首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
1. The profile of a range of alpha 1 adrenoceptor antagonists was determined in vitro against cloned human alpha 1A, alpha 1B and alpha 1D adrenoceptors and against noradrenaline-mediated contractions of rat aorta and human prostate. The in vivo profile of compounds was determined in an anaesthetized dog model which allowed the simultaneous assessment of antagonist potency against phenylephrine-mediated increases in blood pressure and prostatic pressure. 2. The quinazoline antagonists, prazosin, doxazosin and alfuzosin displayed high affinity but were non selective for the three cloned human alpha 1 adrenoceptors. Indoramin and SNAP 1069 showed selectivity for alpha 1A and alpha 1B adrenoceptors relative to the alpha 1D subtype. Rec 15/2739, WB 4101, SL 89,0591, (+)- and (-)- tamsulosin showed selectivity for alpha 1A and alpha 1D adrenoceptors relative to the alpha 1B subtype. RS 17053 showed high affinity and selectivity for alpha 1A adrenoceptors (pKi 8.6) relative to alpha 1B (pKi = 7.3) and alpha 1D (pKi = 7.1) subtypes. 3. (+)-Tamsulosin, (-)-tamsulosin, SL 89,0591, Rec 15/2739, SNAP 1069 and RS 17053 appeared to act as competitive antagonists of noradrenaline-mediated contractions of rat aorta yielding pA2 affinity estimates which were similar to binding affinities at cloned human alpha 1D adrenoceptors. The following rank order was obtained: prazosin = (-)-tamsulosin > doxazosin > SL 89,0591 = (+)-tamsulosin > Rec 15/2739 > RS 17053 = SNAP 1069. 4. (-)-Tamsulosin was a very potent, insurmountable antagonist of noradrenaline-mediated contractions of human prostate, yielding an approximate pA2 estimate of 9.8 at 1 nM. The corresponding (+)-enantiomer was 30 fold weaker. SL 89,0591, SNAP 1069 and Rec 15/2739 yielded pA2 estimates which compared well with their alpha 1A binding affinities. The affinity estimate for prazosin on human prostate was lower than the corresponding binding affinity determined at alpha 1A adrenoceptors and RS 17053 was a very weak antagonist on human prostate (pA2 = 6.0) relative to the high affinity (pKi = 8.6) determined at cloned human alpha 1A adrenoceptors. 5. In the anaesthetized dog, in vivo pseudo "pA2' values showed that doxazosin, (+)- and (-)-tamsulosin inhibited phenylephrine-induced increases in prostatic and blood pressure with similar affinity, implying that these agents show little or no selectivity for prostatic responses in this model. SL 89,0591 and SNAP 1069 were moderately selective (3 and 6 fold respectively) for prostatic pressure relative to blood pressure. Rec 15/2739 was a more potent antagonist of phenylephrine-mediated increases in prostatic pressure ("pA2' = 8.74) compared to blood pressure ("pA2' = 7.51). 6. Data in this study suggest that the alpha 1 adrenoceptor mediating noradrenaline-induced contractions of human prostate, whilst having some of the characteristics of an alpha 1A adrenoceptor, cannot be satisfactorily aligned with cloned alpha 1A, alpha 1B or alpha 1D adrenoceptors. In addition, studies in the anaesthetized dog have shown that agents having high affinity and selectivity for prostatic alpha 1 adrenoceptors, particularly over the alpha 1D subtype, appear to inhibit phenylephrine-induced increases in prostatic pressure selectively compared to blood pressure.  相似文献   

2.
This study was done to determine the alpha1-adrenoceptor subtypes and to characterize the functional role of alpha1D-adrenoceptors in the following rabbit arteries: thoracic and abdominal aorta, mesenteric, renal and iliac arteries. In all arteries, selective alpha1D-adrenoceptor antagonist BMY 7378 (8-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-8-azaspirol(4,5) decane-7,9-dione dihydrochloride) dose dependently shifted the concentration-response curves for norepinephrine to the right. Schild plots of the results obtained from the inhibition by BMY 7378 for norepinephrine yielded a straight line with a slope of unity in thoracic (pA2 6.54+/-0.02) and abdominal (pA2 6.73+/-0.03) aorta. Slopes of Schild plots obtained from the inhibition by BMY 7378 for norepinephrine were significantly different from unity in mesenteric, renal and iliac arteries. Slopes of Schild plots for BMY 7378 were not different from unity in chloroethylclonidine-treated thoracic (pA2 6.49+/-0.14) and abdominal (pA2 6.61+/-0.11) aorta. Slopes of Schild plots for BMY 7378 were significantly different from unity in chloroethylclonidine-treated mesenteric, renal and iliac arteries. On the other hand, in Ca2+-free physiological saline solution (Ca2+-free PSS) slopes obtained from Schild plots for BMY 7378 were not different from unity in thoracic (pA2 6.41+/-0.09) and abdominal (pA2 6.28+/-0.07) aorta and mesenteric (pA2 6.55+/-0.06), renal (pA2 6.24+/-0.10) and iliac (pA2 6.64+/-0.13) arteries. BMY 7378 inhibited [3H]prazosin binding to thoracic (pKi 6.44+/-0.08) and abdominal (pKi 6.59+/-0.02) aorta with low potency, and mesenteric (pKi High 8.66+/-0.28, pKi Low 6.34+/-0.14), renal (pKi High 8.71+/-0.33, pKi Low 6.45+/-0.03) and iliac artery (pKi High 8.60+/-0.24, pKi Low 6.56+/-0.13). These results suggest that alpha1D-adrenoceptors play a significant role for contractile responses in renal and iliac artery, but play virtually no role in thoracic and abdominal aorta and that an alpha1-adrenoceptor subtype, which is pharmacologically distinguishable from the alpha1A-, alpha1B- and alpha1D-adrenoceptor subtype, may co-exist in mesenteric artery.  相似文献   

3.
1. This study was done to characterize the functional role of alpha 1D-adrenoceptors in rat myocardium, aorta, spleen, vas deferens and prostate by use of the selective antagonist BMY 7378. 2. BMY 7378 inhibited [3H]-prazosin binding to aortic membranes with a potency (pKi 9.8 +/- 0.40) approximately 100 fold higher than in right ventricular membranes (pKi 7.47 +/- 0.11) and approximately 1,000 fold higher than that in plasma membranes of the prostate (pKi 6.62 +/- 0.39), vas deferens (pKi 6.67 +/- 0.15), salivary gland (pKi 6.46 +/- 0.38) and liver (6.58 +/- 0.06). 3. BMY 7378 antagonized the positive inotropic effects of phenylephrine (in the presence of 1 microM propranolol) on right ventricles (pA2 7.0 +/- 0.11), left atria (pKB 7.04 +/- 0.18) and papillary muscles (pKB 6.9 +/- 0.1) and inhibited phenylephrine-induced increase in inositol phosphates. 4. BMY 7378 was approximately 100 fold more potent as an antagonist of phenylephrine on aortic strips (pA2 9.0 +/- 0.13) than on vas deferens (pKB 7.17 +/- 0.08) and spleen (pKB 7.16 +/- 0.21); it was ineffective on the prostate. 5. Chloroethylclonidine suppressed the maximal effects of phenylephrine on spleen; 5-methylurapidil antagonized the effects of phenylephrine on aortic strips (pA2 7.98 +/- 0.08), vas deferens (pKB 8.89 +/- 0.07) and prostate (pKB 8.85 +/- 0.21). 6. BMY 7378 caused a dose (0.1-100 nmol kg-1)-dependent decrease in mean blood pressure of urethane-anaesthetized rats and its hypotensive efficacy was equal to that of hexamethonium. 7. The data suggest that alpha 1D-adrenoceptors play a significant role in rat aorta, a minor role in the heart, vas deferens and spleen and virtually no role in the prostate.  相似文献   

4.
The pharmacological profiles of alpha1-adrenoceptors for ketanserin, prazosin, silodosin, and BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9-dione dihydrochloride) were examined under different assay conditions. Among the tested antagonists and alpha1-adrenoceptors subtypes, ketanserin showed significantly lower affinity for the alpha1B-adrenoceptor subtype in intact tissue sampled from the rat tail artery, thoracic aorta, and cerebral cortex (functional pKB and binding pKi were approximately 6), than in cerebral cortex membrane preparations or whole cell and membrane preparations of alpha1B-adrenoceptor transfected human embryonic kidney 293T (HEK 293T) cells (pKi was approximately 8). In these tissues and cells, however, ketanserin showed a similar affinity (pKi = approximately 8) for alpha1A- and alpha1D-adrenoceptors even though the assays were conducted under different conditions. In contrast, the affinities of alpha1A-, alpha1B-, and alpha1D-adrenoceptors for prazosin, silodosin, and BMY 7378 did not significantly change under different assay conditions and in different tissues. The present study reveals that the pharmacological profiles of native alpha 1B-adrenoceptors for ketanserin is strongly influenced by the assay conditions and suggest that antagonist affinity is not necessarily constant.  相似文献   

5.
The affinity for functional alpha1-adrenoceptor subtypes of buspirone in comparison with its close structural analogs and selective alpha1D-adrenoceptor antagonists, BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]dec ane-7,9-dione) and MDL 73005EF (8-[2-(1,4-benzodioxan-2-ylmethylamino)ethyl]-8-azaspiro+ ++[4.5]decane-7,9-dione), was determined, namely at subtype A in rat vas deferens and perfused kidney, at subtype B in guinea-pig and mouse spleen, at subtype L in rabbit spleen, and at subtype D in rat aorta and pulmonary artery against noradrenaline-evoked contractions. BMY 7378 and MDL 73005EF were confirmed as 30- and 20-fold selective antagonists, respectively, for alpha1D- over both alpha1A- and alpha1B-adrenoceptors. Buspirone was a weak antagonist without intrinsic activity at alpha1A-adrenoceptors in rat vas deferens (pA2 = 6.12), at alpha1B-adrenoceptors in guinea-pig and mouse spleen (pA2 = 5.54 and 5.59) and at alpha1L-adrenoceptors in rabbit spleen (pA2 = 4.99), but caused partial vasoconstriction in rat kidney that was attenuable by the subtype D-selective adrenoceptor antagonist BMY 7378, but hardly by the subtype A-selective adrenoceptor antagonist B8805-033 ((+/-)-1,3,5-trimethyl-6-[[3-[4-((2,3-dihydro-2-hydroxymethyl)-1,4-be nzodioxin-5-yl)-1-piperazinyl]propyl]amino]-2,4(1H,3H)-pyrimidinedion e), confirming the additional presence of alpha1D-adrenoceptors mediating rat renal vasoconstriction. Buspirone behaved as a partial agonist at alpha1D-adrenoceptors in rat aorta (pD2 = 6.77, intrinsic activity (i.a.)= 0.40) and pulmonary artery (pD2 = 7.16, i.a. = 0.59). With buspirone as agonist in these tissues, the pA2 values of subtype-discriminating antagonists were consistent with their alpha1D-adrenoceptor affinity determined in rat aorta against noradrenaline and with published binding data on cloned alpha1d-adrenoceptors. The results provide pharmacological evidence that (1) in functional preparations for the A subtype, like rat vas deferens and perfused kidney, for the B subtype, like guinea-pig and mouse spleen, and for the L subtype, like rabbit spleen, buspirone is a weak antagonist without intrinsic activity, but (2) behaves as a partial agonist in rat aorta and pulmonary artery as models for the D subtype and (3) detects an additional vasoconstrictor alpha1D-adrenoceptor in rat kidney. Buspirone, like its close analogs BMY 7378 and MDL 73005EF, thus might also be a useful tool for functionally discriminating alpha1D- from alpha1A-, alpha1B- and alpha1L-adrenoceptors in various tissues.  相似文献   

6.
Structure-activity analysis of 21 aporphine derivatives was performed by examining their affinities for cloned human alpha (1A), alpha (1B) and alpha (1D) adrenoceptors (AR) using membranes prepared from rat-1 fibroblasts stably expressing each alpha (1)-AR subtype. All the compounds tested competed for [ (125)I]-HEAT binding with steep and monophasic curves. The most interesting compound was 8-NH (2)-boldine, which retains the selective affinity for alpha(1A)-AR (pKi = 6.37 +/- 0.21) vs. alpha(1B)-AR (pKi = 5.53 +/- 0.11) exhibited by 1,2,9,10-tetraoxygenated aporphines, but shows low affinity for alpha(1D)-AR (pKi < 2.5). Binding studies on native adrenoceptors present in rat cerebral cortex confirms the results obtained for human cloned alpha (1)-AR subtypes. The compounds selective for the alpha (1A) subtype discriminate two binding sites in rat cerebral cortex confirming a mixed population of alpha (1A)- and alpha (1B)-AR in this tissue. All compounds are more selective as inhibitors of [ (3)H]-prazosin binding than of [ (3)H]-diltiazem binding to rat cerebral cortical membranes. A close relationship was found between affinities obtained for cloned alpha (1A)-AR and inhibitory potencies on noradrenaline-induced contraction or inositol phosphate accumulation in tail artery, confirming that there is a homogeneous functional population of alpha(1A)-AR in this vessel. On the contrary, a poor correlation seems to exist between the affinity of 8-NH (2)-boldine for cloned alpha (1D)-AR and its potency as an inhibitor of noradrenaline-induced contraction or inositol phosphate accumulation in rat aorta, which confirms that a heterogeneous population of alpha (1)-AR mediates the adrenergic response in this vessel.  相似文献   

7.
目的:研究去甲肾上腺素(NE)介导大鼠肠系膜血管床(MVB)收缩的α在-肾上腺素受体(α1-AR)亚型,方法:用灌流大鼠MVB标本收缩功能实验和克隆细胞放射配体结合实验测定α1-AR亚型选择性拮抗剂pA2和pKi,并作相关分析。结果:α1A-AR选择性拮抗剂RS-17053,WB4101,5-MU及α1D-AR选择性拮抗剂BMY7378的pA2分别为8.98±0.28,9.16±0.20,8.69  相似文献   

8.
The expression of alpha 1-adrenoceptor subtypes in several tissues is regulated by gonadal hormones. In this study, we investigated whether castration regulates the alpha 1-adrenoceptor subtypes mediating the contractions of the aorta from male rats to noradrenaline. Noradrenaline induced similar concentration-dependent contractions in the aorta from control and castrated rats. Treatment of the aorta from both control and castrated rats with the alpha 1B/alpha 1D-adrenoceptor alkylating agent chloroethylclonidine resulted in approximately 1600-fold rightward shift in the concentration-response curves to noradrenaline. The pA2 values found for WB 4101, benoxathian (alpha 1A-selective) and BMY 7378 (alpha 1D-selective) indicate that alpha 1D-adrenoceptors are involved in the contractions of the aorta from control and castrated rats to noradrenaline. However, there was a 15-fold difference between the pKB estimated through the lowest effective concentrations of the alpha 1A-adrenoceptor selective antagonist 5-methyl-urapidil in the aorta from control and castrated rats. The pKB estimated in aorta from control rats is consistent with the interaction with alpha 1D-adrenoceptors (7.58 +/- 0.06), while that calculated in organs from control rats is consistent with alpha 1A-adrenoceptors (8.76 +/- 0.09). These results suggest that castration induces plasticity in the alpha 1-adrenoceptor subtypes involved in the contractions of the aorta to noradrenaline.  相似文献   

9.
1 The aim of the study was to investigate the role of the alpha1D-adrenoceptor in alpha1-adrenoceptor-induced contraction of human prostate by means of protection experiments. 2 Responses of human prostate strips to noradrenaline were recorded, along with responses of rat aorta and vas deferens, tissues possessing predominantly alpha1D- and alpha1A-adrenoceptors respectively, for comparison. alpha1-adrenoceptors were then inactivated by incubation with the irreversible antagonist phenoxybenzamine. In some tissues alpha1A- or alpha1D-adrenoceptors were 'protected' from inactivation by incubation in the presence of the selective alpha1A- or 1D-adrenoceptor antagonists 5-methylurapidil and BMY 7378 before recording further responses to noradrenaline. 3 Phenoxybenzamine reduced the maximum noradrenaline-induced response and the potency of noradrenaline in all tissues. In rat vas deferens and human prostate, 5-methylurapidil protected alpha1A-adrenoceptors in a concentration-dependent manner. In rat aorta, 10 nM BMY 7378 almost fully protected alpha1D-adrenoceptors. However, concentrations of BMY 7378 up to 30-fold higher failed to protect receptors in the human prostate. 4 These results suggest that in human prostate functional alpha1D-adrenoceptors do not contribute to noradrenaline-induced contractile responses.  相似文献   

10.
In the mouse thoracic aorta, noradrenaline, adrenaline, phenylephrine and methoxamine behaved as full agonists. The pA(2) values for 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9-dione dihydrochloride (BMY 7378) against each agonist were in good agreement with the generally accepted affinity value of alpha(1D)-adrenoceptors. 5-Methylurapidil, 2-[2,6-dimethoxyphenoxyethyl]aminomethyl-1,4-benzodioxane hydrochloride (WB 4101) and prazosin inhibited the contraction in response to noradrenaline. A significant correlation was obtained between the antagonist affinities in mouse thoracic aorta and those of native alpha(1D)-adrenoceptors in rat thoracic aorta or with those of cloned alpha(1d)-adrenoceptors, but not with those for either alpha(1a)- or alpha(1b)-adrenoceptors. Buspirone behaved as a partial agonist in mouse thoracic aorta, the contraction of which was antagonized by BMY 7378 with a pA(2) value (8.49) consistent with that found against noradrenaline (8.43). Clonidine acted as a partial agonist (pD(2)=5.94). The pK(p) value for clonidine against noradrenaline was similar to the pD(2) value for clonidine. The apparent pK(B) value for BMY 7378 against clonidine was similar to the pA(2) value against other full agonists used in the present study. These results suggest that the alpha(1D)-adrenoceptor subtype exists, and that the full agonists and the partial agonists evoke the contraction mediated through the alpha(1D)-adrenoceptor in mouse thoracic aorta.  相似文献   

11.
1. The antagonist effect of zolertine (4-phenyl-1-[2-(5-tetrazolyl)ethyl]piperazine trihydrochloride), on vascular contraction elicited by noradrenaline in aorta, carotid (alpha1D-adrenoceptors), mesenteric (alpha1A/D-adrenoceptors) and caudal arteries (alpha1A-adrenoceptors) from Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats and rabbit aorta (alpha1B-adrenoceptors), was investigated in endothelium-denuded arterial rings. 2. The selective alpha1D-adrenoceptor agonist, noradrenaline, elicited concentration-dependent contractions in all arterial rings from both species. Noradrenaline selectivity was: carotid = aorta > mesenteric = rabbit aorta > caudal arteries. 3. The contractile responses induced by noradrenaline were competitively antagonized by zolertine in rat carotid and aorta arteries, yielding pA2 values of WKY, 7.48 +/- 0.18; SHR, 7.43 +/- 0.13 and WKY, 7.57 +/- 0.24; SHR, 7.40 +/- 0.08, respectively. Zolertine was a non-competitive antagonist in some blood vessels as Schild plot slopes were lower than unity. The pKb estimates for zolertine were WKY, 6.98 +/- 0.16; SHR, 6.81 +/- 0.18 in the mesenteric artery, WKY, 5.73 +/- 0.11; SHR, 5.87 +/- 0.25 in the caudal artery and 6.65 +/- 0.09 in rabbit aorta. 4. Competition binding experiments using the alpha1-adrenoceptor antagonist [3H]prazosin showed a zolertine pKi of 6.81 +/- 0.02 in rat liver (alpha1B-adrenoceptors) and 6.35 +/- 0.04 in rabbit liver (alpha1A-adrenoceptors) membranes. 5. Zolertine showed higher affinity for alpha1D-adrenoceptors compared to alpha1A-adrenoceptors, while it had an intermediate affinity for alpha1B-adrenoceptors. The ability of the alpha1-adrenoceptor antagonist zolertine to block alpha1D-adrenoceptor-mediated constriction in different vessels of WKY and SHR rats may explain its antihypertensive efficacy despite its low order of potency.  相似文献   

12.
1 We have investigated the actions of the alpha(1D)-adrenoceptor selective antagonist BMY 7378 in comparison with yohimbine at alpha(1)- and alpha(2)-adrenoceptors. 2 In rat aorta (alpha(1D)-adrenoceptor), BMY 7378 (pA(2) of 8.67) was about 100 times more potent than yohimbine (pA(2) of 6.62) at antagonizing the contractile response to noradrenaline. 3 In human saphenous vein (alpha(2C)-adrenoceptor), BMY 7378 (pA(2) of 6.48) was approximately 10 times less potent than yohimbine (pA(2) of 7.56) at antagonizing the contractile response to noradrenaline. 4 In prostatic portions of rat vas deferens, BMY 7378 (10 mum) did not significantly affect the concentration-dependent inhibition of single pulse nerve stimulation-evoked contractions by xylazine (an action at prejunctional alpha(2D)-adrenoceptors). 5 In ligand-binding studies, BMY 7378 showed 10-fold selectivity for alpha(2C)-adrenoceptors (pK(i) of 6.54) over other alpha(2)-adrenoceptors. 6 It is concluded that BMY 7378, in addition to alpha(1D)-adrenoceptor selectivity in terms of alpha(1)-adrenoceptors, shows selectivity for alpha(2C)-adrenoceptors in terms of alpha(2)-adrenoceptors.  相似文献   

13.
1. Subtypes of alpha(1)-adrenoceptor-mediated contractions to noradrenaline in mouse mesenteric artery and abdominal aorta were examined. 2. In mesenteric artery, BMY7378, 5-methylurapidil, WB4101 and prazosin were inhibited contraction to noradrenaline The good correlation for pA(2) values of antagonists in native alpha(1D)- (rat thoracic aorta) adrenoceptor subtype and pK(i) values in rat cloned alpha(1d)-adrenoceptor with the pA(2) values estimated in the mouse mesenteric artery was obtained. However, the pA(2) value for BMY7378 is significantly lower than the accepted value against the alpha(1D)-adrenoceptor subtype. 3. In the abdominal aorta, it was obtained the regional difference for the sensitivity for noradrenaline. 4. In the upper abdominal aorta, the good correlation for the pA(2) values of the antagonists in the native alpha(1D)-adrenoceptor subtype and pK(i) values in the cloned alpha(1d)-adrenoceptor with the pA(2) values estimated in the upper abdominal aorta was obtained, and regression line was close to the line of identity. 5. In the lower abdominal aorta, the good correlation for the reported pK(i) values in the cloned alpha(1a)-adrenoceptor subtype with the pA(2) values estimated in the mouse lower abdominal aorta was obtained, and regression line was close to the line of identity. 6. In conclusion, the present functional data in the mouse suggest that (1) alpha(1D)-like adrenoceptors are present in the mesenteric artery, (2) there is the regional difference for the sensitivity for noradrenaline in the abdominal aorta and (3) noradrenaline evokes the contraction mediated through alpha(1D)-adrenoceptor in the upper abdominal aorta, whereas there is alpha(1A)-adrenoceptor-mediated contraction in the lower abdominal aorta.  相似文献   

14.
The ability of the conotoxin rho-TIA, a 19-amino acid peptide isolated from the marine snail Conus tulipa, to antagonize contractions induced by noradrenaline through activation of alpha1A-adrenoceptors in rat vas deferens, alpha1B-adrenoceptors in rat spleen and alpha1D-adrenoceptors in rat aorta, and to inhibit the binding of [125I]HEAT (2-[[beta-(4-hydroxyphenyl)ethyl]aminomethyl]-1-tetralone) to membranes of human embryonic kidney (HEK) 293 cells expressing each of the recombinant rat alpha1-adrenoceptors was investigated. rho-TIA (100 nM to 1 microM) antagonized the contractions of vas deferens and aorta in response to noradrenaline without affecting maximal effects and with similar potencies (pA2 approximately 7.2, n=4). This suggests that rho-TIA is a competitive antagonist of alpha1A- and alpha1D-adrenoceptors with no selectivity between these subtypes. Incubation of rho-TIA (30 to 300 nM) with rat spleen caused a significant reduction of the maximal response to noradrenaline, suggesting that rho-TIA is a non-competitive antagonist at alpha1B-adrenoceptors. After receptor inactivation with phenoxybenzamine, the potency of rho-TIA in inhibiting contractions was examined with similar occupancies (approximately 25%) at each subtype. Its potency (pIC50) was 12 times higher in spleen (8.3+/-0.1, n=4) than in vas deferens (7.2+/-0.1, n=4) or aorta (7.2+/-0.1, n=4). In radioligand binding assays, rho-TIA decreased the number of binding sites (B(max)) in membranes from HEK293 cells expressing the rat alpha1B-adrenoceptors without affecting affinity (K(D)). In contrast, in HEK293 cells expressing rat alpha1A- or alpha1D-adrenoceptors, rho-TIA decreased the K(D) without affecting the B(max). It is concluded that rho-TIA will be useful for distinguishing the role of particular alpha1-adrenoceptor subtypes in native tissues.  相似文献   

15.
The role of alpha1D-adrenoceptors in the vasculature of spontaneously hypertensive (SHR) and normotensive Wistar Kyoto rats (WKY), of different ages was assessed in pithed rats by the use of the selective alpha1D-adrenoceptor antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-8-azaspiro [4.5]decane-7,9-dione dihydrochloride). BMY 7378 displaced the pressor effect of phenylephrine in young pre-hypertensive pithed SHR rats, but produced no effect in young WKY rats (dose ratio of 3.4 and 1.6, respectively), while in adult rats BMY 7378 produced a greater shift in the phenylephrine response curve than in younger animals (dose ratio of 3.2 and 6.2 in WKY and SHR, respectively). The presence of alpha1D-adrenoceptors in the vasculature of pre-hypertensive rats, suggests its role in the pathogenesis/maintenance of increased blood pressure.  相似文献   

16.
We have previously demonstrated that contractions of rat vas deferens to exogenous noradrenaline involve predominantly alpha(1A)-adrenoceptors, but that contractions to endogenous noradrenaline involve predominantly alpha(1D)-adrenoceptors. In this study, we have examined the effects of sympathectomy on the subtypes of alpha(1)-adrenoceptor in rat vas deferens in radioligand binding and functional studies. In vehicle-treated tissues, antagonist displacement of [(3)H]prazosin binding to alpha(1)-adrenoceptors was consistent with a single population of alpha(1)-adrenoceptors. Binding affinities for a range of alpha(1)-adrenoceptor antagonists were expressed as pK(i) values and correlated with known affinities for alpha(1)-adrenoceptor subtypes. The correlation was significant only with alpha(1A)-adrenoceptors. In tissues from rats sympathectomised with 6-hydroxy-dopamine (2 x 100 mg kg(-1) i.p.), binding affinity for the alpha(1D)-adrenoceptor antagonist BMY 7378 fitted best with a two-site model. In functional studies, the potency of noradrenaline at producing total (phasic plus tonic) but not tonic contractions was increased in tissues from sympathectomised rats. Results obtained from sympathectomised rats suggest that phasic contractions are mainly alpha(1D)-adrenoceptor mediated, whereas tonic contractions are mainly alpha(1A)-adrenoceptor mediated, based on the effects of BMY 7378 and the alpha(1A)-adrenoceptor antagonist RS 100329. It is concluded that the predominant alpha(1)-adrenoceptor in vehicle-treated rat vas deferens is the alpha(1A)-adrenoceptor, both in terms of ligand binding and contractions to exogenous agonists. The alpha(1D)-adrenoceptor is only detectable by ligand binding following chemical sympathectomy, but is involved in noradrenaline-evoked contractions, particularly phasic contractions, of rat vas deferens.  相似文献   

17.
1. To illuminate the controversy on alpha 1A- or alpha 1L-adrenoceptor involvement in noradrenaline-mediated contractions of rat small mesenteric artery (SMA), we have studied the effects of subtype-selective alpha 1-adrenoceptor agonists and antagonists under different experimental conditions. 2. The agonist potency order in rat SMA was: A61603 > SKF89748-A > cirazoline > noradrenaline > ST-587 > methoxamine. Prazosin antagonized all agonists with a low potency (pA2: 8.29-8.80) indicating the involvement of alpha 1L-rather than alpha 1A-adrenoceptors. 3. The putative alpha 1L-adrenoceptor antagonist JTH-601, but not the alpha 1B-adrenoceptor antagonist chloroethylclonidine (10 microM) antagonized noradrenaline-induced contractions of SMA. The potency of the selective alpha 1D-adrenoceptor antagonist BMY 7378 against noradrenaline (pA2 = 6.16 +/- 0.13) and of the selective alpha 1A-adrenoceptor antagonist RS-17053 against noradrenaline (pKB = 8.35 +/- 0.10) and against the selective alpha 1A-adrenoceptor agonist A-61603 (pKB = 8.40 +/- 0.09) were too low to account for alpha 1D- and alpha 1A-adrenoceptor involvement. 4. The potency of RS-17053 (pKB/pA2's = 7.72-8.46) was not affected by lowering temperature, changing experimental protocol or inducing myogenic tone via KCl or U46619. 5. Selective protection of a putative alpha 1A-adrenoceptor population against the irreversible action of phenoxybenzamine also failed to increase the potency of RS-17053 (pA2 = 8.25 +/- 0.06 against A61603). 6. Combined concentration-ratio analysis demonstrated that tamsulosin, which does not discriminate between alpha 1A- and alpha 1L-adrenoceptors, and RS-17053 competed for binding at the same site in the SMA. 7. In summary, data obtained in our experiments in rat SMA indicate that the alpha 1-adrenoceptor mediating noradrenaline-induced contraction displays a distinct alpha 1L-adrenoceptor pharmacology. This study does not provide evidence for the hypothesis that alpha 1L-adrenoceptors represent an affinity state of the alpha 1A-adrenoceptor in functional assays. Furthermore, there is no co-existing alpha 1A-adrenoceptor in the SMA.  相似文献   

18.
The binding kinetics of [3H]-prazosin were measured using intact segments of rat tail artery (RTA) and thoracic aorta (RAO), and the data were compared with those obtained using a conventional membrane ligand-binding method. In intact RTA and RAO segments, [3H]-prazosin bound reversibly in a time-dependent and receptor-specific manner at 4 degrees C to alpha-1 adrenoceptors (ARs) of the plasma membrane, with affinities (pKD): 9.5 in RTA; 9.9 in RAO) that were in agreement with values estimated by a conventional membrane ligand-binding method. However, nonspecific binding was considerably higher in RAO than RTA, failing to detect clearly the specific binding at high concentrations (>300 pm) of [3H]-prazosin in binding experiments with RAO segments and membranes. The abundance of receptor in the RTA and RAO (Bmax mg-1) of total tissue protein), estimated using the tissue segment-binding approach (527+/-14 fmol mg-1 for RTA; 138+/-4 fmol mg-1 for RAO), was about 25-fold higher than values estimated using a conventional membrane-binding method (22+/-5 fmol mg-1) for RTA; 5+/-1 fmol mg-1 for RAO). Binding competition experiments using intact tissue segments or membranes derived from RTA tissue yielded comparable data, indicating a coexistence of alpha-1A AR (high affinity for prazosin, KMD-3213 and WB4101 and low affinity for BMY 7378) and alpha-1B AR (high affinity for prazosin but low affinity for KMD-3213, WB4101 and BMY 7378). In RAO tissue, careful evaluation of the tissue segment-binding assay revealed the coexpression of alpha-1B AR (high affinity for prazosin, but low affinity for KMD-3213 and BMY 7378) and alpha-1D AR (high affinity for prazosin and BMY 7378, but low affinity for KMD-3213), whereas the membrane-binding approach failed to detect these receptor subtypes with certainty. The present study indicates that previous estimates of alpha-1 AR density and alpha-1 AR subtypes obtained by a conventional membrane-binding approach, as opposed to our improved tissue segment-binding assay, may have substantially underestimated the abundance of receptors present in arterial tissues, and may have failed to identify accurately the presence of receptor subtypes. Advantages and disadvantages of the tissue segment-binding approach are discussed.British Journal of Pharmacology (2004) 141, 468-476. doi:10.1038/sj.bjp.0705627  相似文献   

19.
Multiple alpha(1)-adrenoceptors were evaluated in caudal artery of the young Wistar rat using selective agonists and antagonists. Arteries were exposed to the selective alpha(1A)-adrenoceptor agonist, A-61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) or to phenylephrine and to prazosin (alpha(1)-adrenoceptor antagonist), or the selective alpha(1A)-adrenoceptor antagonists 5-methylurapidil, RS 100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy)phenyl]-1-piperazinyl]propyl]-2,4-(1H)-pyrimidinedione), RS 17053 (N-[2(2-cyclopropylmethoxy) ethyl]-5-chloro-alpha, alpha-dimethyl-1H-indole-3-ethanamide), and the selective alpha(1D)-adrenoceptor antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione). Results showed a 100-fold higher potency of A-61603 for the alpha(1)-adrenoceptor present in the artery, compared with phenylephrine. Prazosin displaced both agonists with high affinity, whereas 5-methylurapidil, RS 100329 and RS 17053 displaced A-61603 with high affinity, indicating the presence of alpha(1A)-adrenoceptors. The selective alpha(1A)-adrenoceptor antagonists blocked phenylephrine responses with low affinity, suggesting that phenylephrine activated a second receptor population in caudal artery. BMY 7378 antagonized with low affinity both A-61603 and phenylephrine-induced contractions, indicating absence of alpha(1D)-adrenoceptors in the vessel. The results suggest that functional alpha(1B)-adrenoceptors are present in caudal arteries of the young Wistar rat.  相似文献   

20.
BACKGROUND AND PURPOSE: The internal anal sphincter has been shown to contract in response to alpha1-adrenoceptor stimulation and therefore alpha1-adrenoceptor agonists may be useful in treating faecal incontinence. This study characterizes the alpha1-adrenoceptor subtype responsible for mediating contraction of the internal anal sphincter of the pig. EXPERIMENTAL APPROACH: The potency of agonists and the affinities of several receptor subtype selective antagonists were determined on smooth muscle strips for the pig internal anal sphincter. Cumulative concentration-response curves were performed using phenylephrine and noradrenaline. KEY RESULTS: The potency of the alpha1A-adrenoceptor selective agonist A61603 (pEC50=7.79+/-0.04) was 158-fold greater than that for noradrenaline (pEC50=5.59+/-0.02). Phenylephrine (pEC50=5.99+/-0.05) was 2.5-fold more potent than noradrenaline. The alpha1D-adrenoceptor selective antagonist BMY7378 caused rightward shifts of the concentration-response curves to phenylephrine and noradrenaline, yielding low affinity estimates of 6.59+/-0.15 and 6.33+/-0.13, respectively. Relatively high affinity estimates were obtained for the alpha1A-adrenoceptor selective antagonists, RS100329 (9.01+/-0.14 and 9.06+/-0.22 with phenylephrine and noradrenaline, respectively) and 5-methylurapidil (8.51+/-0.10 and 8.31+/-0.10, respectively). Prazosin antagonized responses of the sphincter to phenylephrine and noradrenaline, yielding mean affinity estimates of 8.58+/-0.10 and 8.15+/-0.08, respectively. The Schild slope for prazosin with phenylephrine was equal to unity (1.01+/-0.24), however the Schild slope using noradrenaline was significantly less than unity (0.50+/-0.11, P<0.05). CONCLUSION AND IMPLICATIONS: The results suggest that contraction of circular smooth muscle from the pig internal anal sphincter is mediated via a population of adrenoceptors with the pharmacological characteristics of the alpha1A/L-adrenoceptor, most probably the alpha1L-adrenoceptor form of this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号