共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, Katsevich proved a filtered backprojection formula for exact image reconstruction from cone-beam data along a helical scanning locus, which is an important breakthrough since 1991 when the spiral cone-beam scanning mode was proposed. In this paper, we prove a generalized Katsevich's formula for exact image reconstruction from cone-beam data collected along a rather flexible curve. We will also give a general condition on filtering directions. Based on this condition, we suggest a natural choice of filtering directions, which is more convenient than Katsevich's choice and can be applied to general scanning curves. In the derivation, we use analytical techniques instead of geometric arguments. As a result, we do not need the uniqueness of the PI lines. In fact, our formula can be used to reconstruct images on any chord as long as a scanning curve runs from one endpoint of the chord to the other endpoint. This can be considered as a generalization of Orlov's classical theorem. Specifically, our formula can be applied to (i) nonstandard spirals of variable radii and pitches (with PI- or n-PI-windows), and (ii) saddlelike curves. 相似文献
2.
Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data 总被引:6,自引:0,他引:6
In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fanbeam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case. 相似文献
3.
Ahn S Chaudhari AJ Darvas F Bouman CA Leahy RM 《Physics in medicine and biology》2008,53(14):3921-3942
We investigate fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography for applications in small animal imaging. Our forward model uses a diffusion approximation for optically inhomogeneous tissue, which we solve using a finite element method (FEM). We examine two approaches to incorporating the forward model into the solution of the inverse problem. In a conventional direct calculation approach one computes the full forward model by repeated solution of the FEM problem, once for each potential source location. We describe an alternative on-the-fly approach where one does not explicitly solve for the full forward model. Instead, the solution to the forward problem is included implicitly in the formulation of the inverse problem, and the FEM problem is solved at each iteration for the current image estimate. We evaluate the convergence speeds of several representative iterative algorithms. We compare the computation cost of those two approaches, concluding that the on-the-fly approach can lead to substantial reductions in total cost when combined with a rapidly converging iterative algorithm. 相似文献
4.
An extended data function and its generalized backprojection for image reconstruction in helical cone-beam CT 总被引:1,自引:0,他引:1
We have recently proposed a general formula (i.e., equations (9) to (11) in Zou and Pan (2004a Phys. Med. Biol. 49 941-59)) for image reconstruction from helical cone-beam data. On the basis of the formula, we have also developed two reconstruction algorithms, which are referred to as the backprojection filtration (BPF) algorithm (Zou and Pan 2004a) and the filtered backprojection (FBP) algorithm (Zou and Pan 2004b Phys. Med. Biol. 49 2717-31), respectively. The two algorithms have been implemented and evaluated in numerical studies. In this note, however, we point out that the data function previously used for proving the general formula in Zou and Pan (2004a) is incomplete and that, instead, an extended data function and its generalized backprojection, which are described in this note, should be used to complete the proof of the general formula. On the other hand, we also demonstrate in this note that the additional term in the extended data function has no effect on the previously developed BPF and FBP algorithms. The results can also be extended to general, smooth trajectories. 相似文献
5.
A two-step Hilbert transform method for 2D image reconstruction 总被引:8,自引:0,他引:8
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fanbeam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained. 相似文献
6.
Recently, x-ray differential phase contrast computed tomography (DPC-CT) has been experimentally implemented using a conventional source combined with several gratings. Images were reconstructed using a parallel-beam reconstruction formula. However, parallel-beam reconstruction formulae are not directly applicable for a large image object where the parallel-beam approximation fails. In this note, we present a new image reconstruction formula for fan-beam DPC-CT. There are two major features in this algorithm: (1) it enables the reconstruction of a local region of interest (ROI) using data acquired from an angular interval shorter than 180 degrees + fan angle and (2) it still preserves the filtered backprojection structure. Numerical simulations have been conducted to validate the image reconstruction algorithm. 相似文献
7.
Statistically based iterative image reconstruction has been widely used in positron emission tomography (PET) imaging. The quality of reconstructed images depends on the accuracy of the system matrix that defines the mapping from the image space to the data space. However, an accurate system matrix is often associated with high computation cost and huge storage requirement. In this paper, we present a method to address this problem using sparse matrix factorization and graphics processor unit (GPU) acceleration. We factor the accurate system matrix into three highly sparse matrices: a sinogram blurring matrix, a geometric projection matrix and an image blurring matrix. The geometrical projection matrix is precomputed based on a simple line integral model, while the sinogram and image blurring matrices are estimated from point-source measurements. The resulting factored system matrix has far less nonzero elements than the original system matrix, which substantially reduces the storage and computation cost. The smaller matrix size also allows an efficient implementation of the forward and backward projectors on a GPU, which often has a limited memory space. Our experimental studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction, while achieving better performance than existing factorization methods. 相似文献
8.
N. Oliveira Author Vitae Author Vitae R. Bugalho Author Vitae N. Ferreira Author Vitae Author Vitae 《Computers in biology and medicine》2009,39(2):119-129
The Clear-PEM system is a prototype machine for Positron Emission Mammography (PEM) under development within the Portuguese PET-Mammography consortium. We have embedded 2D image reconstruction algorithms implemented in IDL within the prototype's image analysis package. The IDL implementation of these algorithms proved to be accurate and computationally efficient. In this paper, we present the implementation of the MLEM, OSEM and ART 2D iterative image reconstruction algorithms for PEM using IDL. C and IDL implementations are compared using realistic Monte Carlo simulated data. We show that IDL can be used for the easy implementation of image reconstruction algorithms for emission tomography. 相似文献
9.
Tang X Hsieh J Nilsen RA Dutta S Samsonov D Hagiwara A 《Physics in medicine and biology》2006,51(4):855-874
Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 degrees) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK-type algorithms. Moreover, the experimental evaluation by clinical data verifies that the proposed 3D-weighted CB-FBP algorithm for image reconstruction in volumetric CT under helical source trajectory meets the challenges posed by diagnostic applications of volumetric CT imaging. 相似文献
10.
A novel exact fan-beam image reconstruction formula is presented and validated using both phantom data and clinical data. This algorithm takes the form of the standard ramp filtered backprojection (FBP) algorithm plus local compensation terms. This algorithm will be referred to as a locally compensated filtered backprojection (LCFBP). An equal weighting scheme is utilized in this algorithm in order to properly account for redundantly measured projection data. The algorithm has the desirable property of maintaining a mathematically exact result for: the full scan mode (2pi), the short scan mode (pi+ full fan angle), and the supershort scan mode [less than (pi+ full fan angle)]. Another desirable feature of this algorithm is that it is derivative-free. This feature is beneficial in preserving the spatial resolution of the reconstructed images. The third feature is that an equal weighting scheme has been utilized in the algorithm, thus the new algorithm has better noise properties than the standard filtered backprojection image reconstruction with a smooth weighting function. Both phantom data and clinical data were utilized to validate the algorithm and demonstrate the superior noise properties of the new algorithm. 相似文献
11.
迭代成像中投影矩阵的获取速度直接影响算法的效率.本文提出了一种快速求解投影矩阵的方法,它尤其适用于扇形扫描投影数据的重建.利用扇形射束与重建图像像素的几何对称性一次获取多个投影矩阵的向量以及实时获取投影矩阵向量方式,减少了获得投影矩阵花费时间,节省了存储矩阵所占用的空间.通过模拟投影数据进行图像重建,其结果表明,该法较全部求出投影矩阵法极大地减少了内存空间的占用,较数据转换法节省了转换时间,从而提高了扇形投影数据的图像重建效率. 相似文献
12.
Image reconstruction on PI-lines by use of filtered backprojection in helical cone-beam CT 总被引:6,自引:0,他引:6
Recently, we have derived a general formula for image reconstruction from helical cone-beam projections. Based upon this formula, we have also developed an exact algorithm for image reconstruction on PI-line segments from minimum data within the Tam-Danielsson window. This previous algorithm can be referred to as a backprojection-filtration algorithm because it reconstructs an image by first backprojection of the data derivatives and then filtration of the backprojections on PI-line segments. In this work, we propose an alternative algorithm, which reconstructs an image by first filtering the modified data along the cone-beam projections of the PI-lines onto the detector plane and then backprojecting the filtered data onto PI-line segments. Therefore, we refer to this alternative algorithm as the filtered-backprojection algorithm. A preliminary computer-simulation study was performed for validating and demonstrating this new algorithm. Furthermore, we derive a practically useful expression to accurately compute the derivative of the data function for image reconstruction. The proposed filtered-backprojection algorithm can reconstruct the image within any selected ROI inside the helix and thus can handle naturally the long object problem and the super-short scan problem. It can also be generalized to reconstruct images from data acquired with other scanning configurations such as the helical scan with a varying pitch. 相似文献
13.
Attenuation effects can be significant in photoacoustic tomography since the generated pressure signals are broadband, and ignoring them may lead to image artifacts and blurring. La Rivie?re et al. [Opt. Lett. 31(6), pp. 781-783, (2006)] had previously derived a method for modeling the attenuation effect and correcting for it in the image reconstruction. This was done by relating the ideal, unattenuated pressure signals to the attenuated pressure signals via an integral operator. We derive an integral operator relating the attenuated pressure signals to the absorbed optical energy for a planar measurement geometry. The matrix operator relating the two quantities is a function of the temporal frequency, attenuation coefficient and the two-dimensional spatial frequency. We perform singular-value decomposition (SVD) of this integral operator to study the problem further. We find that the smallest singular values correspond to wavelet-like eigenvectors in which most of the energy is concentrated at times corresponding to greater depths in tissue. This allows us to characterize the ill-posedness of recovering the absorbed optical energy distribution at different depths in an attenuating medium. This integral equation can be inverted using standard SVD methods, and the initial pressure distribution can be recovered. We conduct simulations and derive an algorithm for image reconstruction using SVD for a planar measurement geometry. We also study the noise and resolution properties of this image-reconstruction method. 相似文献
14.
Internet2-based 3D PET image reconstruction using a PC cluster 总被引:3,自引:0,他引:3
Shattuck DW Rapela J Asma E Chatzioannou A Qi J Leahy RM 《Physics in medicine and biology》2002,47(15):2785-2795
We describe an approach to fast iterative reconstruction from fully three-dimensional (3D) PET data using a network of PentiumIII PCs configured as a Beowulf cluster. To facilitate the use of this system, we have developed a browser-based interface using Java. The system compresses PET data on the user's machine, sends these data over a network, and instructs the PC cluster to reconstruct the image. The cluster implements a parallelized version of our preconditioned conjugate gradient method for fully 3D MAP image reconstruction. We report on the speed-up factors using the Beowulf approach and the impacts of communication latencies in the local cluster network and the network connection between the user's machine and our PC cluster. 相似文献
15.
Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing 总被引:1,自引:0,他引:1
Vandenberghe S Daube-Witherspoon ME Lewitt RM Karp JS 《Physics in medicine and biology》2006,51(6):1603-1621
Faster scintillators like LaBr(3) and LSO have sparked renewed interest in PET scanners with time-of-flight (TOF) information. The TOF information adds another dimension to the data set compared to conventional three-dimensional (3D) PET with the size of the projection data being multiplied by the number of TOF bins. Here we show by simulations and analytical reconstruction that angular sampling for two-dimensional (2D) TOF PET can be reduced significantly compared to what is required for conventional 2D PET. Fully 3D TOF PET data, however, have a wide range of oblique and transverse angles. To make use of the smaller necessary angular sampling we reduce the 3D data to a set of 2D histoprojections. This is done by rebinning the 3D data to 2D data and by mashing these 2D data into a limited number of angles. Both methods are based on the most likely point given by the TOF measurement. It is shown that the axial resolution loss associated with rebinning reduces with improved timing resolution and becomes less than 1 mm for a TOF resolution below 300 ps. The amount of angular mashing that can be applied without tangential resolution loss increases with improved TOF resolution. Even quite coarse angular mashing (18 angles out of 324 measured angles for 424 ps) does not significantly reduce image quality in terms of the contrast or noise. The advantages of the proposed methods are threefold. Data storage is reduced to a limited number of 2D histoprojections with TOF information. Compared to listmode format we have the advantage of a predetermined storage space and faster reconstruction. The method does not require the normalization of projections prior to rebinning and can be applied directly to measured listmode data. 相似文献
16.
This paper presents an analysis of two cone beam configurations (having focal lengths of 40 and 60 cm) for the acquisition of single photon emission computed tomography (SPECT) projection data. A three-dimensional filtered backprojection algorithm is used to reconstruct SPECT images of cone beam projection data obtained using Monte Carlo simulations. The mathematical analysis resulted in on-axis point source sensitivities (calculated for a distance of 15 cm from the collimator surface) for cone beam configurations that were 1.4-3 times the sensitivities of parallel-hole and fan beam geometries having similar geometric resolutions. Cone beam collimation offers the potential for improved sensitivity for SPECT devices using large-field-of-view scintillation cameras. 相似文献
17.
背景:三维重建技术是采用计算机技术对二维医学图像进行边界识别,重新还原出被检组织或器官的三维图像。
目的:分析在不同情况下进行医学图像三维重建时如何进行算法的选择。。
方法:采用计算机检索中国期刊全文数据库和Pubmed 数据库。中文检索词为“医学图像,三维重建,面绘制,体绘制”,英文检索词为“medical images, three-dimensional reconstruction, surface rendering, volume rendering”。 检索与医学图像三维重建算法相关的文献33篇,从面绘制重置方法和体绘制重置方法的实现原理、实现复杂度、实时显示情况等方面进行分析。
结果与结论:目前,医学图像三维重建根据绘制过程中数据描述方法的不同可分为三大类:面绘制方法、体绘制方法和混合绘制方法。通过对面绘制和体绘制方法中不同算法的分析,可以看到面绘制方法在算法效率和实时交互性上是优于体绘制的,虽然面绘制方法在绘制时候会丢失许多细节,使得绘制图像效果不理想,但是由于其算法比较简单,占用内存资源少,所以目前得到了广泛的运用。体绘制方法是对体数据场中的体素进行直接操作,可以绘制出三维数据场中更丰富的信息,因此体绘制方法的绘制效果优于面绘制方法。 相似文献
18.
Cierniak R 《Artificial intelligence in medicine》2008,43(2):113-125
OBJECTIVE: In this paper a new approach to tomographic image reconstruction from projections is developed and investigated. METHOD: To solve the reconstruction problem a special neural network which resembles a Hopfield net is proposed. The reconstruction process is performed during the minimizing of the energy function in this network. To improve the performance of the reconstruction process an entropy term is incorporated into energy expression. RESULT AND CONCLUSION: The approach presented in this paper significantly decreases the complexity of the reconstruction problem. 相似文献
19.
20.
Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled '3.5D' image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated (11)C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV and DVR images. The method was also tested on a 90 min (11)C-raclopride patient study performed on the high-resolution research tomography. The proposed method was shown to outperform the conventional method in visual as well as quantitative accuracy improvements (in terms of noise versus regional DVR value performance). 相似文献