97% capacity retention after 100 cycles. Even at a high rate of 1 A·g−1, the carbon electrode presents an excellent cyclic capability of 255.1 mAh·g−1 after 3000 cycles. This high-performance carbon material has many potential applications in LIBs and provide an alternative avenue for the recycling of waste tires.  相似文献   

10.
Sound absorbing materials combining millable polyurethane elastomer (MPU) and eucommia ulmoides rubber (EUG) were successfully fabricated via a physical blending process of EUG and MPU. The microstructure, crystallization performances, damping, mechanical and sound absorption properties of the prepared MPU/EUG composites were investigated systematically. The microstructure surface of various MPU/EUG composites became rough and cracked by the gradual incorporation of EUG, resulting in a deteriorated compatibility between EUG and MPU. With the increase of EUG content, the storage modulus (E’) of various MPU/EUG composites increased in a temperature range of −50 °C to 40 °C and their loss factor (tanδ) decreased significantly, including a reduction of the tanδ of MPU/EUG (70/30) composites from 0.79 to 0.64. Specifically, the addition of EUG sharply improved the sound absorption performances of various MPU/EUG composites in a frequency range of 4.5 kHz–8 kHz. Compared with that of pure MPU, the sound absorption coefficient of the MPU/EUG (70/30) composite increased 52.2% at a pressure of 0.1 MPa and 16.8% at a pressure of 4 MPa, indicating its outstanding sound absorption properties.  相似文献   

11.
Crumb rubber binder with thermoplastic polyurethane (TPU) has been experimented with to characterize the performance properties considering the workability, rutting, fatigue cracking and cracking resistance at low temperatures depending on the temperatures and aging states. Physical and rheological properties were evaluated to proceed with the study by applying Superpave asphalt binder testing and multi-stress creep recovery (MSCR). Based on the targeted experiments, the binder samples were produced at three aging states (original, short-term aged and long-term aged) using a rolling thin film oven (RTFO) and pressure aging vessel (PAV). The results revealed that (i) the addition of TPU into CRM binders has a potential effect on increasing viscoelasticity at the original condition, (ii) CRM binders containing TPU showed improved anti-aging performance based on results of RTFO residues and (iii) the inclusion of TPU made it possible for CRM asphalt binder to improve its fatigue and cracking resistance at low temperature.  相似文献   

12.
This article presents an ecological approach based on climate neutrality to the synthesis of open-cell polyurethane foams with modified used cooking rapeseed oils. Water was used as a chemical blowing agent in the amount of 20–28 wt.% in relation to the weight of the bio-polyol. The influence of water on the physical and mechanical properties of the synthesized foams was investigated. The resultant porous materials were tested for the content of closed cells, cell structure, apparent density, thermal conductivity, compressive strength, and dimensional stability. It was found that the apparent density decreased in the range of 11–13 kg/m3 when the amount of the foaming agent was increased. In the next step, a foam with a water content of 22% was selected as having the most favorable physico–mechanical properties among all the foams with various water contents. The isocyanate index of the selected foam was then changed from 0.6 to 1.1 and it was observed that the compressive strength increased by an average of 10 kPa. The thermal conductivity coefficients of the final materials with different water contents and isocyanate indices were comparable and in the range of 40–43 mW/m·K.  相似文献   

13.
In this research, the consequence of using rubber tire aggregates (RTA) on the durability and mechanical characteristics of polypropylene fibers (PF) reinforced concrete is evaluated. Fifteen concrete mixtures were produced and tested in the laboratory. RTA was utilized instead of fine natural aggregates (FNA) to the concrete at concentrations of 0%, 5%, 10%, 15%, and 20% by a volumetric fraction; also, the contents of PF in the concrete mixtures were 0%, 1%, and 2% by weight fraction. Finally, the following parameters were tested for all the mixtures: compressive and tensile resistances, fracture, changes in drying shrinkage, bulk electrical resistivity, elastic moduli, and resonance occurrences. The control sample was the one without RTA and PF. According to the results, by adding RTA to the mixtures, the shrinkage deformation amplified, but the PF addition caused a decrease in the shrinkage deformation. Furthermore, adding 0%, 5%, 10%, and 15% RTA, with 2% PF leads to an upsurge in the flexural resistance by 34%, 24%, 16%, and 6%, respectively, relative to the control sample without PF and RTA. Moreover, the fracture energy of mixtures increased by utilizing PF and RTA simultaneously.  相似文献   

14.
Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests. The mixtures were obtained after total replacement of the conventional sand aggregate with untreated TR with different grain sizes (0–2 mm and 2–4 mm) and distributions (25%, 32%, and 40% by weight). The mortars showed lower thermal conductivities (≈90%) with respect to the sand reference due to the differences in the conductivities of the two phases associated with the low density of the aggregates and, to a minor extent, to the lack of adhesion of tire to the cement paste (evidenced by microstructural detection). In this respect, a decrease of the thermal conductivities was observed with the increase of the TR weight percentage together with a decrease of fluidity of the fresh mixture and a decrease of the mechanical strengths. The addition of expanded perlite (P, 0–1 mm grain size) to the mixture allowed us to obtain mortars with an improvement of the mechanical strengths and negligible modification of the thermal properties. Moreover, in this case, a decrease of the thermal conductivities was observed with the increase of the P/TR dosage together with a decrease of fluidity and of the mechanical strengths. TR mortars showed discrete cracks after failure without separation of the two parts of the specimens, and similar results were observed in the case of the perlite/TR samples thanks to the rubber particles bridging the crack faces. The super-elastic properties of the specimens were also observed in the impact compression tests in which the best performances of the tire and P/TR composites were evidenced by a deep groove before complete failure. Moreover, these mortars showed very low water penetration through the surface and also through the bulk of the samples thanks to the hydrophobic nature of the end-of-life aggregate, which makes these environmentally sustainable materials suitable for indoor and outdoor elements.  相似文献   

15.
The shredding of end-of-life refrigerators produces every year in Italy 15,000 tons of waste polyurethane foam (PUF), usually destined for energy recovery. This work presents the results of the investigation of the oil sorption potential of waste PUF according to ASTM F726–17 standard. Three oils (diesel fuel and two commercial motor oils) having different densities (respectively, 0.83, 0.87, and 0.88 kg/dm3) and viscosities (respectively, 3, 95, and 140 mm2/s at 40 °C) were considered. The waste PUF was sampled in an Italian e-waste treatment plant, and its characterization showed 16.5 wt% particles below 0.71 mm and 13 wt% impurities (paper, plastic, aluminum foil), mostly having dimensions (d) above 5 mm. Sieving at 0.071 mm was applied to the waste PUF to obtain a “coarse” (d > 0.71 mm) and a “fine” fraction (d < 0.71 mm). Second sieving at 5 mm allowed an “intermediate” fraction to be obtained, with dimensions between 0.71 and 5 mm. The oil sorption tests involved the three fractions of waste PUF, and their performances were compared with two commercial oil sorbents (sepiolite and OKO-PUR). The results of the tests showed that the “fine” PUF was able to retain 7.1–10.3 g oil/g, the “intermediate” PUF, 4.2–7.4 g oil/g, and the “coarse” PUF, 4.5–7.0 g oil/g, while sepiolite and OKO-PUR performed worse (respectively, 1.3–1.6 and 3.3–5.3 g oil/g). In conclusion, compared with the actual management of waste PUF (100 wt% sent to energy recovery), the amount destined directly to energy recovery could be limited to 13 wt% (i.e., the impurities). The remaining 87 wt% could be diverted to reuse for oil sorption, and afterward directed to energy recovery, considered as a secondary option.  相似文献   

16.
In order to solve the problem of poor crack resistance and frost resistance of semi-rigid base, rubber powder and retarder were added to a semi-rigid base mixture. First, 61 mixing ratios were determined. Then, through the unconfined compressive strength, splitting strength, and other tests, the mechanical, crack, and frost resistance properties of the retarded composite semi-rigid base coarse mixture with rubber powder were studied. Finally, the macro and micro properties of the two kinds of admixture composite semi-rigid base coarse mixtures were studied by means of SEM and industrial CT. The results show that rubber powder and retarder can effectively improve the cracking and freezing resistance of the mixture. After five freeze–thaw cycle tests, the strength of the retarded composite semi-rigid base material mixed with rubber powder decreased slightly compared with the mixture without additives. It can be seen that rubber powder improved the frost resistance of the mixture. When the content of rubber powder was 1.5%, the BDR value of the mixture increased by 8.8%. With the increase of unconfined compressive strength, splitting strength, and flexural tensile strength at 28 d and 90 d, it was found that the retarder improved the middle and late strength of the mixture. When the content of retarder was 0.09%, the increase of unconfined compressive strength at 28 d reached 3.9%. The addition of rubber powder and retarder improved the distribution of internal pores, the proportion of large pores decreased, and the proportion of small pores increased. The retarder changed the morphology of hydration products, formed a dense network supporting structure, further refined the pores, and reduced the porosity of the mixture. The proportion of pores with a volume greater than 100 mm3 in the total pore volume decreased by 26.01%, and the proportion of medium pores increased by 13.07%, thereby improving the mechanical properties of the mixture.  相似文献   

17.
To investigate the static and dynamic characteristics of rubber–sand composite soil (RS soil) reinforced with cement, a series of triaxial compression tests and resonant column tests was performed by considering the influence of rubber content (10%, 20%, 30%, 40%, and 50%), cement content (0, 1.5, 2.5, 3.5 and 4.0 g/100 mL), and effective consolidation confining pressure (50, 100, and 150 kPa). Compared with the RS soil, the addition of cement significantly improved the shear strength of a cement–rubber–sand composite soil (RCS soil), based on an undrained shear test. The increase in cement content not only makes the elastic modulus and cohesion of the RCS soil increase but also reduces the internal friction angle of the RCS soil. With the increase in rubber content, the failure of the RCS soil samples changes from strain-softening to hardening, and the prediction equation of the initial elastic modulus of the RCS soil is given herein when the recommended cement content is 3.5 g/100 mL. The effects of rubber content, cement content, and effective confining pressure on the dynamic shear modulus and damping ratio of the RCS soil were studied via the resonant column test. The test results show that the increase in rubber content slows down the modulus attenuation of the RCS soil, but increases its damping ratio. The test results also show that the increase in cement content makes the bonding force between particles greater so that the modulus attenuation of the RCS soil becomes slower and the damping ratio is reduced. At the same time, according to the change rule of the maximum dynamic shear modulus of the RCS soil with the rubber content, when the recommended cement content is 3.5 g/100 mL, an empirical formula and recommended value of the shear modulus Gmax of the RCS soil are proposed.  相似文献   

18.
In recent years, conductive polymer composites have been widely studied for their electrical conductivity and electromagnetic shielding effects due to their advantages of light weight, simple preparation methods, and structural design versatility. In this study, oxidized multi-walled carbon nanotubes/waterborne polyurethane composites (OCNT/WPU) were prepared by grafting oxidized carbon nanotubes onto polyurethane molecular chains through in situ polymerization, using environmentally friendly waterborne polyurethane as the polymer matrix. Then, the OCNT/WPU structure was broken by high shear force, and the loading of CNTs was increased by adsorption, and a new composite structure was designed (denoted by OCWPU). The structure and morphology of OCNT/WPU and OCWPU were characterized by FT-IR and SEM. The structure and morphology of OCWPU with different multi-walled carbon nanotube loadings (CNTs/OCWPU) were characterized by SEM, Raman. Finally, the electrical conductivity and the electromagnetic shielding properties of the composites were investigated. It was found that after application of high shear force, the structure of OCWPU was disrupted and the surface activity of the material increased. With the increase in CNTs content, CNTs formed a rosette structure in the polyurethane matrix and covered the surface, and its electromagnetic shielding effect in X-bond (8.2–12.4 Ghz) would be able to reach 23 dB at 5% CNTs/OCWPU and 66.5 dB at 50% CNTs/OCWPU to meet the commercial needs. With 50% CNTs/OCWPU, an electrical conductivity of 5.1 S/cm could be achieved. This work provides a novel idea for the structural design of conductive polymer composites, which can achieve greater performance with the same carbon nanotube content.  相似文献   

19.
Sunflower cake (SC), which is waste during the production of sunflower oil, was selected as a modifier of properties in polyurethane (PUR) foams. The SC was chemically modified with triphenylsilanol (SC_S) and physically modified with rapeseed oil (SC_O). The influence of SC on the rheological properties of the polyol and the kinetics of foam growth were investigated. PUR foams were characterized by morphological, mechanical, and thermal analysis. The results show that the physical and chemical modification of SC contributes to the changes in the properties of the foams in different ways. Too high hydrophobicity of SC_O affects the structure deterioration, and thus the mechanical properties, and in turn, reduces the affinity for water. In turn, chemical modification with silane allows for obtaining foams with the best mechanical properties.  相似文献   

20.
By recycling used glass containers, we are able to recover and reuse their valuable properties, which is a way to preserve the relevant natural resources and lessen environmental burdens. For example, recycled waste glass (in the form of powder) can be used in the production of concrete. This article analyses the effect of waste glass addition on the properties of C12/15, which is used, for example, as concrete bedding material to support road drainage gutters and kerbs. Ground waste glass was used as a filler in the mix, i.e., without decreasing the amount of cement. Brown glass collected as municipal solid waste was used in this research. The research comprised an experiment prepared on the basis of the central composite design. The independent variables included water/cement ratio and the amount of glass powder, expressed as the glass to cement ratio by weight. The adopted research program mainly included the definition of the concrete compressive strength, water absorption and freeze–thaw resistance after 25 and 100 cycles of freezing and thawing. For selected systems, the characteristics of air voids in hardened concrete were also defined. The beneficial effect of ground waste glass added as a filler to the concrete mixture on the strength and durability of concrete was confirmed by the obtained test results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号