首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The current study is an effort to identify the effect of a hydroalcohol (50% ethanol) extract of roots of Cissampelos pareira. (L.) Hirsuta (Menispermaceae) (CPE) in forestomach cancer and on carcinogen metabolizing phase I and phase II enzymes along with antioxidant enzymes. In forestomach, the activities of glutathione S.-transferase (GST), DT-diaphorase (DTD), and superoxide dismutase (SOD) increased significantly and dose-dependently. The protective effect of CPE was studied against benzo(a.)pyrene [B(a.)P]-induced gastric cancer in mice, and the tumor incidence was reduced and the mean number of tumors and the tumor multiplicity were reduced significantly and dose-dependently. The modulatory effect of CPE was also examined on carcinogen metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase, and lipid peroxidation in liver. Significant increases in the levels of acid-soluble sulfhydryl (–SH) and cytochrome P450 contents and in enzyme activities of cytochrome P450 reductase, cytochrome b5 reductase, GST, DTD, SOD, catalase, glutathione (GSH) peroxidase, and GSH reductase but decreased malondialdehyde (MDA) were observed. Butylated hydroxyanisole (BHA) showed an increase in hepatic levels of GSH content, cytochrome b5, DTD, GST, glutathione reductase (GR), and catalase, whereas MDA formation was inhibited significantly. BHA also showed increased levels of DTD, GST, and SOD significantly in forestomach. The enhanced GSH level and enzyme activities involved in xenobiotic metabolism and maintaining antioxidant status of cells are suggestive of a chemopreventive efficacy of Cissampelos pareira. against chemotoxicity, including carcinogenicity.  相似文献   

2.
The inactivation of the enzyme glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was studied in exponentially growing murine leukemia cells. A 1-hr incubation with 1.6 +/- 0.2 microM BCNU resulted in a 50% inhibition of glutathione reductase, while 10 microM BCNU caused total inhibition of the enzyme. The time required for 50% inhibition of glutathione reductase by 10 microM BCNU was 7 min. The recovery of glutathione reductase activity was studied by incubating cells with 10 microM BCNU for 30 min to inhibit all glutathione reductase activity, washing the cells free of drug, and continuing the incubation in fresh medium. Fifty percent of the activity returned within 12 hr. Glutathione reductase activity recovered normally when cell growth and DNA synthesis were inhibited in the cells, but it failed to recover when protein synthesis was inhibited. Therefore, the inactivation of glutathione reductase appears irreversible, and the recovery of enzymatic activity is dependent on the synthesis of new protein. Continuous incubation with 19.8 +/- 0.4 microM BCNU resulted in a 50% inhibition of cell growth. A 1-hr incubation with 7.3 +/- 0.8 microM BCNU resulted in a 50% loss of viability as measured by a soft agar clonogenic assay. These experiments quantify the inhibition of glutathione reductase by BCNU and the recovery of enzyme activity in the context of the toxic effects of the compound. A clinically useful inhibitor of glutathione reductase will require a wider difference between the concentrations required for enzyme inhibition and cytotoxicity than BCNU provides.  相似文献   

3.
The tumour blood flow inhibitors 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone-8-acetic acid (FAA) have been shown to potentiate the antitumour activity of several bioreductive drugs in vivo. Whilst the induction of hypoxia as a result of blood flow inhibition is presumed to be responsible for enhancing the activity of bioreductive drugs, no studies have examined potential interactions between DMXAA or FAA and enzymes involved in bioreductive drug activation. Both FAA and DMXAA are competitive inhibitors of the enzyme DT-diaphorase (NAD(P)H:Quinone oxidoreductase EC 1.6.99.2) with respect to NADH, with Ki values of 75 and 20 microM, respectively. Cytochromes P450 reductase and b5 reductase activities are not significantly inhibited by FAA, whereas DMXAA partially inhibits cytochrome b5 reductase activity. The cytotoxicity of the indoloquinone EO9 (3-hydroxymethyl-5-aziridinyl-1-methyl-2-[1H-indole-4,7-dione] prop-beta-en-alpha-ol) against DLD-1 (IC50 = 0.32+/-0.08 microM) was significantly reduced when combinations of EO9 and FAA (IC50 = 12.26+/-5.43 microM) or DMXAA (IC50 > 40 microM) were used. In the case of menadione (which is detoxified by DT-diaphorase), combinations of menadione with FAA or DMXAA were more toxic (IC50 = 7.46+/-2.22 and 9.46+/-1.70 microM, respectively) than menadione alone (IC50 = 22.02+/-1.59 microM). Neither DMXAA nor FAA potentiated the activity of tirapazamine in vitro. These results suggest that the use of DMXAA and FAA to potentiate the activity of bioreductive drugs where DT-diaphorase plays a central role in either activation or detoxification may be inappropriate. The fact that FAA in particular does not inhibit other key enzymes involved in bioreductive activation suggests that it may be useful in terms of identifying DT-diaphorase-activated prodrugs.  相似文献   

4.
Evidence suggests that DT-diaphorase is involved in the activation and mechanism of cytotoxicity of the investigational indoloquinone anticancer drug EO9 under aerobic conditions. Data also implicate a role for other enzymes including NADPH: cytochrome P450 reductase, especially in low DT-diaphorase tumour cells and under hypoxic conditions. Here, we used purified rat NADPH: cytochrome P450 reductase to provide additional evidence in support of a role for this enzyme in activation of EO9 to generate free radical and DNA-damaging species. Electron spin resonance spectrometry studies showed that NADPH: cytochrome P450 reductase reduced EO9 to a free radical species, including a drug radical (most likely the semiquinone) and reactive oxygen species. Plasmid DNA experiments showed that reduction of EO9 catalysed by NADPH: cytochrome P450 reductase results in single-strand breaks in DNA. The information obtained may contribute to the understanding of the molecular mechanism of DNA damage and cytotoxicity exerted by EO9 and may be useful in the design of future bioreductive drugs.  相似文献   

5.
The nitro-chloromethylbenzindoline prodrug SN29428 has been rationally designed to target tumour hypoxia. SN29428 is metabolised to a DNA minor groove alkylator via oxygen-sensitive reductive activation initiated by unknown one-electron reductases. The present study sought to identify reductases capable of activating SN29428 in tumours. Expression of candidate reductases in cell lines was modulated using forced expression and, for P450 (cytochrome) oxidoreductase (POR), by zinc finger nuclease-mediated gene knockout. Affymetrix microarray mRNA expression of flavoreductases was correlated with SN29428 activation in a panel of 23 cancer cell lines. Reductive activation and cytotoxicity of prodrugs were measured using mass spectrometry and antiproliferative assays, respectively. SN29428 activation under hypoxia was strongly attenuated by the pan-flavoprotein inhibitor diphenyliodonium, but less so by knockout of POR suggesting other flavoreductases contribute. Forced expression of 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), as well as POR, increased activation of SN29428 in hypoxic HCT 116 cells. SN29428 activation strongly correlated with expression of POR and also FAD-dependent oxidoreductase domain containing 2 (FOXRED2), in cancer cell lines. This association persisted after removing the effect of POR enzyme activity using first-order partial correlation. Forced expression of FOXRED2 increased SN29428 activation and cytotoxicity in hypoxic HEK293 cells and also increased activation of hypoxia-targeted prodrugs PR-104A, tirapazamine and SN30000, and increased cytotoxicity of the clinical-stage prodrug TH-302. Thus this study has identified three flavoreductases capable of enzymatically activating SN29428, one of which (FOXRED2) has not previously been implicated in xenobiotic metabolism. These results will inform future development of biomarkers predictive of SN29428 sensitivity.  相似文献   

6.
A series of 2,5-bis-substituted 3,6-diaziridinyl-1,4-benzoquinones have been tested for their ability to be reduced by the two-electron NAD(P)H:(quinone acceptor) oxidoreductase [DT-diaphorase (DTD); EC 1.6.99.2]. Symmetrically alkyl-substituted carbamoyl ester analogs of 2,5-ethyl(carboethoxyamino)3,6-diaziridinyl-1,4- benzoquinone [AZQ], 3,6-diaziridinyl-1,4-benzoquinone (DZQ), and its 2,5-dimethyl derivative (MeDZQ) were tested. The rate of reduction by DTD was DZQ greater than MeDZQ greater than n-butyl- (D5) greater than sec-butyl- (D7) greater than n-propyl- (D3) greater than methyl- (D1) greater than ethyl- (AZQ) greater than i-butyl- (D6) greater than i-propyl- (D4) substituted derivatives. The hydroxyethylamino analog (BZQ) was not a substrate for DTD. The order of toxicity to HT-29 human colon carcinoma cells (at 1-log cell kill) was MeDZQ greater than DZQ greater than BZQ greater than D1 greater than D5 greater than AZQ greater than D7 greater than D3 greater than D6 greater than D4. Dicumarol, a known inhibitor of DTD, was capable of inhibiting the cytotoxicity of DZQ, MeDZQ, AZQ, D3, D4, D5, D6, and D7, with little inhibition of D1 cytotoxicity. Alkaline elution assays suggested that DZQ induced DNA strand breaks, whereas MeDZQ induced DNA interstrand crosslinks in HT-29 cells. The formation of both classes of lesions was inhibited by dicumarol. DZQ and MeDZQ were 5-6-fold less cytotoxic to the DTD-deficient BE cell line, whereas BZQ was more cytotoxic to this cell line than the HT-29 cell line. BZQ was capable of inducing dicumarol-insensitive DNA interstrand crosslinks in both cell lines. In summary, these data show a trend between the rate of reduction by DTD of an analog and its ability to induce cytotoxicity in HT-29 cells, and they support a role for DTD in the bioreductive activation of AZQ and its analogs.  相似文献   

7.
It is accepted that to exert cytotoxicity and carcinogenicity chromium VI has to be reduced inside cells. The role of reduced glutathione (GSH) and glutathione reductase in the intracellular reduction of Cr VI was investigated using an immortalized rat osteoblast cell line, FFC. Alkaline phosphatase activity was the index of cytotoxicity measured. To investigate the role of GSH in Cr VI toxicity, GSH levels in the cells were elevated by pretreatment with L-cysteine, and depleted using buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. Intracellular GSH levels were not depleted during the metabolism of Cr VI. Depletion of GSH by BSO caused the cells to be more resistant to the toxicity of Cr VI, indicating that GSH is involved in reduction of the Cr VI. Inhibition of glutathione reductase by carmustine (BCNU) partially protected against the cytotoxicity of Cr VI irrespective of the intracellular GSH. The cytotoxic response was similar if cells were pretreated with BCNU plus L-cysteine, or with BCNU plus BSO, although the GSH levels were markedly different. The results indicate that glutathione reductase plays an important role in the intracellular reduction of Cr VI in osteoblasts.  相似文献   

8.
The diaziridiny/benzoquinone RH1 is shortly to enter a phase I clinical trial. The drug was originally designed as a substrate for the enzyme DT-diaphorase (DTD) such that metabolic activation of the drug would lead to toxicity. To evaluate this, we have measured the toxicity of RH1 in a pair of non-small cell lung cancer (NSCLC) cell lines of widely differing levels of DTD and in MDA231 breast cancer cells which have been engineered to overexpress DTD. In addition, we have explored the importance of the putative one-electron reductase, P450 reductase, by assessing the toxicity of RH1 in MDA231 cells engineered to overexpress the enzyme. All drug exposures were carried out under hypoxic and aerobic conditions. Those cells with the highest levels of DTD, i.e. D7 versus MDA231 wt and H460 versus H596, are substantially more sensitive to RH1 than the cell lines expressing low DTD activity. Those cells with the lowest levels of DTD activity, i.e. MDA231 wt, R4 and H596, show much greater sensitivity to RH1 under hypoxic conditions compared to aerobic conditions. Finally, overexpression of P450 reductase, i.e. comparing MDA231 wt with R4, has little, if any, impact on the toxicity of RH1 under hypoxic or aerobic conditions. In summary, RH1 can be effective in killing cells containing high levels of DTD and may be useful in treating tumors expressing this enzyme.  相似文献   

9.
The effects of repeated exposure to N,N-dimethylformamide (DMF) on hepatic microsomal monooxygenase system and glutathione metabolism were investigated. DMF was administered to Wistar male rats by subcutaneous (s.c.) injection at 0.5 ml/kg body weight daily for 1 week. Macroscopically, mild liver swelling was observed and liver weights significantly increased after 1 week of exposure to DMF. Hematological changes were not detected. In exposed rats, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, cholinesterase and total cholesterol significantly increased. Hepatic microsomal cytochrome P-450 and protoheme decreased by 34% and 24%, respectively, while microsomal protein and cytochrome b5 were not affected. NADH-ferricyanide reductase activity decreased by 24% while NADPH-cytochrome c reductase activity showed no change. Glutathione reductase (GR) activity showed a significant decrease after the first injection and remained depressed throughout the study, with no change in glutathione peroxidase (GPx) activity. Glutathione S-transferase (GST) activity showed a significant increase at 3 days after DMF treatment and gradually increased by 66% at 1 week. In a subsequent experiment with a single administration of DMF (4 ml/kg), reduced glutathione (GSH) in the liver was decreased by 28% at 8 h, but recovered to control levels by 24 h. These results indicate that DMF alters the hepatic microsomal monooxygenase system and glutathione metabolism. These findings may greatly contribute to the elucidation of the pathogenesis of DMF hepatotoxicity.  相似文献   

10.
2,5-Diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone (RH1) is a novel antitumor diaziridinyl benzoquinone derivative designed to be bioactivated by the two-electron reductase NAD(P)H:quinone oxidoreductase (NQO1) and is currently in clinical trials. NQO1 is expressed at high levels in many solid tumors. RH1 cytotoxicity has been shown previously to be NQO1-dependent. The purpose of this study was to investigate whether other reducing enzymes such as cytochrome b(5) reductase (b5R), cytochrome P450 reductase (P450R), dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2), and xanthine oxidase/xanthine dehydrogenase (XO/XDH) also contribute to the bioactivation and cytotoxicity of RH1 in human tumor cells. For these studies, we established a series of stable MDA468 breast cancer cell lines overexpressing various levels of NQO1, b5R, P450R, and NQO2 and compared RH1-induced growth inhibition [3-(4,5-dimethylthiazol-2,5-diphenyl)tetrazolium and sulforhodamine B analysis] and interstrand DNA cross-linking (comet analysis) in both parental MDA468 cells and transfected clones. RH1 toxicity correlated with NQO1 and NQO2 but not with either b5R or P450R activity levels in the respective series of transfected MDA468 cell clones. Enzymatic assays showed that RH1 was an in vitro substrate for xanthine oxidase. However, XO/XDH protein and activity could not be detected in a variety of human tumor cell lines. These studies suggest that NQO1 and NQO2 are the principal enzymatic determinants of RH1 bioactivation in MDA468 tumor cells and that b5R, P450R, and XDH/XO are unlikely to play major roles. Our studies also suggest that NQO2 may be particularly relevant as a bioactivation system for RH1 in NQO1-deficient tumors such as leukemias and lymphomas.  相似文献   

11.
CEN-209 (SN30000) is a second-generation benzotriazine di-N-oxide currently in advanced preclinical development as a hypoxia-activated prodrug (HAP). Herein we describe the DNA repair-, hypoxia- and one-electron reductase-dependence of CEN-209 cytotoxicity. We deployed mutant CHO cell lines to generate DNA repair profiles for CEN-209, and compared the profiles with those for other HAPs. Hypoxic selectivity of CEN-209 was significantly greater than PR-104A and the nitro-chloromethylbenzindoline (nCBI/SN29428) and comparable to tirapazamine and TH-302. CEN-209 was selective for homologous recombination (HR) repair-deficient cells (Rad51d?/?), but less so than nitrogen mustard prodrugs TH-302 and PR-104A. Further, DNA repair profiles for CEN-209 differed under oxic and hypoxic conditions, with oxic cytotoxicity more dependent on HR. This feature was conserved across all three members of the benzotriazine di-N-oxide class examined (tirapazamine, CEN-209 and CEN-309/SN29751). Enhancing one-electron reduction of CEN-209 by forced expression of a soluble form of NADPH:cytochrome P450 oxidoreductase (sPOR) increased CEN-209 cytotoxicity more markedly under oxic than hypoxic conditions. Comparison of oxygen consumption, H2O2 production and metabolism of CEN-209 to the corresponding 1-oxide and nor-oxide reduced metabolites suggested that enhanced oxic cytotoxicity in cells with high one-electron reductase activity is due to futile redox cycling. This study supports the hypothesis that both oxic and hypoxic cell killing by CEN-209 is mechanistically analogous to tirapazamine and is dependent on oxidative DNA damage repaired via multiple pathways. However, HAPs that generate DNA interstrand cross-links, such as TH-302 and PR-104, may be more suitable than benzotriazine di-N-oxides for exploiting reported HR repair defects in hypoxic tumour cells.  相似文献   

12.
Aldo-keto reductase 1C3 (AKR1C3, EC 1.1.1.188) metabolises steroid hormones, prostaglandins and xenobiotics, and activates the dinitrobenzamide mustard prodrug PR-104A by reducing it to hydroxylamine PR-104H. Here, we describe a functional assay for AKR1C3 in cells using the fluorogenic probe coumberone (a substrate for all AKR1C isoforms) in conjunction with a specific inhibitor of AKR1C3, the morpholylurea SN34037. We use this assay to evaluate AKR1C3 activity and PR-104A sensitivity in human leukaemia cells. SN34037-sensitive reduction of coumberone to fluorescent coumberol correlated with AKR1C3 protein expression by immunoblotting in a panel of seven diverse human leukaemia cell lines, and with SN34037-sensitive reduction of PR-104A to PR-104H. SN34037 inhibited aerobic cytotoxicity of PR-104A in high-AKR1C3 TF1 erythroleukaemia cells, but not in low-AKR1C3 Nalm6 pre-B cell acute lymphocytic leukaemia (B-ALL) cells, although variation in PR-104H sensitivity confounded the relationship between AKR1C3 activity and PR-104A sensitivity across the cell line panel. AKR1C3 mRNA expression showed wide variation between leukaemia patients, with consistently higher levels in T-ALL than B-ALL. In short term cultures from patient-derived paediatric ALL xenografts, PR-104A was more potent in T-ALL than B-ALL lines, and PR-104A cytotoxicity was significantly inhibited by SN34037 in T-ALL but not B-ALL. Overall, the results demonstrate that SN34037-sensitive coumberone reduction provides a rapid and specific assay for AKR1C3 activity in cells, with potential utility for identifying PR-104A-responsive leukaemias. However, variations in PR-104H sensitivity indicate the need for additional biomarkers for patient stratification.  相似文献   

13.
The mechanism of aerobic resistance to the quinone-containing anti-tumour agents mitomycin C (MMC) and porfiromycin (PM) has been investigated using non-transformed human cells. One of the cell strains used (3437T) was derived from an afflicted member of a cancer-prone family. This cell strain had been shown previously to be six times more resistant to the cytotoxic effects of these agents under aerobic but not hypoxic conditions when compared to a cell strain derived from an unrelated, normal donor (GM38). Differences could not be detected in the ability of cell sonicates prepared from either cell strain to produce alkylating species under aerobic conditions using a 4-(p-nitrobenzyl)pyridine assay. However, using 3H-labelled PM to monitor rapid drug uptake and subsequent accumulation due to drug metabolism, results were obtained indicating that the resistant cell strain (3437T) was deficient in an enzymatic pathway capable of metabolizing these compounds under aerobic but not hypoxic conditions. Dicumarol, an inhibitor of the quinone reductase DT-diaphorase (EC 1.6.99.2), decreased aerobic drug accumulation and cytotoxicity in the control cell strain, but did not alter the lack of accumulation noted in the resistant cell strain. Under hypoxic conditions, dicumarol increased cytotoxicity and drug accumulation in both cell strains. The mechanism of this enhanced cytotoxicity remains unclear. These results suggested that the resistant cells were deficient in the enzyme DT-diaphorase, a potential activator of PM. Enzymatic assays confirmed this and revealed no alterations in cytochrome P450 reductase (EC 1.6.2.4) activity or glutathione content. No protein characteristic of DT-diaphorase was detected in the resistant cell strain using a polyclonal rabbit-anti-rat antibody raised against this enzyme. Southern blot analysis using a rat DT-diaphorase cDNA probe demonstrated differences between the normal and resistant cell strains in the restriction fragment patterns. The present results are consistent with the hypothesis that decreased DT-diaphorase levels are causally associated with PM and MMC resistance in these cells under aerobic exposure conditions.  相似文献   

14.
Ribosome-inactivating proteins (RIPs) are found in several edible plants and are well characterized. Many studies highlight their use in cancer therapy, alone or as immunoconjugates, linked to monoclonal antibodies directed against target cancer cells. In this context, we investigate the cytotoxicity of quinoin, a novel type 1 RIP from quinoa seeds, on human continuous and primary glioblastoma cell lines. The cytotoxic effect of quinoin was assayed on human continuous glioblastoma U87Mg cells. Moreover, considering that common conventional glioblastoma multiforme (GBM) cell lines are genetically different from the tumors from which they derive, the cytotoxicity of quinoin was subsequently tested towards primary cells NULU and ZAR (two cell lines established from patients’ gliomas), also in combination with the chemotherapeutic agent temozolomide (TMZ), currently used in glioblastoma treatment. The present study demonstrated that quinoin (2.5 and 5.0 nM) strongly reduced glioblastoma cells’ growth. The mechanisms responsible for the inhibitory action of quinoin are different in the tested primary cell lines, reproducing the heterogeneous response of glioblastoma cells. Interestingly, primary cells treated with quinoin in combination with TMZ were more sensitive to the treatment. Overall, our data highlight that quinoin could represent a novel tool for glioblastoma therapy and a possible adjuvant for the treatment of the disease in combination with TMZ, alone or as possible immunoconjugates/nanoconstructs.  相似文献   

15.
Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity   总被引:1,自引:0,他引:1  
N-Acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen, rapidly reacts at physiological pH with glutathione (GSH) forming an acetaminophen-glutathione conjugate and stoichiometric amounts of acetaminophen and glutathione disulfide (GSSG). The same reaction products are formed in isolated hepatocytes incubated with NAPQI. In hepatocytes which have been treated with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) in order to inhibit glutathione reductase, the initial rise in GSSG concentration in the presence of NAPQI is maintained, whereas GSSG is rapidly reduced back to GSH in untreated hepatocytes. Oxidation by NAPQI of GSH to GSSG and the reduction of GSSG back to GSH by the NADPH-dependent glutathione reductase appear to be responsible for the rapid oxidation of NADPH that occurs in hepatocytes incubated with NAPQI in that the effect is blocked by pretreatment of cells with BCNU. When added to hepatocytes, NAPQI not only reacts with GSH but also causes a loss in protein thiol groups. The loss in protein thiols occurs more rapidly in cells pretreated with BCNU or diethylmaleate. Whereas both of these treatments enhance cytotoxicity caused by NAPQI, BCNU pretreatment has no effect on the covalent binding of [14C-ring]NAPQI to cellular proteins. Furthermore, dithiothreitol added to isolated hepatocytes after maximal covalent binding of [14C-ring]NAPQI but preceding cell death protects cells from cytotoxicity and regenerates protein thiols. Thus, the toxicity of NAPQI to isolated hepatocytes may result primarily from its oxidative effects on cellular proteins.  相似文献   

16.
The presence of hypoxic cells in human solid tumours is one of the causes of tumour resistance to conventional therapy, and is also associated with processes that promote the tumour progression. Different chemical agents have been designed in order to take advantage of the particular metabolic characteristics of hypoxic regions. These drugs, called bioreductive agents, are activated inside the hypoxic cells to give active species that, in the presence of oxygen, are oxidised back to the non-toxic parent compound. Several quinoxaline 1,4-di-N-oxides have been described as potential bioreductive agents, and among them, 7-cloro-3-[[(N,N-dimethylamino)propy]amino]-2-quinoxalinecarbonitrile 1,4-di-N-oxide hydrocloride (Q-85 HCl) appeared to be the most promising one. In the present work, the selective cytotoxicity of Q-85 HCl was studied in several human tumour cell lines of different origin (Caco2, MCF-7, HT-29 and Tk-10). Cell viability was calculated after 2 h treatment under hypoxic and well-oxygenated conditions. The potency (the concentration that gives 1% of cell survival) in hypoxia and hypoxia cytotoxicity ratio (HCR = potency in oxygenated conditions/potency in hypoxia) were calculated after a 14-day clonogenic assay. Q-85 HCl was more toxic in hypoxia than in well-oxygenated cells in all the tumour cell lines. The best profile of potency in hypoxia (0.4 micromol/L) and selectivity (HCR=155) was found in CaCo-2 cells. Altogether, these results suggest an in vitro biological profile for Q-85 HCl that makes it an interesting candidate for the development as a bioreductive agent.  相似文献   

17.
A class of polyenylpyrroles and their analogues were designed from a hit compound identified in a fungus. The compounds synthesized were evaluated for their cell cytotoxicity against human non-small-cell lung carcinoma cell lines A549. Two compounds were found to exhibit high cytotoxicity against A549 cells with IC(50) of 0.6 and 0.01 μM, respectively. The underlying mechanisms for the anticancer activity were demonstrated as caspases activation dependent apoptosis induction through loss of mitochondrial membrane potential, release of cytochrome c, increase in B-cell lymphoma-2-associated X protein (Bax) level, and decrease in B-cell lymphoma-2 (Bcl-2) level. The two compounds were nontoxic to normal human lung Beas-2b cells (IC(50) > 80 μM), indicating that they are highly selective in their cytotoxicity activities. Furthermore, one compound showed in vivo anticancer activity in human-lung-cancer-cell-bearing mice. These results open promising insights on how these conjugated polyenes mediate cytotoxicity and may provide a molecular rationale for future therapeutic interventions in carcinogenesis.  相似文献   

18.
The efficacy of 5,7-dimethoxyflavone (DMF), a methylated analog of chrysin, as a therapeutic agent to treat acute lymphoblastic leukemia (ALL) was investigated. Using a panel of ALL cell lines, the IC50 (half-maximal inhibitory concentration) of DMF varied between 2.8 and 7.0 μg/ml. DMF induced G0/G1 cell cycle arrest, concomitant with a decreased expression of phosphorylated retinoblastoma-associated protein 1. DMF increased the rate of apoptosis, although it was apparent only after a long period of exposure (96 h). The accumulation of oxidative stress was not involved in the growth-inhibitory effects of DMF. As DMF reduced the intracellular levels of glutathione, the combination effects of DMF with other anticancer drugs were evaluated using the improved Isobologram and the combination index method. In the simultaneous drug combination assay, DMF antagonized the cytotoxicity of 4-hydroperoxy-cyclophosphamide, cytarabine, vincristine, and L-asparaginase in all tested ALL cells. This study demonstrated that DMF, a methylated flavone, was an effective chemotherapy agent that could inhibit cell cycle arrest and induce apoptosis in ALL cell lines. However, combination therapy with DMF and other anticancer drugs is not recommended.  相似文献   

19.
The effect of reactive nitrogen species (RNS) against the cytotoxicity of mitomycin c (MMC) in lung epithelial cells was assessed by measuring the effect on mitochondrial membrane permeability. RNS had a differential effect against cytotoxicity of MMC depending on concentration. Viability loss in cells exposed to MMC was decreased by inhibitors of caspase-3, -8 and -9 and attenuated by antioxidants (N-acetylcysteine, dithiothreitol, ascorbate and rutin). Addition of 3-morpholinosydnonimine (SIN-1) differentially affected the MMC-induced cell death and GSH depletion concentration dependently with a maximal inhibitory effect at 150 µM. Ascorbate, superoxide dismutase and haemoglobin prevented the inhibitory effect of 150 µM SIN-1 on 10 µg/ml MMC-induced cell death. SIN-1 inhibited the MMC-induced nuclear damage, loss in mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, caspase-3 activation, increase in reactive oxygen species (ROS) formation and depletion of GSH. SIN-1 also attenuated cell death due to H2O2. The cytotoxicity of MMC in the presence of oxidants or RNS producers was much less than the sum of the each effect of MMC and producer. SIN-1 may inhibit the MMC-induced viability loss in lung epithelial cells by suppressing the mitochondrial membrane permeability change and by interaction of its products with MMC.  相似文献   

20.
目的:研究丹皮酚(Paeonol,Pae)对人胶质母细胞瘤细胞增殖的影响及其对化疗药物敏感性的影响。方法:应用水溶性四唑盐法,检测不同浓度和时间点Pae对体外培养人胶质母细胞瘤U251细胞增殖的影响,联合Pae及不同浓度依托泊苷(VP-16),检测Pae对VP-16细胞毒性的影响并以SPSS17.0系统软件计算IC50值。结果:(1)Pae可呈剂量依赖性抑制人胶质母细胞瘤U251细胞的增殖,Pae在浓度为15.63 mg.L-1即可将U251细胞存活率显著降低至82.88%±1.24%(P<0.01),IC50为203.81 mg.L-1。(2)Pae对U251细胞增殖的抑制作用随时间延长而增强。(3)Pae与VP-16联合使用,可显著增强VP-16对U251的细胞毒性,当联用Pae剂量为15.63 mg.L-1时,VP-16的IC50值降低至376.81μmol.L-1,与单独使用时的IC50值(767.34μmol.L-1)相比降低幅度达50.89%。(4)Pae增强VP-16对U251细胞毒性的作用具有时间依赖性,随给药时间延长而逐渐增强。结论:Pae可抑制人胶质母细胞瘤U251细胞增殖。Pae与化疗药物VP-16联用时可以显著增强此化疗药物对胶质母细胞瘤的细胞毒性,提高胶质母细胞瘤细胞对化疗药物的敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号