首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yassa MA  Stark CE 《Hippocampus》2008,18(9):945-954
The medial temporal lobe (MTL) is known to play an essential role in recognition memory (the ability to judge the prior occurrence of a stimulus). Electrophysiological studies in nonhuman primates have suggested the presence of more than one type of recognition signal in the medial temporal lobe (e.g., novelty, familiarity, and recency). It has also been suggested that the perirhinal cortex plays an essential role in visual recognition memory. Here, we present fMRI results from 16 college-aged participants who underwent a continuous yes/no recognition task of novel and familiar pictures with multiple stimulus presentations. Our goal was to understand the dynamics of recognition in the MTL over multiple trials. We hypothesized that we could see changes in signal with repeated exposure that carry information related to novelty, familiarity, and recency. Whole brain activation maps demonstrated a strong novelty effect, marked by activity in several frontal and occipital regions that decreases with increasing number of presentations. The opposite pattern was observed in several other regions that include the supramarginal gyrus and inferior parietal lobule. In the MTL region, we observed monotonic decreases in activity across trials in the parahippocampal cortex as well as the anterior perirhinal cortex. We also observed monotonic increases in activity in the posterior perirhinal cortex with increasing memory strength. In addition, we observed clear effects of pre-experimental familiarity with the stimulus in several regions. Consistent with previously reported electrophysiological data, we found evidence for several medial temporal lobe signals carrying recency, familiarity, and novelty information.  相似文献   

2.
Memory for context information (source memory) has been reported to rely on structures in the medial temporal lobe (MTL). Perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL) have distinct connectivity patterns with sensory neocortex, suggesting a possible modality-dependent organization of memory processes. The present study investigated the neural substrates of two different types of source information of newly encoded material using functional magnetic resonance imaging: auditory (speaker voice) and visual (texture and colour). Source judgements during retrieval were reliably above chance level for both modalities and performance did not differ between the auditory and visual condition. During encoding, activity predictive of subsequent source recollection was observed in the anterior hippocampus/parahippocampal gyrus, irrespective of source modality. During retrieval, on the other hand, a regional dissociation emerged: bilateral parahippocampal cortex discriminated between correct and incorrect auditory but not visual source judgements, whereas left perirhinal/entorhinal cortex showed the reverse pattern. These findings are consistent with recent lesion evidence of disrupted auditory but intact visual source memory following damage to the parahippocampal cortex. Results are discussed with respect to anatomical models of corticoparahippocampal connectivity and the functional organization of the MTL.  相似文献   

3.
We investigated the effects of damage to the medial temporal lobe (MTL) and anterolateral temporal cortex on semantic knowledge. We studied eight male controls, two patients with lesions limited to the hippocampal formation, three postencephalitic patients with extensive MTL lesions and variable damage to the lateral temporal cortex, and patient H.M. (whose lesion is limited mostly to the MTL, but who also has minimal damage to the anterolateral cortex). On 13 tests of semantic memory, patients with lesions limited to the hippocampal formation performed similarly to controls. Postencephalitic patients were mildly to moderately impaired on most tests. Patient H.M.'s performance was impaired on only a few tests and was less severely impaired overall than the three postencephalitic patients. A ranking of test scores showed a direct relationship between impairment and the extent of damage to lateral temporal cortex. These findings, and related findings from other studies, point to the importance of anterolateral temporal cortex for semantic knowledge. Patient H.M. performed uniquely in certain respects. For example, when providing definitions of objects, he made many grammatical errors. In contrast, the other patients with large MTL lesions made no more errors than those made by controls. Considering that H.M.'s lesion, both medially and laterally, is less extensive than the lesions in these other patients, it appears unlikely that his shortcomings in language production are related to his temporal lobe lesion.  相似文献   

4.
There has been considerable debate as to whether the hippocampus and perirhinal cortex may subserve both memory and perception. We administered a series of oddity tasks, in which subjects selected the odd stimulus from a visual array, to amnesic patients with either selective hippocampal damage (HC group) or more extensive medial temporal damage, including the perirhinal cortex (MTL group). All patients performed normally when the stimuli could be discriminated using simple visual features, even if faces or complex virtual reality scenes were presented. Both patient groups were, however, severely impaired at scene discrimination when a significant demand was placed on processing spatial information across viewpoint independent representations, while only the MTL group showed a significant deficit in oddity judgments of faces and objects when object viewpoint independent perception was emphasized. These observations provide compelling evidence that the human hippocampus and perirhinal cortex are critical to processes beyond long-term declarative memory and may subserve spatial and object perception, respectively.  相似文献   

5.
Contemporary theories of the medial temporal lobe (MTL) suggest that there are functional differences between the MTL cortex and the hippocampus. High‐resolution functional magnetic resonance imaging and multivariate pattern analysis were utilized to study whether MTL subregions could classify categories of images, with the hypothesis that the hippocampus would be less representationally categorical than the MTL cortex. Results revealed significant classification accuracy for faces versus objects and faces versus scenes in MTL cortical regions—parahippocampal cortex (PHC) and perirhinal cortex (PRC)—with little evidence for category discrimination in the hippocampus. MTL cortical regions showed significantly greater classification accuracy than the hippocampus. The hippocampus showed significant classification accuracy for images compared to a nonmnemonic baseline task, suggesting that it responded to the images. Classification accuracy in a region of interest encompassing retrosplenial cortex (RSC) and the posterior cingulate cortex (PCC) posterior to RSC, showed a similar pattern of results to PHC, supporting the hypothesis that these regions are functionally related. The results suggest that PHC, PRC, and RSC/PCC are representationally categorical and the hippocampus is more representationally agnostic, which is concordant with the hypothesis of the role of the hippocampus in pattern separation. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
During the past decade, work with monkeys has helped identify the structures in the medial temporal lobe that are important for memory: the hippocampal region (including the hippocampus proper, the dentate gyrus, and the subicular complex) and adjacent cortical areas that are anatomically linked to the hippocampus, i.e., the entorhinal, perirhinal, and parahippocampal cortices. One idea that has emerged from this work is that the severity of memory impairment might increase as more components of the medial temporal lobe are damaged. We have evaluated this idea directly by examining behavioral data from 30 monkeys (ten normal monkeys and 20 monkeys with bilateral lesions involving structures within the medial temporal lobe) that have completed testing on our standard memory battery during the last 10 years. The main finding was that the severity of memory impairment depended on the locus and extent of damage to the medial temporal lobe. Specifically, damage limited to the hippocampal region produced a mild memory impairment. More severe memory impairment was produced when the damage was increased to include the adjacent entorhinal and parahippocampal cortices (the H+ lesion). Finally, memory impairment was even more severe when the H+ lesion was extended forward to include the anterior entorhinal cortex and the perirhinal cortex (H++ lesion). Taken together, these findings suggest that, whereas damage to the hippocampal region produces measurable memory impairment, a substantial part of the severe memory impairment produced by large medial temporal lobe lesions in humans and monkeys can be attributed to damage to entorhinal, perirhinal, and parahippocampal cortices adjacent to the hippocampal region. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Debate continues regarding the role of medial temporal lobe regions in object and scene processing. Considerable evidence indicates that the perirhinal cortex (PRC) plays an important role in the perception of objects—namely, in disambiguating complex objects that share conjunctions of features. These findings support a content‐specific view of medial temporal lobe functioning in which PRC is critically important for processing complex objects, while the parahippocampal cortex (PHC) and hippocampus (HC) may be selectively engaged during scene processing. However, emerging evidence from both animal and human studies suggest that the PRC is sensitive to spatial configural information as well as object information. In this fMRI study, we observed preliminary evidence for BOLD activation in the PRC during a complex visual discrimination task for objects and scenes, as well as robust activation for both stimulus types in PHC and HC. The results are discussed in light of a recent process‐based model of medial temporal lobe functioning.  相似文献   

8.
Litman L  Awipi T  Davachi L 《Hippocampus》2009,19(3):308-319
The medial temporal lobe cortex (MTLC) occupies a pivotal position at the interface between neocortical association areas and the hippocampus. It has been suggested that the MTLC contains functionally distinct regions, with perirhinal cortex (PRc) preferentially supporting object processing and posterior parahippocampal cortex (PHc) preferentially supporting encoding of spatial information. Measuring differential BOLD responsiveness to objects, scenes, and other stimulus categories, we find a double dissociation between an anterior PRc response to objects and a posterior PHc response to scene stimuli. Furthermore, an anatomical ROI based approach was undertaken in an effort to understand the response profile underlying this double dissociation. We did not see any evidence for a sharp border between putatively distinct scene-preferential and object-preferential MTLC regions. Instead, scene-preferential responsiveness was noted to drop off in a graded, linear fashion in successively anterior MTLC regions until object-preferential responsiveness emerged in anterior PRc, although objects produced above baseline responses across the anterior-posterior extent of the parahippocampal gyrus. Other stimulus categories, such as faces and words, led to above baseline activation in either a few confined regions (faces) or none at all (words). Thus, what differentiated regions along the parahippocampal gryus was the relative response to objects and scenes, not simply above baseline responses to either category. This pattern raises the possibility that posterior PHc, and anterior PRc are situated at the ends of a single organizational continuum supported by the entire length of MTLC.  相似文献   

9.
The medial temporal lobe (MTL), a set of heavily interconnected structures including the hippocampus and underlying entorhinal, perirhinal and parahippocampal cortex, is traditionally believed to be part of a unitary system dedicated to declarative memory. Recent studies, however, demonstrated perceptual impairments in amnesic individuals with MTL damage, with hippocampal lesions causing scene discrimination deficits, and perirhinal lesions causing object and face discrimination deficits. The degree of impairment on these tasks was influenced by the need to process complex conjunctions of features: discriminations requiring the integration of multiple visual features caused deficits, whereas discriminations that could be solved on the basis of a single feature did not. Here, we address these issues with functional neuroimaging in healthy participants as they performed a version of the oddity discrimination task used previously in patients. Three different types of stimuli (faces, scenes, novel objects) were presented from either identical or different viewpoints. Consistent with studies in patients, we observed increased perirhinal activity when participants distinguished between faces and objects presented from different, compared to identical, viewpoints. The posterior hippocampus, by contrast, showed an effect of viewpoint for both faces and scenes. These findings provide convergent evidence that the MTL is involved in processes beyond long‐term declarative memory and suggest a critical role for these structures in integrating complex features of faces, objects, and scenes into view‐invariant, abstract representations. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Functional differentiation within the medial temporal lobe in the rat   总被引:2,自引:0,他引:2  
The structures that comprise the medial temporal lobe (MTL) have been implicated in learning and memory. The question of primary concern in the present research was whether the group of anatomically related structures (hippocampus, subiculum, presubiculum/parasubiculum, entorhinal cortex, perirhinal/postrhinal cortex) are involved in mediating a similar memory process or whether the individual structures are differentially involved in memory processes and/or in handling various types of information. A series of five experiments were carried out that involved selectively lesioning the main MTL structures and testing each animal on radial-maze tasks and procedures that provided measures of two different memory processes (reference memory, working memory) and the utilization of two kinds of information (spatial, nonspatial). The structures were found to differ functionally, with the hippocampus and the presubiculum/parasubiculum being especially involved in processing spatial information, and the perirhinal/postrhinal cortex having a specific role in remembering information over a brief time period (working memory). Lesions of the entorhinal cortex failed to affect consistently either memory process or type of information handled, but they did result in impairments in learning the complex spatial discrimination requiring reference memory and in working memory involving nonspatial information. The pattern of behavioral impairments resulting from damage to these discrete MTL structures suggests that several of the structures make unique contributions to learning and memory.  相似文献   

11.
《Human brain mapping》2018,39(9):3779-3792
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object‐evoked responses in MTL structures during recognition‐memory judgments also show evidence for domain‐level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real‐world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL.  相似文献   

12.
Although the parahippocampal cortex (PHc) is known to be critical for memory formation, little is known about what is encoded by this area. Using multi-voxel pattern analysis of high-resolution functional magnetic resonance imaging (MRI) data, we examined responses to blocks of categorically coherent stimuli and found that patterns of activity in PHc were selective for not only scenes, but also for other nonspatial object categories (e.g., faces and toys). This pattern of results was also found in the parahippocampal place area (PPA), indicating that this region is not sensitive exclusively to scenes. In contrast, neither the hippocampus nor perirhinal cortex (PRc) were found to be selective for category information. The results indicate that regions within the medial temporal lobe may support distinct functions, and that the PHc appears to be particularly sensitive to category-level information.  相似文献   

13.
Repeated encounters with the same event typically lead to decreased activation in the medial temporal lobe (MTL) and dopaminergic midbrain, a phenomenon known as repetition suppression. In contrast, encountering an event that overlaps with prior experience leads to increased response in the same regions. Such increased responding is thought to reflect an associative novelty signal that promotes memory updating to resolve differences between current events and stored memories. Here, we married these ideas to test whether event overlap significantly modulates MTL and midbrain responses—even when events are repeated and expected—to promote memory updating through integration. While undergoing high‐resolution functional MRI, participants were repeatedly presented with objects pairs, some of which overlapped with other, intervening pairs and some of which contained elements unique from other pairs. MTL and midbrain regions showed widespread repetition suppression for nonoverlapping pairs containing unique elements; however, the degree of repetition suppression was altered for overlapping pairs. Entorhinal cortex, perirhinal cortex (PRc), midbrain, and PRc—midbrain connectivity showed repetition‐related increases across overlapping pairs. Notably, increased PRc activation for overlapping pairs tracked individual differences in the ability to reason about the relationships among pairs—our behavioral measure of memory integration. Within the hippocampus, activation increases across overlapping pairs were unique to CA1, consistent with its hypothesized comparator function. These findings demonstrate that event overlap engages MTL and midbrain functions traditionally implicated in novelty processing, even when overlapping events themselves are repeated. Our findings further suggest that the MTL—midbrain response to event overlap may promote integration of new content into existing memories, leading to the formation of relational memory networks that span experiences. Moreover, the results inform theories about the division of labor within MTL, demonstrating that the role of PRc in episodic encoding extends beyond familiarity processing and item‐level recognition. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Kirwan CB  Stark CE 《Hippocampus》2004,14(7):919-930
The human medial temporal lobe (MTL) is known to be involved in declarative memory, yet the exact contributions of the various MTL structures are not well understood. In particular, the data as to whether the hippocampal region is preferentially involved in the encoding and/or retrieval of associative memory have not allowed for a consensus concerning its specific role. To investigate the role of the hippocampal region and the nearby MTL cortical areas in encoding and retrieval of associative versus non-associative memories, we used functional magnetic resonance imaging (fMRI) to measure brain activity during learning and later recognition testing of novel face-name pairs. We show that there is greater activity for successful encoding of associative information than for non-associative information in the right hippocampal region, as well as in the left amygdala and right parahippocampal cortex. Activity for retrieval of associative information was greater than for non-associative information in the right hippocampal region also, as well as in the left perirhinal cortex, right entorhinal cortex, and right parahippocampal cortex. The implications of these data for a clear functional distinction between the hippocampal region and the MTL cortical structures are discussed.  相似文献   

15.
Animal models agree that the perirhinal cortex plays a critical role in object recognition memory, but qualitative aspects of this mnemonic function are still debated. A recent model claims that the perirhinal cortex is required to recognize the novelty of confusable distractor stimuli, and that damage here results in an increased propensity to judge confusable novel objects as familiar (i.e., false positives). We tested this model in healthy participants and patients with varying degrees of perirhinal cortex damage, i.e., amnestic mild cognitive impairment and very early Alzheimer's disease (AD), with a recognition memory task with confusable and less confusable realistic object pictures, and from whom we acquired high‐resolution anatomic MRI scans. Logistic mixed‐model behavioral analyses revealed that both patient groups committed more false positives with confusable than less confusable distractors, whereas healthy participants performed comparably in both conditions. A voxel‐based morphometry analysis demonstrated that this effect was associated with atrophy of the anteromedial temporal lobe, including the perirhinal cortex. These findings suggest that also the human perirhinal cortex recognizes the novelty of confusable objects, consistent with its border position between the hierarchical visual object processing and medial temporal lobe memory systems, and explains why AD patients exhibit a heightened propensity to commit false positive responses with inherently confusable stimuli. © The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

16.
Cholecystokinin (CCK) binding sites were localized in the hippocampus, amygdala, and medial temporal cortices of macaque monkeys by using techniques of in vitro receptor autoradiography. Binding sites were labeled with 3H-CCK-8 and 125I-CCK-33, and nonspecific binding was assessed in the presence of 1 microM CCK-8. Comparison of autoradiograms with Nissl-stained sections allowed precise correlation of autoradiographic grain distribution with cytoarchitecture. CCK binding in the amygdala varied among nuclear subdivisions. It was dense in the lateral, basomedial, endopiriform, and cortical nuclei, in the parvicellular portion of the accessory basal nucleus, the periamygdaloid cortex, the cortical transition area, and in the amygdalohippocampal area. Labeling was sparse in the central, medial, and basolateral nuclei as well as in the magnocellular accessory basal nucleus. In the hippocampal formation, a single dense band of CCK binding was observed over the granule cell layer and adjacent few millimeters of the molecular layer of the dentate gyrus, while in the polymorph and remaining portions of this layer binding was of very low density. Prominent label over the pyramidal layer in the presubiculum clearly distinguished this region from the adjacent subiculum in which binding just exceeded background levels. Moderate to light label was observed in the hilus and stratum pyramidale of CA3, CA2, and CA1, while other hippocampal layers showed minimal specific binding. Variation in CCK binding in the medial temporal cortex showed close correspondence to cytoarchitectonic subdivisions. In entorhinal cortex, for example, binding was concentrated in layers III-VI while label in area 35 was prominent in all laminae except layer IV. Area TH of von Bonin and Bailey ('47) was distinguished from other regions by evenly distributed binding across all layers, while in area TF a bilaminar pattern of label in layers II and IV was observed. The highly specific patterns of CCK binding in amygdala and transitional cortices of the medial temporal lobe can be related to terminal fields of neo- and allocortical afferents to these regions, while label in the hippocampal formation coincides with the terminals of intrinsic neurons which ramify among the somata of cells that are targets of neocortical afferents. Thus, in all structures of the medial temporal lobe the disposition of peptidergic binding sites suggests that CCKergic systems may be important in the modulation of cortical afferents.  相似文献   

17.
Gold JJ  Squire LR 《Hippocampus》2005,15(1):79-85
Studies of memory-impaired patients will be most useful when quantitative neuroanatomical information is available about the patients being studied. Toward that end, in the case of medial temporal lobe amnesia, protocols have been developed from histological material that identify the boundaries of relevant structures on magnetic resonance images. Because the size of these structures varies considerably in the normal population, some correction for overall brain size is usually employed when calculating volume measurements. Although different correction procedures have been used to normalize for brain size, there has been little study of how well different methods reduce variability and which methods might be most useful. We measured the volume of the hippocampal region (hippocampus proper, dentate gyrus, and subicular complex) and the volumes of the temporopolar, entorhinal, perirhinal, and parahippocampal cortices in five memory-impaired patients and 30 controls. We then compared three different methods for normalizing the volume measurements: normalization by intracranial volume, normalization by aligning the brain to a standard atlas, and normalization by brain area at the level of the anterior commissure. Normalization by intracranial volume reduced variability in the volume measurements of nearly all brain regions to a greater extent than did normalization by other methods. When normalized by intracranial volume, the patients exhibited a mean reduction in hippocampal volume of about 40% and negligible reductions in the volumes of other medial temporal lobe structures. On the basis of earlier histological analysis of two other patients (L.M. and W.H.), who also had reductions in hippocampal size of about 40%, we suggest that a volume reduction in this range likely indicates a nearly complete loss of hippocampal neurons.  相似文献   

18.
O'Kane G  Insler RZ  Wagner AD 《Hippocampus》2005,15(3):326-332
Medial temporal lobe (MTL) structures often respond to stimulus repetition with a reduction in neural activity. Such novelty/familiarity responses reflect the mnemonic consequences of initial stimulus encounter, although the aspects of initial processing that lead to novelty/familiarity responses remain unspecified. The current functional magnetic resonance imaging (fMRI) experiment examined the sensitivity of MTL to changes in the semantic representations/processes engaged across stimulus repetitions. During initial study blocks, words were visually presented, and participants made size, shape, or composition judgments about the named referents. During repeated study blocks, the initial words were visually re-presented along with novel words, and participants made size judgments for all items. Behaviorally, responses were faster to repeated words in which the same task was performed at initial and repeated exposure (i.e., size-->size) relative to repeated words in which the tasks differed (i.e., composition-->size and shape-->size). fMRI measures revealed activation reductions in left parahippocampal cortex following same-task and different-task repetition; numerically, the effect was larger in the same-task condition. Accordingly, left parahippocampal cortex demonstrates sensitivity to perceptual novelty/familiarity, and it remains unclear whether this region also is sensitive to novelty/familiarity in the conceptual domain. In left perirhinal cortex, a novelty/familiarity effect was observed in the same-task condition but not in the different-task condition, thus revealing sensitivity to the degree of semantic overlap across exposures but insensitivity to perceptual repetition of the visual word form. Perirhinal sensitivity to semantic repetition and insensitivity to perceptual repetition suggests that human perirhinal cortex receives conceptual inputs, with perirhinal contributions to declarative memory perhaps partially stemming from its role in processing semantic aspects of experiences.  相似文献   

19.
The present study compared the impact of perirhinal cortex lesions on tests of object recognition. Object recognition was tested directly by looking at the preferential exploration of novel objects over simultaneously presented familiar objects. Object recognition was also tested indirectly by presenting just novel objects or just familiar objects, and recording exploration levels. Rats with perirhinal cortex lesions were severely impaired at discriminating a novel object from a simultaneously presented familiar object (direct test), yet displayed normal levels of exploration to novel objects presented on their own and showed normal declines in exploration times for familiar objects that were repeatedly presented (indirect tests). This effective reduction in the exploration of familiar objects after perirhinal cortex lesions points to the sparing of some recognition mechanisms. This possibility led us to determine whether rats with perirhinal cortex lesions can overcome their preferential exploration deficits when given multiple object familiarisation trials prior to that same (familiar) object being paired with a novel object. It was found that after multiple familiarisation trials, objects could now successfully be recognised as familiar by rats with perirhinal cortex lesions, both following a 90-min delay (the longest delay tested) and when object recognition was tested in the dark after familiarisation trials in the light. These latter findings reveal: (i) the presumed recruitment of other regions to solve recognition memory problems in the absence of perirhinal cortex tissue; and (ii) that these additional recognition mechanisms require more familiarisation trials than perirhinal-based recognition mechanisms.  相似文献   

20.
Taste memories are amongst the most important kinds of memories, as adequate identification of safe and toxic edibles will determine the subject's survival. Despite the well-established role that the medial temporal lobe plays in consolidation of memory, specific contributions of the different regions of the temporal lobe to taste memory consolidation remain unknown. In the present report, we assessed the participation of perirhinal cortex (Ph), dorsal hippocampus (Hipp), basolateral (BLA) and central nuclei of the amygdala (CeA) in safe and aversive taste memories by means of local infusions of the protein synthesis inhibitor anisomycin in the rat. The results showed that protein synthesis in the CeA, but not BLA, is required to stabilize taste aversion memory. Surprisingly, the Ph and Hipp seem to be essential to consolidate safe taste memory. These data suggest that different networks within the temporal lobe are recruited to consolidate memory depending on the consequences associated with tastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号