首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
视网膜退行性疾病包括视网膜色素变性、增殖性糖尿病性视网膜病变、增殖性玻璃体视网膜病变和年龄相关性黄斑变性等,是一类由于视网膜感光细胞变性丢失而引起的不可逆性致盲性疾病.干细胞移植技术为此类疾病带来了一线希望,干细胞整合入视网膜,分化成为特定的感光细胞,可以重建视网膜功能.最近,科学家在骨髓和一些成人组织中发现了一种表达CXCR4受体的干细胞,称为极小胚胎样干细胞(VSELSCs),这种细胞表达多种胚胎细胞及原生殖细胞的标志物,有实验证实其具有分化为三个胚层细胞的潜能.VSELSCs这种可以定向分化的特性预示了它在治疗退行性疾病中的广阔前景.本研究主要着眼于VSELSCs的研究现状,探讨其在视网膜退行性疾病中的应用前景.  相似文献   

2.
李晓 《眼科研究》2012,30(11):1040-1043
以视网膜神经元不可逆性损伤为病理基础的视网膜变性类疾病是目前主要的致盲性眼病之一,针对其神经损伤修复的药物治疗却十分有限.最新研究发现的诱导多能干细胞(iPSCs)是通过基因转染技术将转录因子导入动物或人的体细胞内,使体细胞直接重构成为胚胎干细胞样的多潜能细胞.由患者体细胞诱导的iPSCs不仅具有强大的自我更新和分化潜能,而且可避免以往胚胎干细胞存在的宿主排斥反应和伦理学限制等缺点,同时眼部屈光介质清晰的特点还使得自体干细胞移植治疗视网膜变性类疾病具有易于观察、便于操作的优势,相信会为这一难治性疾病的治疗开辟新的途径.对iPSCs的研究发展历程、iPSCs的特性和优势、iPSCs在眼科的诱导和定向分化能力进行综述.  相似文献   

3.
视网膜变性疾病是一类与遗传相关的变性疾病,导致患者渐进性视觉丢失,是主要的致盲性眼病之一,其共同病理基础是视网膜光感受器细胞的变性、坏死和凋亡,然而目前尚无有效的治疗方法。细胞移植治疗是目前实验研究治疗视网膜变性疾病的主要方法之一。近年研究表明将感光前体细胞或视网膜色素上皮细胞移植到视网膜下腔或玻璃体内,可以延缓宿主感光细胞的凋亡、替代凋亡的感光细胞、挽救残存的视觉功能和修复视网膜结构。细胞移植治疗的一个很重要的问题是移植细胞的来源问题,目前主要的移植细胞来源是视网膜祖/干细胞、胚胎干细胞和诱导多潜能干细胞等。本文就干细胞移植治疗视网膜变性疾病的研究进展进行综述。  相似文献   

4.
视网膜退行性病变是造成视觉损害乃至失明的重要原因,由于成年视网膜组织无法自我更新病变中丢失的细胞,导致视网膜退行性病变具有不可逆性。诱导多能干细胞具有自我更新和多向分化的巨大潜力,是建立疾病模型、研究细胞替代疗法的理想供体。本文重点论述诱导多能干细胞的获取及其向神经视网膜细胞定向分化方面的研究进展,为视网膜退行性病变的实验室研究和临床诊治提供一定参考。  相似文献   

5.
视网膜退行性疾病,如年龄相关性黄斑变性、视网膜色素变性、青光眼视神经萎缩等,是以视神经细胞、感光细胞及视网膜色素细胞等退行性变为主要特征的一类疾病,是目前主要的致盲性眼病,一直以来都认为成熟哺乳动物视网膜细胞缺乏有效的自我修复及再生能力,因此视网膜细胞凋亡具有不可逆性,目前还缺乏有效的促进视网膜再生方法,而干细胞以其独有的具有向目的细胞分化增殖,以取代变性、凋亡细胞的生物学特性,可作为一种替代疗法,为视网膜细胞的再生、恢复视功能提供了新的思路.本文从视网膜干细胞的来源及其在视网膜退行性疾病的应用进行综述.  相似文献   

6.
There is currently no FDA-approved therapy for treating patients with geographic atrophy (GA), a late stage of age-related macular degeneration (AMD). Cell transplantation has the potential to restore vision in these patients. This review discusses how recent advancement in induced pluripotent stem (iPS) cells provides a promising therapy for GA treatment. Recent advances in stem cell biology have demonstrated that it is possible to derive iPS cells from human somatic cells by introducing reprogramming factors. Human retinal pigment epithelium (RPE) cells and photoreceptors can be derived from iPS cells by defined factors. Studies show that transplanting these cells can stabilize or recover vision in animal models. However, cell derivation protocols and transplantation procedures still need to be optimized. Much validation has to be done before clinical-grade, patient-derived iPS can be applied for human therapy. For now, RPE cells and photoreceptors derived from patient-specific iPS cells can serve as a valuable tool in elucidating the mechanism of pathogenesis and drug discovery for GA.  相似文献   

7.
There is currently no FDA-approved therapy for treating patients with geographic atrophy (GA), a late stage of age-related macular degeneration (AMD). Cell transplantation has the potential to restore vision in these patients. This review discusses how recent advancement in induced pluripotent stem (iPS) cells provides a promising therapy for GA treatment. Recent advances in stem cell biology have demonstrated that it is possible to derive iPS cells from human somatic cells by introducing reprogramming factors. Human retinal pigment epithelium (RPE) cells and photoreceptors can be derived from iPS cells by defined factors. Studies show that transplanting these cells can stabilize or recover vision in animal models. However, cell derivation protocols and transplantation procedures still need to be optimized. Much validation has to be done before clinical-grade, patient-derived iPS can be applied for human therapy. For now, RPE cells and photoreceptors derived from patient-specific iPS cells can serve as a valuable tool in elucidating the mechanism of pathogenesis and drug discovery for GA.  相似文献   

8.
Embryonic stem cells: potential source for ocular repair   总被引:3,自引:0,他引:3  
Many ocular diseases, such as retinitis pigmentosa and age-related macular degeneration, reflect damage to specific cells that are not normally repaired or replaced. Preliminary results of animal studies suggest that these degenerative diseases may be treatable by transplantation of healthy fetal cells. However, obtaining a sufficient number of suitable donor cells remains a problem. The isolation of human embryonic stem (ES) cells has drawn much attention because of their potential clinical application for patients with these degenerative diseases. Because ES cells have the potential to generate all adult cell types, ocular diseases resulting from the failure of specific cell types would be potentially treatable through the transplantation of differentiated cells derived from ES cells. In addition, because ES cells can proliferate indefinitely in their undifferentiated state, they are expected to alleviate the problem of the shortage of donor cells for cell-replacement therapy. Recently, reproducible and efficient differentiation methods for the generation of lens cells, retinal neurons, and retinal pigment epithelial (RPE) cells from ES cells have been developed. This review focuses especially on these ocular cells differentiated from ES cells. We will also discuss the potential therapeutic uses of ES cells for the treatment of ocular diseases.  相似文献   

9.
视网膜变性疾病是引起视力丧失的重要原因,由于这类眼病的病因不明确、发病机制复杂,目前尚无有效的治疗方法.近年来,干细胞研究领域取得了突破性进展,干细胞具有分化为机体所有细胞的潜能,可以利用胚胎干细胞(ESCs)分化出各种视网膜细胞,这为视网膜变性疾病的治疗带来了新的曙光.ESCs治疗视网膜变性疾病至关重要的一步是将ESCs分化为视网膜光感受器细胞和视网膜色素上皮(RPE)样细胞.本文对自发诱导培养法、共培养法、细胞因子诱导法、单层贴壁诱导培养法和3D诱导培养法等ESCs分化为视网膜光感受器细胞和RPE细胞方法的最新进展进行综述.  相似文献   

10.
Over the past few years a great deal of interest has been generated in using stem cells/progenitors to treat degenerative diseases that afflict different tissues, including retina. This interest is due to the defining properties of stem cells/progenitors, the ability of these cells to self-renew and generate all the basic cell types of the particular tissue to which they belong. In addition, the recent reports of plasticity of the adult tissue-specific stem cells/progenitors and directed differentiation of the embryonic cells (ES) has fueled the hope for cell and gene therapy using stem cells from heterologous sources. Will this approach work for treating retinal degeneration? Here, we review the current state of knowledge about obtaining retinal cells from heterologous sources, including ES cells.  相似文献   

11.
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.  相似文献   

12.
With the development of stem cell technology, stem cell-based therapy for retinal degeneration has been proposed to restore the visual function. Many animal studies and some clinical trials have shown encouraging results of stem cell-based therapy in retinal degenerative diseases. While stem cell-based therapy is a promising strategy to replace damaged retinal cells and ultimately cure retinal degeneration, there are several important challenges which need to be overcome before stem cell technology can be applied widely in clinical settings. In this review, different types of donor cell origins used in retinal treatments, potential target cell types for therapy, methods of stem cell delivery to the eye, assessments of potential risks in stem cell therapy, as well as future developments of retinal stem cells therapy, will be discussed.  相似文献   

13.
视网膜变性类疾病是世界上主要的一类致盲性眼病,感光细胞等视网膜神经元细胞损伤及凋亡是其共同的病理基础.嘌呤能离子通道型7(P2 X7)受体在视网膜多种类型的细胞均有表达.研究发现,P2 X7受体激活及其介导的信号异常表达与视网膜神经元细胞变性死亡过程相关,而阻断或下调P2 X7受体的激活表达可显著减少视网膜胶质细胞激活...  相似文献   

14.
Retinal remodeling is a progressive series of negative plasticity revisions that arise from retinal degeneration, and are seen in retinitis pigmentosa, age-related macular degeneration and other forms of retinal disease. These processes occur regardless of the precipitating event leading to degeneration. Retinal remodeling then culminates in a late-stage neurodegeneration that is indistinguishable from progressive central nervous system (CNS) proteinopathies. Following long-term deafferentation from photoreceptor cell death in humans, and long-lived animal models of retinal degeneration, most retinal neurons reprogram, then die. Glial cells reprogram into multiple anomalous metabolic phenotypes. At the same time, survivor neurons display degenerative inclusions that appear identical to progressive CNS neurodegenerative disease, and contain aberrant α-synuclein (α-syn) and phosphorylated α-syn. In addition, ultrastructural analysis indicates a novel potential mechanism for misfolded protein transfer that may explain how proteinopathies spread. While neurodegeneration poses a barrier to prospective retinal interventions that target primary photoreceptor loss, understanding the progression and time-course of retinal remodeling will be essential for the establishment of windows of therapeutic intervention and appropriate tuning and design of interventions. Finally, the development of protein aggregates and widespread neurodegeneration in numerous retinal degenerative diseases positions the retina as a ideal platform for the study of proteinopathies, and mechanisms of neurodegeneration that drive devastating CNS diseases.  相似文献   

15.
Retinal pigment epithelial (RPE) transplantation aims to restore the subretinal anatomy and re-establish the critical interaction between the RPE and the photoreceptor, which is fundamental to sight. The field has developed over the past 20 years with advances coming from a large body of animal work and more recently a considerable number of human trials. Enormous progress has been made with the potential for at least partial restoration of visual function in both animal and human clinical work. Diseases that have been treated with RPE transplantation demonstrating partial reversal of vision loss include primary RPE dystrophies such as the merTK dystrophy in the Royal College of Surgeons (RCS) rat and in humans, photoreceptor dystrophies as well as complex retinal diseases such as atrophic and neovascular age-related macular degeneration (AMD). Unfortunately, in the human trials the visual recovery has been limited at best and full visual recovery has not been demonstrated. Autologous full-thickness transplants have been used most commonly and effectively in human disease but the search for a cell source to replace autologous RPE such as embryonic stem cells, marrow-derived stem cells, umbilical cord-derived cells as well as immortalised cell lines continues. The combination of cell transplantation with other modalities of treatment such as gene transfer remains an exciting future prospect. RPE transplantation has already been shown to be capable of restoring the subretinal anatomy and improving photoreceptor function in a variety of retinal diseases. In the near future, refinements of current techniques are likely to allow RPE transplantation to enter the mainstream of retinal therapy at a time when the treatment of previously blinding retinal diseases is finally becoming a reality.  相似文献   

16.
极小胚胎样干细胞( very small em yonic-like stem cells, VSELs)是美国路易斯维尔大学Kucia 研究小组从小鼠骨髓和人脐带血中分离出一种具有类似胚胎干细胞生物特性的多潜能成体干细胞。与胚胎干细胞相似的外表---细胞形态及表面标志、以及相似的内在---多分化潜能决定了VSELs一出现就被细胞替代疗法视为最有潜力的种子细胞,本文就VSELs的研究历程及在眼科干细胞治疗视网膜退行性疾病中的临床意义作一综述。  相似文献   

17.
曹天玥  江双红  晏晨  艾明 《国际眼科杂志》2017,17(12):2260-2262
在视网膜退行性疾病中,年龄相关性黄斑变性(age-related macular degeneration,ARMD)和Stargardt黄斑营养不良(SMD)分别是威胁老年人和青少年人群视力最常见的疾病.目前仍缺乏可改善干性ARMD和Stargardt黄斑营养不良患者视力的确切疗法.近年来,干细胞(stem cells)技术不断发展,干细胞来源的RPE细胞移植疗法成为视网膜退行性疾病治疗的热点及新方向,本文将对该研究领域的最新研究进展作一综述.  相似文献   

18.
陈瑾  徐国兴 《国际眼科杂志》2020,20(10):1722-1725

近年来,干细胞在眼科领域的研究及应用受到高度关注,胚胎干细胞(ES)、成体干细胞能够被定向诱导分化成视网膜色素上皮细胞,由此可获得转分化的大量的视网膜色素上皮细胞源,通过体内干细胞及视网膜色素上皮细胞移植有望应用于各种视网膜退行性疾病的细胞替代治疗。本文就各种干细胞诱导分化为视网膜色素上皮细胞的途径及应用进行探讨。  相似文献   


19.

视网膜新生血管形成是许多视网膜疾病的病理特征,例如早产儿视网膜病变和糖尿病视网膜病变,可导致严重的视力丧失甚至失明。抑制视网膜新生血管形成是治疗这些视网膜疾病的治疗策略。目前,已存在几种抑制视网膜新生血管形成的治疗策略,包括激光封闭、抑制血管内皮生长因子(VEGF)以及干细胞的移植等。随着干细胞研究的深入,发现干细胞治疗尽管潜力极大,但亦存在如移植细胞的低生存力,先天异质性等技术障碍,目前研究发现来源于间充质干细胞(MSCs)的外泌体具有与MSCs相似的功能,且尺寸小、易于通过生物膜,为细胞治疗提供了一种新思路,本文就外泌体对视网膜新生血管疾病的最新进展作一综述。  相似文献   


20.
视网膜退行性疾病是导致不可逆性视力损害和失明的主要原因之一,尚无有效的治疗方法。细胞疗法因具有替代受损或丧失功能细胞的作用,在视网膜退行性疾病的再生医学中受到广泛关注。不同来源移植细胞的替代治疗在基础研究和临床试验中显示了一定的安全性和有效性,但仍存在伦理、免疫排斥、致瘤性等不足。病变区微环境也影响着移植细胞的存活,使细胞替代治疗的临床应用受到阻碍。随着移植细胞种类增加和移植技术更新,通过重编程、基因修饰、三维培养和生物支架等的应用,视网膜退行性疾病的细胞替代治疗效果得到不断优化。不同学科间交叉合作有效解决了不同来源移植细胞的一些潜在问题,在细胞悬液、细胞膜片和视网膜类器官替代治疗视网膜退行性疾病方面取得显著进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号