首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative PCR (qPCR) is more sensitive than microscopy for detecting Pneumocystis jirovecii in bronchoalveolar lavage (BAL) fluid. We therefore developed a qPCR assay and compared the results with those of a routine immunofluorescence assay (IFA) and clinical data. The assay included automated DNA extraction, amplification of the mitochondrial large-subunit rRNA gene and an internal control, and quantification of copy numbers with the help of a plasmid clone. We studied 353 consecutive BAL fluids obtained for investigation of unexplained fever and/or pneumonia in 287 immunocompromised patients. No qPCR inhibition was observed. Seventeen (5%) samples were both IFA and qPCR positive, 63 (18%) were IFA negative and qPCR positive, and 273 (77%) were both IFA and qPCR negative. The copy number was significantly higher for IFA-positive/qPCR-positive samples than for IFA-negative/qPCR-positive samples (4.2 ± 1.2 versus 1.1 ± 1.1 log(10) copies/μl; P < 10(-4)). With IFA as the standard, the qPCR assay sensitivity was 100% for ≥2.6 log(10) copies/μl and the specificity was 100% for ≥4 log(10) copies/μl. Since qPCR results were not available at the time of decision-making, these findings did not trigger cotrimoxazole therapy. Patients with systemic inflammatory diseases and IFA-negative/qPCR-positive BAL fluid had a worse 1-year survival rate than those with IFA-negative/qPCR-negative results (P < 10(-3)), in contrast with solid-organ transplant recipients (P = 0.88) and patients with hematological malignancy (P = 0.26). Quantifying P. jirovecii DNA in BAL fluids independently of IFA positivity should be incorporated into the investigation of pneumonia in immunocompromised patients. The relevant threshold remains to be determined and may vary according to the underlying disease.  相似文献   

2.
With the establishment of routine virus load (DNAemia) screening for Human adenovirus (HAdV) and Cytomegalovirus (CMV) in post-transplant care quality standards for quantitative PCR-assays are increasing. Established real-time PCR assays were improved with a fully automated DNA-extraction and with a competitive internal control DNA packaged into a lambda phage which serves as an extraction and amplification control in each sample. HAdV and CMV DNA were detected and quantified simultaneously in various types of diagnostic samples like blood, feces or respiratory tract materials. Inhibition was observed in 0.33-0.66% of over 14,000 diagnostic samples, an infrequent but nevertheless not negligible event, which is observed mainly in stool samples. CMV viral load in broncho-alveolar lavage fluid (BALF) ranged between positive but below the quantitation limit of 1,000 copies/ml up to 1.8 × 10(7) copies/ml with a median of 6.0 × 10(3) copies/ml. Forty-one (4.7%) BALF samples had a viral load above 5.0 × 10(5) copies/ml, which was proposed as a threshold for the diagnosis of pneumonia. HAdV viral loads ranged between positive but below the quantitation limit of 1,000 copies/ml to a very high concentration of 1.3 × 10(11) copies/ml in stool and BALF samples. A HAdV-DNAemia of >10(4) copies/ml was found only in patients with stool viral load of above 10(5) copies/ml. These data support the hypothesis that quantitation in diagnostic materials other than blood may give valuable diagnostic information and that further evaluation of this approach is reasonable.  相似文献   

3.
Early and accurate monitoring of cytomegalovirus (CMV) infection in solid-organ transplant recipients is of major importance. We have assessed the potential benefit of an ultrasensitive plasma-based PCR assay for renal transplant recipients. The pp65 CMV antigen (pp65 Ag) assay using leukocytes was employed as a routine test for the monitoring of CMV in 23 transplant recipients. We compared the pp65 antigenemia with the CMV load quantified by an ultrasensitive PCR (US-PCR) with a limit of detection of 20 CMV DNA copies/ml of plasma. CMV infection was detected in 215 (67%) of 321 plasma samples by the US-PCR compared with 124 (39%) of 321 samples by the pp65 Ag assay. The US-PCR assay permitted the detection of CMV infection episodes following transplantation a median of 12 days earlier than the pp65 Ag assay. Moreover, during CMV infection episodes, DNA detection by the US-PCR was consistently positive, whereas false negative results were frequently observed with the pp65 Ag assay. We found a good correlation between the two assays, and the peak viral loads were significantly higher in patients with CMV-related complications (median, 5000 DNA copies/ml) than in those without symptoms (1160 DNA copies/ml) (P = 0.048). In addition, patients that did not require preemptive therapy based on the results of the pp65 assay had CMV loads significantly lower (median, 36 DNA copies/ml) than those that needed treatment (median, 4703 DNA copies/ml) (P < 0.001). These observations provided cutoff levels that could be applied in clinical practice. The ultrasensitive plasma-based PCR detected CMV infection episodes earlier and provided more consistent results than the pp65 Ag assay. This test could improve the monitoring of CMV infection or reactivation in renal transplant recipients.  相似文献   

4.
A real-time quantitative PCR assay has been developed to measure human herpesvirus 6 (HHV-6) DNA in biological specimens. The assay sensitivity was 10 copies of DNA per well, with a linear dynamic range of 10 to 10(7) copies of HHV-6 DNA. Intra- and interassay variations were, respectively, 0.88 and 0.8% for samples containing 10(2) DNA copies, 0.99 and 0.96% for samples containing 10(4) copies, and 0.76 and 0.9% for samples containing 10(6) copies. Among 34 saliva samples from healthy subjects, 26 were found to contain HHV-6 DNA (76.5%; median, 23,870 copies/ml), and following a single freeze-thaw cycle, 25 of the same samples were found to be positive for HHV-6 DNA, although at a statistically significantly lower concentration (median, 3,497 copies/ml). The assay enabled detection of HHV-6 DNA in lymph node biopsies from patients with Hodgkin's disease (HD) (13 of 37 patients [35.1%]), B-cell neoplasms (8 of 36 patients [22.2%]), and T- or NK-cell neoplasms (3 of 13 patients [23.1%]), with concentrations ranging from 100 to 864,640 HHV-6 copies per microg of DNA (HHV-6B being found in every case except two). All HD patients infected with HHV-6 presented clinically with the nodular sclerosis subtype of HD. The real-time quantitative PCR assay developed here was simple to perform and was sensitive over a wide range of HHV-6 concentrations. It therefore appears to be of potential value in clinical investigation or diagnosis of HHV-6 infection.  相似文献   

5.
Conventional polymerase chain reaction (PCR) in respiratory samples does not differentiate between Pneumocystis pneumonia (PCP) and Pneumocystis jirovecii (Pj) colonization. We used Pj real-time quantitative PCR (qPCR) with the objective to discriminate PCP from Pj colonization in immunocompromised patients. All positive Pj qPCR [targeting the major surface glycoprotein (MSG) gene] obtained in respiratory samples from immunocompromised patients presenting pneumonia at the Grenoble University Hospital, France, were collected between August 2009 and April 2011. Diagnoses were retrospectively determined by a multidisciplinary group of experts blinded to the Pj qPCR results. Thirty-one bronchoalveolar lavages and four broncho aspirations positive for the Pj qPCR were obtained from 35 immunocompromised patients. Diagnoses of definite, probable, and possible PCP, and pneumonia from another etiology were retrospectively made for 7, 4, 5, and 19 patients, respectively. Copy numbers were significantly higher in the “definite group” (median 465,000 copies/ml) than in the “probable group” (median 38,600 copies/ml), the “possible group” (median 1,032 copies/ml), and the “other diagnosis group” (median 390 copies/ml). With the value of 3,160 copies/ml, the sensitivity and specificity of qPCR for the diagnosis of PCP were 100 % and 70 %, respectively. With the value of 31,600 copies/ml, the sensitivity and specificity were 80 % and 100 %, respectively. The positive predictive value was 100 % for results with more than 31,600 copies/ml and the negative predictive value was 100 % for results with fewer than 3,160 copies/ml. qPCR targeting the MSG gene can be helpful to discriminate PCP from Pj colonization in immunocompromised patients, using two cut-off values, with a gray zone between them.  相似文献   

6.
Two major genotypic assemblages of Giardia lamblia infect humans; the epidemiologic significance of this phenomenon is poorly understood. We developed a single-vessel multiplex real-time PCR (qPCR) assay that genotypes Giardia infections into assemblages A and/or B directly from fecal samples. The assay utilized Scorpion probes that combined genotype-specific primers and probes for the 18S rRNA gene into the same molecule. The protocol was capable of detecting as few as 20 trophozoites per PCR on fecal DNA isolated using a commercial method or 1.25 trophozoites per PCR on fecal DNA isolated using a G. lamblia-specific oligonucleotide capture technique. The assay was specific for fecal specimens, with no amplification of the discordant genotype with the opposite Scorpion probe. When 97 clinical specimens from Bangladesh were used, the multiplex PCR assay detected 95% (21 of 22) of Giardia microscopy-positive specimens and 18% (13 of 74) of microscopy-negative specimens. Microscopy-negative and qPCR-positive specimens had higher average cycle threshold values than microscopy-positive and qPCR-positive specimens, suggesting that they represented true low-burden infections. Most (32 of 35) infections were assemblage B infections. This single-reaction multiplex qPCR assay distinguishes assemblage A Giardia infections from assemblage B infections directly on fecal samples and may aid epidemiologic investigation.  相似文献   

7.
The human bocavirus (hBoV) was first described in 2005 in respiratory tract samples. The clinical relevance of hBoV is still unclear. The aim of our study was to establish a real-time PCR assay for the detection and quantification of hBoV DNA, to apply the real-time assay for the analysis of stool and serum samples for the presence of hBoV DNA, and to perform a phylogenetic analysis of the hBoV positive samples. A total of 834 nasopharyngeal aspirates (NPA), 10 serum samples, and 31 stool samples of children with acute respiratory diseases were retrospectively tested. For phylogenetic analysis, 968 bp of the VP2 gene were sequenced from 69 hBoV-positive NPA samples. The qualitative results of the real-time hBoV PCR were in good agreement with a conventional hBoV PCR. We found that 12% of the NPA were positive for hBoV DNA. The median viral load in the NPA was 4.9 x 10(3) copies/ml (range, 2.7 x 10 degrees to 1.5 x 10(11) copies/ml). There was no difference of the hBoV load in NPA between children with or without known coinfection, but the load was significantly higher in children with bronchitis than in children with the diagnosis of febrile seizures. hBoV DNA was found in 1 of 10 serum samples and in 14 of 31 stool samples. hBoV sequence identity was >99% in the VP2 region. In conclusion, hBoV DNA can be found in NPA samples at very high titers. In addition to being found in the respiratory tract, hBoV was found in stool samples. The clinical relevance of these findings remains to be determined.  相似文献   

8.
Quantitation of human cytomegalovirus (HCMV) DNA is used to monitor immunocompromised patients in order to identify patients for preemptive therapy. Although several commercial qPCR assays are available for quantitation of HCMV, their major disadvantage is the high cost. In the present study, an internally controlled quantitative real-time PCR assay based on hydrolysis probe technology was developed for detection and quantitation of HCMV DNA in plasma samples. To demonstrate its performance characteristics, a total of 178 plasma samples from 102 kidney and hematopoietic stem cell transplanted patients were tested. The assay showed good precision and reproducibility, and an analytical sensitivity of 288.5 copies/ml or 17.6 copies/reaction. A sensitivity of 93.1% and a specificity of 96.6% were determined by examining clinical samples. Analysis of a panel containing potentially interfering viruses demonstrated no cross-reactivity with the assay. A strong correlation was observed between this qPCR method and the commercial Artus(?) CMV RG PCR kit (R=0.948; P=0.000). These results indicate that the affordable internally controlled qPCR method described will be useful for monitoring HCMV infection in plasma samples of immunocompromised patients.  相似文献   

9.
A quantitative HHV-6 PCR (qPCR) assay was developed and compared to an "in-house" qualitative PCR and to the commercial quantitative Argene CMV, HHV6, 7, 8 R-gene? test. Clinical specimens consisting of 127 whole blood and 57 cerebrospinal fluid (CSF) specimens were tested using the two qPCRs and the qualitative PCR in parallel. When the qualitative PCR was used as a "gold standard," the sensitivities of the qPCRs for the blood samples were 86% for the "in-house" qPCR and 76% for the Argene's test and the specificities were 96% and 92%, respectively. With CSF specimens the sensitivities were 92% and 80% and the specificities 98% and 82%, respectively. Furthermore, the two qPCRs were compared in the monitoring of liver transplant patients and retrospectively correlated to HHV-6 antigenaemia. In total, 223 blood specimens were tested. HHV-6 antigenaemia had been found in 21/36 (58%) patients and HHV-6 DNAaemia was demonstrated in 18/36 (50%). Viral loads by the "in-house" test varied from 280 to 19700 copies/ml (median 1200) and by Argene's test from 120 to 24070 copies/ml (median 458). The correlation of viral loads between the two qPCRs was good (R=0.94, p<0.01). The new in-house test was found to be reliable for the detection and quantitation of HHV-6 DNA in clinical specimens.  相似文献   

10.
A duplex quantitative real-time PCR (qPCR) assay was designed to detect both the polymerase gene (pol) and the glycoprotein gene (gB) of cytomegalovirus (CMV). The detection limit of the qPCR was determined to be 1 to 3 copies/reaction and the linear measure interval was 10(3) to 10(8) copies/ml. The qPCR system was compared to the COBAS Amplicor CMV Monitor test (COBAS) by an analysis of 138 plasma samples. Both systems detected CMV in 71 cases and had negative results for 33 samples. In addition, 34 samples were positive by qPCR and negative by the COBAS assay, but in no case was the COBAS result positive and the qPCR result negative. Thus, qPCR detected 48% more positive cases than the COBAS method. For samples with > or = 10(5) copies/ml by qPCR, a saturation effect was seen in the COBAS assay and quantification required dilution. Copy numbers for pol and gB by qPCR generally agreed. However, the reproducibility of qPCR assays and the need for an international standard are discussed. Discrepant copy numbers for pol and gB by qPCR were found for samples from two patients, and sequence analysis revealed that the corresponding CMV strains were mismatched at four nucleotide positions compared with the gB fragment primer sequences. In conclusion, a duplex qPCR assay in a real-time format facilitates quantitative measurements and minimizes the risk of false-negative results.  相似文献   

11.
We quantified the gene copies from Salmonella enterica serovar Typhi (S. Typhi) in the blood of patients suspected of having typhoid fever by using TaqMan-based real-time PCR (TaqMan assay) to target the S. Typhi flagellin gene in genomic DNAs isolated from blood samples. Of 55 blood samples taken from suspected typhoid fever patients, eight blood samples with a positive blood culture had S. Typhi loads ranging from 1.01 x 10(3) to 4.35 x 10(4) copies/ml blood, and from 47 blood samples with negative blood culture, there were 40 (85.1%) TaqMan assay-positive samples with loads ranging from 3.9 to 9.9 x 10(2) copies/ml blood. In the present study, the TaqMan assay detected more than 10(3) copies/ml blood of S. Typhi in all of the blood culture-positive samples, whereas less than 10(3) copies/ml blood of S. Typhi were detected in the blood culture-negative samples. Our findings suggest that a TaqMan assay may be useful for assessing S. Typhi loads, especially in cases of suspected typhoid fever with negative results from the standard blood culture test.  相似文献   

12.
13.
In common with latent viruses such as herpesviruses, parvovirus B19, HBV and GBV-C are contained successfully by the immune response and persist in the host. When immune control breaks down, reactivation of both latent and persistent viruses occurs. Two multiplex assays were developed (B19, HBV, HHV-8), (EBV, CMV, VZV) for blood screening, and tested on blood donor samples from Ghana to determine baseline prevalence of viraemia in immunocompetent persons. Single-virus real-time quantitative PCR (qPCR) assays were optimised for viral load determination of positive initial screening. The qPCR method utilised was absolute quantification with external standards. Multiplex and single-virus qPCR assays had similar sensitivity, except for the B19 assay in which sensitivity was 100-fold lower. Assays were optimised for reproducibility and repeatability, with R(2) of 0.9 being obtained for most assays. With the exception of B19 and CMV, assays had 100% detection limit ranging between 10(1) and 10(2) copies, IU or arbitrary units under single-virus and multiplex assay conditions. The prevalence of viraemia was 1.6% HBV (0.8% DNA+/HBsAg-, 0.8% DNA+/HBsAg+), 0.8% parvovirus B19, and 3.3% GBV-C viraemia in the plasma fraction. The prevalence of four herpesviruses was 1.0% HHV-8, 0.85% CMV, and 8.3% EBV, and no detectable VZV viraemia.  相似文献   

14.
We aimed to compare sputum and nasopharyngeal aspirate (NpA) samples and the PCR gene targets lytA and Spn9802 in quantitative PCR (qPCR) assays for rapid detection of pneumococcal etiology in community-acquired pneumonia (CAP). Seventy-eight adult patients hospitalized for radiologically confirmed CAP had both good-quality sputum and NpA specimens collected at admission. These samples were subjected to lytA qPCR and Spn9802 qPCR assays with analytical times of <3 h. Thirty-two patients had CAP with a pneumococcal etiology, according to conventional diagnostic criteria. The following qPCR positivity rates were noted in CAP cases with and without pneumococcal etiology: 96% and 15% (sputum lytA assay), 96% and 17% (sputum Spn9802 assay), 81% and 11% (NpA lytA assay), and 81% and 20% (NpA Spn9802 assay), respectively. The mean lytA and Spn9802 DNA levels were significantly higher in qPCR-positive sputum samples from cases with pneumococcal etiology than in qPCR-positive sputum samples from CAP cases without pneumococcal etiology or qPCR-positive NpA samples from cases with pneumococcal etiology (P < 0.02 for all comparisons). For detection of pneumococcal etiology, receiver operating characteristic curve analysis showed that sputum specimens were superior to NpA specimens as the sample type (P < 0.02 for both gene targets) and lytA tended to be superior to Spn9802 as the gene target. The best-performing test, the sputum lytA qPCR assay, showed high sensitivity (94%) and specificity (96%) with a cutoff value of 105 DNA copies/ml. In CAP patients with good sputum production, this test has great potential to be used for the rapid detection of pneumococcal etiology and to target penicillin therapy.  相似文献   

15.
Pneumocystis jirovecii is an opportunistic pathogen in immunocompromised and AIDS patients. Detection by quantitative PCR is faster and more sensitive than microscopic diagnosis yet requires specific infrastructure. We adapted a real-time PCR amplifying the major surface glycoprotein (MSG) target from Pneumocystis jirovecii for use on the new BD MAX platform. The assay allowed fully automated DNA extraction and multiplex real-time PCR. The BD MAX assay was evaluated against manual DNA extraction and conventional real-time PCR. The BD MAX was used in the research mode running a multiplex PCR (MSG, internal control, and sample process control). The assay had a detection limit of 10 copies of an MSG-encoding plasmid per PCR that equated to 500 copies/ml in respiratory specimens. We observed accurate quantification of MSG targets over a 7- to 8-log range. Prealiquoting and sealing of the complete PCR reagents in conical tubes allowed easy and convenient handling of the BD MAX PCR. In a retrospective analysis of 54 positive samples, the BD MAX assay showed good quantitative correlation with the reference PCR method (R2 = 0.82). Cross-contamination was not observed. Prospectively, 278 respiratory samples were analyzed by both molecular assays. The positivity rate overall was 18.3%. The BD MAX assay identified 46 positive samples, compared to 40 by the reference PCR. The BD MAX assay required liquefaction of highly viscous samples with dithiothreitol as the only manual step, thus offering advantages for timely availability of molecular-based detection assays.  相似文献   

16.
This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 107 versus 3.4 × 103 copies/μl, P < 0.05). A lower cutoff value (1.6 × 103 copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 104 copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 103 and 2 × 104 copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses.  相似文献   

17.
Human bocavirus 2 (HBoV2) is a parvovirus that has been recently identified in stool samples from children. Any association between the virus and clinical disease is unclear. A rapid, reliable diagnostic method is necessary to address this issue. In this study, we developed a sensitive and specific HBoV2 quantitative real-time PCR assay that targets the HBoV2 NP-1 gene, based on the TaqMan method. The assay could reproducibly detect 10 copies of a recombinant DNA plasmid containing a partial region of the HBoV2 genome, with a dynamic range of 8 log units (10(1) to 10(8) copies). A clinical evaluation detected HBoV2 in 85 (24.6%) of 345 children with gastroenteritis, with viral loads ranging from 1.67 × 10(2) to 4.27 × 10(9) copies per ml of stool specimen.  相似文献   

18.
Noroviruses are the leading cause of acute gastroenteritis in people of all ages. Since the viruses are highly infectious, rapid and early diagnosis is important to prevent and control the disease. The present study aimed to evaluate the commercial immunochromatographic test RIDA? QUICK Norovirus for the detection of norovirus in stool samples from patients with acute gastroenteritis in Thailand. As compared with reference RT-PCR results, the RIDA? QUICK Norovirus assay provided a sensitivity of 48.2 and 83.3% with a specificity of 87.5%. False positive results were observed in 12.5% of norovirus-negative stool samples. Based on commercial quantitative real-time RT-PCR, the RIDA? QUICK Norovirus assay revealed a highly significant association, p-value <0.001, and good agreement (kappa?=?0.6). The assay could detect norovirus in stool samples ranging from 3.22?×?10(6) to 3.26?×?10(8) copies/ml. False negative results occurred in the stool samples containing 5.9?×?10(6) copies/ml of norovirus GI or 1.85?×?10(4)?-?4.28?×?10(5) copies/ml of GII. The immunochromatographic RIDA? QUICK Norovirus assay may be useful for rapid screening of norovirus infections in patients with acute gastroenteritis in both developed and developing countries where the RT-PCR method has not been established for routine diagnosis.  相似文献   

19.
A real-time quantitative PCR-hybridisation assay was developed for the detection of human cytomegalovirus DNA in clinical material. The assay is based on a LightCycler (LC) and provides both rapid results (<1 h) and quantification over a broad dynamic range (2 x 10(3)-5 x 10(8) CMV DNA copies/ml). Given that the assay showed a 3-fold increase in sensitivity compared to detection of early antigen fluorescent foci (DEAFF) testing of urine samples, we investigated the practicality of testing surveillance such specimens from immunocompromised patients at risk of CMV disease. Over a 12-month period, CMV DNA was detected in 81 (7%) of 1154 urine samples examined. A total of 28 patients tested positive; urine viral loads were higher in 13 infants being investigated for suspected congenital infection (median 1.6 x 10(5) copies/ml) compared with 15 transplant recipients (median 9 x 10(3) copies/ml). Urine samples could be tested directly without processing such that results were available in <1h. Real-time PCR provided information on the quantification of CMV DNA in urine and proved a reliable method for the surveillance of immunocompromised patients at risk of CMV disease. This approach should facilitate a better understanding of the epidemiology and natural history of CMV disease. Moreover, LC-based quantitative PCR is a potentially valuable tool for the management of CMV disease; assisting with the prompt initiation of treatment and assessing therapeutic response.  相似文献   

20.
A cytochrome b (cytb) gene quantitative PCR (qPCR) assay was developed to diagnose malaria in travelers. First, manual and automated DNA extractions were compared and automated DNA extraction of 400 μl of blood was found to be more efficient. Sensitivity was estimated using the WHO international standard for Plasmodium falciparum DNA and compared to that of a previously published qPCR targeting the 18S rRNA coding gene (18S qPCR). The limit of detection of the cytb qPCR assay was 20 DNA copies (i.e., 1 parasite equivalent) per 400 μl of extracted whole blood and was comparable for the two qPCR assays. Both qPCR assays were used on blood samples from 265 consecutive patients seen for suspicion of malaria. There were no microscopy-positive and qPCR-negative samples. Positive cytb qPCR results were observed for 51 samples, and all but 1 were also 18S qPCR positive. Eight (16%) of these 51 samples were negative by microscopic examination. The 8 cytb qPCR-positive and microscopy-negative samples were from African patients, 3 of whom had received antimalarial drugs. Three non-P. falciparum infections were correctly identified using an additional qPCR assay. The absence of PCR inhibitors was tested for by the use of an internal control of mouse DNA to allow reliable quantification of circulating DNA. The high analytical sensitivity of both qPCR assays combined with automated DNA extraction supports its use as a laboratory tool for diagnosis and parasitemia determination in emergencies. Whether to treat qPCR-positive and microscopy-negative patients remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号