首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subthalamic nucleus (STN) is the most common target for the treatment of Parkinson's disease (PD) with deep brain stimulation (DBS). DBS of the globus pallidus internus (GPi) is also effective in the treatment of PD. The output fibers of the GPi that form the lenticular fasciculus pass in close proximity to STN DBS electrodes. In turn, both STN projection neurons and GPi fibers of passage represent possible therapeutic targets of DBS in the STN region. We built a comprehensive computational model of STN DBS in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional (3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys. Only axonal activation of the STN neurons showed a statistically significant increase in both monkeys when comparing clinically effective and ineffective stimulation. Nonetheless, both neural targets may play important roles in the therapeutic mechanisms of STN DBS.  相似文献   

2.
Multiple studies have shown bilateral improvement in motor symptoms in Parkinson disease (PD) following unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) and internal segment of the globus pallidus, yet the mechanism(s) underlying this phenomenon are poorly understood. We hypothesized that STN neuronal activity is altered by contralateral STN DBS. This hypothesis was tested intraoperatively in humans with advanced PD using microelectrode recordings of the STN during contralateral STN DBS. We demonstrate alterations in the discharge pattern of STN neurons in response to contralateral STN DBS including short latency, temporally precise, stimulation frequency-independent responses consistent with antidromic activation. Furthermore, the total discharge frequency during contralateral high frequency stimulation (160 Hz) was greater than during low frequency stimulation (30 Hz) and the resting state. These findings demonstrate complex responses to DBS and imply that output activation throughout the basal ganglia-thalamic-cortical network rather than local inhibition is a therapeutic mechanism of DBS.  相似文献   

3.
Single pulses of transcranial magnetic stimulation (TMS) were applied to the right hemisphere over either the hand sensory area, the hand motor area (M1), ventral premotor area (vPM), dorsolateral prefrontal cortex, or 10 cm away from head (sham stimulation) in order to test the effect on motor evoked potentials (MEPs) elicited by single pulse TMS or transcranial electrical stimulus (TES) over the left M1 or the somatosensory evoked potential (SEP) elicited by an electrical stimulus to the right median nerve. The interstimulus intervals (ISIs) for MEP experiments were 50, 100, 150, 200, 300 and 400 ms, with those for SEP experiments being adjusted for the impulse conduction time from the wrist to the cortex. TMS over the right M1 reduced MEPs elicited by TMS of the left motor cortex at ISIs of 50–150 ms, whereas MEPs produced by TES were unaffected. TMS over M1 and vPM facilitated the contralateral cortical median nerve SEPs at an ISI of 100–200 ms, whereas it had no effect on tibial nerve SEPs or paired median nerve stimulation SEP. Based on these results, we conclude that at around 150-ms intervals, TMS over the motor areas (M1 and vPM) reduces the excitability of the contralateral motor area. This has a secondary effect of enhancing the responsiveness of the sensory cortex through cortico-cortical connections.  相似文献   

4.
Parkinson's disease (PD) is highly comorbid with sleep dysfunction. In contrast to motor symptoms, few therapeutic interventions exist to address sleep symptoms in PD. Subthalamic nucleus (STN) deep brain stimulation (DBS) treats advanced PD motor symptoms and may improve sleep architecture. As a proof of concept toward demonstrating that STN‐DBS could be used to identify sleep stages commensurate with clinician‐scored polysomnography (PSG), we developed a novel artificial neural network (ANN) that could trigger targeted stimulation in response to inferred sleep state from STN local field potentials (LFPs) recorded from implanted DBS electrodes. STN LFP recordings were collected from nine PD patients via a percutaneous cable attached to the DBS lead, during a full night's sleep (6–8 hr) with concurrent polysomnography (PSG). We trained a feedforward neural network to prospectively identify sleep stage with PSG‐level accuracy from 30‐s epochs of LFP recordings. Our model's sleep‐stage predictions match clinician‐identified sleep stage with a mean accuracy of 91% on held‐out epochs. Furthermore, leave‐one‐group‐out analysis also demonstrates 91% mean classification accuracy for novel subjects. These results, which classify sleep stage across a typical heterogenous sample of PD patients, may indicate spectral biomarkers for automatically scoring sleep stage in PD patients with implanted DBS devices. Further development of this model may also focus on adapting stimulation during specific sleep stages to treat targeted sleep deficits.  相似文献   

5.
Neurosurgical treatment of Parkinson's disease (PD) frequently employs chronic high-frequency deep brain stimulation (DBS) within the internal segment of globus pallidus (GPi) and can very effectively reduce L-dopa-induced dyskinesias and bradykinesia, but the mechanisms are unknown. The present study examined the effects of microstimulation in GPi on the activity of neurons close to the stimulation site. Recordings were made from GPi using two fixed or independently controlled microelectrodes, with the electrode tips usually approximately 250 or >600 micrometer apart in PD patients undergoing stereotactic exploration to localize the optimal site for placement of a lesion or DBS electrode. The spontaneous activity of nearly all of the cells (22/23) recorded in GPi in three patients was inhibited by microstimulation at currents typically <10 microA (0.15-ms pulses at 5 Hz). The inhibition had a duration of 10-25 ms at threshold. These findings suggest that microstimulation within GPi preferentially excites the axon terminals of striatal and/or external pallidal neurons causing release of GABA and inhibition of GPi neurons.  相似文献   

6.
This study examined the long-term effects of chronic subthalamic nucleus (STN) deep brain stimulation (DBS) using both clinical evaluation and laboratory motor control measures. Over a 5-year time period, changes in the motor section of the Unified Parkinson’s Disease Rating Scale (UPDRS) and movement speed and strength at the ankle joint were evaluated on and off STN DBS in eight patients with Parkinson’s disease (PD). Four patients were also studied at the elbow joint. Patients with PD originally received unilateral STN DBS between years 2001 and 2003. They were re-evaluated after 5 years of long-term STN DBS between years 2006–2008. At baseline (year 0) and after 5 years, patients with PD were tested off treatment and on STN DBS. In each testing condition, patients performed ballistic, single degree of freedom ankle dorsiflexion and ankle plantarflexion movements and peak velocity was calculated. Patients also performed maximal voluntary contractions at the ankle joint in both directions, and peak torque was calculated. Results showed increased motor UPDRS scores from year 0 to year 5, but STN DBS was efficacious in reducing them. In contrast to the increase in motor UPDRS scores, motor control results showed a marked improvement in peak velocity and peak torque over the 5-year time period in the off treatment condition, and STN DBS was efficacious by improving both peak velocity and peak torque. The current findings suggest that 5 years of chronic STN DBS can have beneficial effects on the motor system over the long term in discrete motor tasks in which maximal effort and maximal neural output is required.  相似文献   

7.
Cervical dystonia (CD) is a movement disorder that involves involuntary turning and twisting of the neck caused by abnormal muscle contraction. Deep brain stimulation (DBS) in the globus pallidus internus (GPi) is used to treat both CD and the motor symptoms of Parkinson's disease (PD). It has been suggested that the differing motor symptoms in CD and PD may arise from a decreased GPi output in CD and elevation of output in PD. To test this hypothesis, extracellular recordings of GPi neuronal activity were obtained during stereotactic surgery for the implantation of DBS electrodes in seven idiopathic CD and 14 PD patients. The mean GPi neuronal firing rate recorded from CD patients was lower than that in PD patients (P < 0.001; means +/- SE: 71.4 +/- 2.2 and 91.7 +/- 3.0 Hz, respectively). Furthermore, GPi neurons fired in a more irregular pattern consisting of more frequent and longer pauses in CD compared with PD patients. When comparisons were done based on locations of recordings, these differences in firing rates and patterns were limited to the ventral portion of the GPi. In contrast, no difference in firing rate or pattern was observed in the globus pallidus externus between the two groups. These findings suggest that alterations in both firing rate and firing pattern may underlie the differing motor symptoms associated with these two movement disorders.  相似文献   

8.
The aim of the present study was to assess the effect of bilateral subthalamic nucleus (STN) stimulation and dopaminergic medication on speed of mental processing and motor function. Thirty-nine patients suffering from advanced Parkinson disease (PD) were operated on. Motor function and reaction time (RT) performance [simple RT (SRT) and complex RT (CRT)] were evaluated under four experimental conditions with stimulation (stim) and medication (med) on and off: stim-on/med-on, stim-on/med-off, stim-off/med-off and stim-off/med-on. In the last condition, the patients received either low medication (usual dose) or high medication (suprathreshold dose). STN stimulation improved the motor performance in the SRT and CRT tasks. Furthermore, STN deep brain stimulation (DBS) also improved response preparation as shown by the significant improvement of the RT performance in the SRT task. This effect of STN DBS on the RT performance in the SRT task was greater as compared with the CRT task. This is due to the more complex information processing that is required in the CRT task as compared to the SRT task. These data suggest that treatment of STN hyperactivity by DBS improves motor function, confirming earlier reports, but has a differential effect on cognitive functions. The STN seems to be an important modulator of cognitive processing and STN DBS can differentially affect motor and associative circuits.  相似文献   

9.
Synaptic plasticity is conspicuously dependent on the temporal order of the pre- and postsynaptic activity. Human motor cortical excitability can be increased by a paired associative stimulation (PAS) protocol. Here we show that it can also be decreased by minimally changing the interval between the two associative stimuli. Corticomotor excitability of the abductor pollicis brevis (APB) representation was tested before and after repetitively pairing of single right median nerve simulation with single pulse transcranial magnetic stimulation (TMS) delivered over the optimal site for activation of the contralateral APB. Following PAS, depression of TMS-evoked motor-evoked potentials (MEPs) was induced only when the median nerve stimulation preceded the TMS pulse by 10 ms, while enhancement of cortical excitability was induced using an interstimulus interval of 25 ms, suggesting an important role of the sequence of cortical events triggered by the two stimulation modalities. Experiments using F-wave studies and electrical brain stem stimulation indicated that the site of the plastic changes underlying the decrease of MEP amplitudes following PAS (10 ms) was within the motor cortex. MEP amplitudes remained depressed for approximately 90 min. The decrease of MEP amplitudes was blocked when PAS(10 ms) was performed under the influence of dextromethorphan, an N-methyl-d-aspartate-receptor antagonist, or nimodipine, an L-type voltage-gated calcium-channel antagonist. The physiological profile of the depression of human motor cortical excitability following PAS(10 ms) suggests long-term depression of synaptic efficacy to be involved. Together with earlier findings, this study suggests that strict temporal Hebbian rules govern the induction of long-term potentiation/long-term depression-like phenomena in vivo in the human primary motor cortex.  相似文献   

10.

Purpose

As Parkinson''s disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies.

Materials and Methods

We obtained [15O]H2O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects.

Results

ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum.

Conclusion

Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.  相似文献   

11.
Parkinson’s disease (PD) is one of the most prevalent movement disorder caused by degeneration of the dopaminergic neurons in substantia nigra pars compacta. Deep brain stimulation (DBS) at the subthalamic nucleus (STN) has been a new and effective treatment of PD. It is interesting how a neurological disorder caused by the deficiency of a specific chemical substance (i.e., dopamine) from one site could be so successfully treated by a pure physical maneuver (i.e., DBS) at another site. STN neurons could discharge in the single-spike or the burst modes. A significant increase in STN burst discharges has been unequivocally observed in dopamine-deprived conditions such as PD, and was recently shown to have a direct causal relation with parkinsonian symptoms. The occurrence of burst discharges in STN requires enough available T-type Ca2+ currents, which could bring the relatively negative membrane potential to the threshold of firing Na+ spikes. DBS, by injection of negative currents into the extracellular space, most likely would depolarize the STN neuron and then inactivate the T-type Ca2+ channel. Burst discharges are thus decreased and parkinsonian locomotor deficits ameliorated. Conversely, injection of positive currents into STN itself could induce parkinsonian locomotor deficits in animals without dopaminergic lesions. Local application of T-type Ca2+ channel blockers into STN would also dramatically decrease the burst discharges and improve parkinsonian locomotor symptoms. Notably, zonisamide, which could inhibit T-type Ca2+ currents in STN, has been shown to benefit PD patients in a clinical trial. From the pathophysiological perspectives, PD can be viewed as a prototypical disorder of “brain arrhythmias”. Modulation of relevant ion channels by physical or chemical maneuvers may be important therapeutic considerations for PD and other diseases related to deranged neural rhythms.  相似文献   

12.
奥卡西平对癫痫患者运动皮质兴奋性的影响   总被引:1,自引:1,他引:1  
目的:利用经颅磁刺激(transcranial magnetic stimulation, TMS)技术来研究奥卡西平(oxcarbazepine, OXC)对部分性癫痫患者运动皮质兴奋性的影响,并与卡马西平(carbamazepine, CBZ)的作用相比较。方法:对38例头颅MRI正常的部分性癫痫患者和20例正常对照进行磁刺激,并记录双侧大脑的静息期运动皮质阈值(rest motor threshold, rMT)、运动诱发电位波幅(motor evoked potential amplitude,MEP amplitude)、皮质潜伏期(cortical latency, CL)和中枢传导时间(central motor conduction time, CMCT)。癫痫组中18例给予OXC治疗,20例给予CBZ治疗,在治疗后第2周末、第4周末分别给予TMS。结果: 癫痫组38例治疗前可能致痫灶同侧大脑rMT高于对侧大脑,但差异无显著(P>0.05)。奥卡西平组可能致痫灶同侧大脑rMT在第2周末和第4周末均明显高于治疗前(P<0.05),卡马西平组可能致痫灶同侧大脑rMT仅在第4周末时高于治疗前(P<0.05)。癫痫组治疗前后同侧大脑MEP amplitude、CL和CMCT差别均无显著,两侧大脑半球间比较差别也无显著。结论: 头颅MRI正常的部分性癫痫患者可能致痫灶所在半球和对侧半球的大脑皮质兴奋性可能存在差异,OXC和CBZ均能降低运动皮质兴奋性,可能机制为细胞膜钠离子通道阻滞。 TMS是从电生理角度研究大脑皮质兴奋性的可靠辅助工具。  相似文献   

13.
It is assumed that somatosensory input is required for motor learning and recovery from focal brain injury. In rodents and other mammals, corticocortical projections between somatosensory and motor cortices are modified by patterned input. Whether and how motor cortex function is modulated by somatosensory input to support motor learning is largely unknown. Recent human evidence suggests that input changes motor excitability. Using transcranial magnetic stimulation (TMS), this study tested whether motor cortex excitability is affected by patterned somatosensory stimulation in rodents. Motor potentials evoked in gastrocnemius muscles in response to TMS (MEP(TMS)) and to cervical electrical stimulation (MEP(CES)) were recorded bilaterally. Initially, the first negative peak of the MEP(TMS) was identified as a cortical component because it disappeared after decortication in three animals. Subsequently, we studied the effects of 2 h of electrical stimulation of one sciatic nerve on the cortical component of the MEP(TMS), i.e., on motor cortex excitability. After stimulation, its amplitude increased by 117 +/- 45% ( P<0.01) in the stimulated limb. A significantly smaller effect was found in the unstimulated limb ( P<0.02) and no effect was observed in unstimulated control animals. The subcortically evoked MEP(CES) were not affected by stimulation. It is concluded that somatosensory input increases motor excitability in rat. This increase outlasts the stimulation period and is mediated by supraspinal structures, likely motor cortex. Modulation of motor cortex excitability by somatosensory input may play a role in motor learning and recovery from lesion.  相似文献   

14.
Basal ganglia-thalamocortical circuits play an important role in movement preparation and execution. Tracer, single-cell, and lesion studies in monkeys suggest the existence of topologically segregated motor and nonmotor basal ganglia cortical circuits. In this study we used deep brain stimulation (DBS) of the posteroventrolateral globus pallidus internus (GPi) in patients with Parkinson's disease to elucidate the function of the GPi in human sensorimotor behavior. This question was investigated by comparing the influence of DBS on patients' performance in various reaction-time tasks that differed with respect to cognitive but not motor requirements. As a main result, DBS improved performance on the different tasks independently of the complexity of the involved cognitive processing functions. Furthermore, the observed effects did not depend on the modality of the processed information. These results suggest that the functional state of the posteroventrolateral GPi selectively affects the motor stage in simple sensorimotor acts, because this stage was the only stage involved in all investigated tasks. In addition to DBS, we manipulated the levodopa medication state of the PD patients. In contrast to DBS, levodopa effects on reaction times were less consistent. Levodopa improved reaction times in choice reaction tasks significantly, while affecting reaction times in a simple reaction task to a lesser extent. Error analysis revealed that the medication-dependent reaction-time improvement in the choice reaction tasks was accompanied by an increase in errors, suggesting a shift of the speed-accuracy criteria of the patients. A similar pattern of results was not observed for the DBS effects. Taken together, our data are in agreement with recent findings in monkeys that indicate a topological organization of the GPi in which motor functions are localized in posterolateral regions apart from cognitive regions. Furthermore, our data show a way to uncover the subcortical-cortical circuitry serving human sensorimotor behavior.  相似文献   

15.
Growing evidence suggests that spontaneous oscillatory low-frequency synchronization in the subthalamic nuclei (STN) may modulate motor performance in patients with Parkinson’s disease (PD). To explore this in more detail, 15 PD patients chronically implanted with deep brain stimulation (DBS) electrodes in both STN were stimulated bilaterally at 5, 10, 20, 50 and 130 Hz and the effects of the DBS on self-initiated isometric elbow flexion (FLEX) and finger pinch (PINCH) were compared to performance without DBS. Baseline performance was very much impaired. Peak force was significantly greater during 130 and 10 Hz stimulation when compared to no stimulation in both tasks. Cumulative sums of the changes in mean rising force and peak force in the two tasks upon stimulation at 10 and 20 Hz demonstrated that patients improved their performance on stimulation, except for those with the best performance off stimulation who deteriorated with stimulation at 20 Hz. Thus, no effect was detected with 20 Hz stimulation at the group level. The current study highlights the need to consider the baseline performance of a subject in a given task when determining the effects of low-frequency STN stimulation in PD patients. It also demonstrates that stimulation at 10 Hz can improve motor function in subjects with poor baseline function.  相似文献   

16.
Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. We focused our analysis on three general neural elements that surround GPi-DBS electrodes: GPi somatodendritic segments, GPi efferent axons, and globus pallidus pars externa (GPe) fibers of passage. During high-frequency electrical stimulation (136 Hz), somatic activity in the GPi showed interpulse excitatory phases at 1-3 and 4-5.5 ms. When including stimulation-induced GABA(A) and AMPA receptor dynamics into the model, the somatic firing patterns continued to be entrained to the stimulation, but the overall firing rate was reduced (78.7 to 25.0 Hz, P < 0.001). In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation.  相似文献   

17.
Weak transcranial direct current stimulation (tDCS) can induce long lasting changes in cortical excitability. In the present study we asked whether tDCS applied to the left primary motor cortex (M1) also produces aftereffects distant from the site of the stimulating electrodes. We therefore tested corticospinal excitability in the left and the right M1 and transcallosal excitability between the two cortices using transcranial magnetic stimulation (TMS) before and after applying tDCS. Eight healthy subjects received 10 min of anodal or cathodal tDCS (1 mA) to the left M1. We examined the amplitude of contralateral motor evoked potentials (MEPs) and the onset latency and duration of transcallosal inhibition with single pulse TMS. MEPs evoked from the tDCS stimulated (left) M1 were increased by 32% after anodal and decreased by 27% after cathodal tDCS, while transcallosal inhibition evoked from the left M1 remained unchanged. The effect on MEPs evoked from the left M1 lasted longer for cathodal than for anodal tDCS. MEPs evoked from the right M1 were unchanged whilst the duration of transcallosal inhibition evoked from the right M1 was shortened after cathodal tDCS and prolonged after anodal tDCS. The duration of transcallosal inhibition returned to control values before the effect on the MEPs from the left M1 had recovered. These findings are compatible with the idea that tDCS-induced aftereffects in the cortical motor system are limited to the stimulated hemisphere, and that tDCS not only affects corticospinal circuits involved in producing MEPs but also inhibitory interneurons mediating transcallosal inhibition from the contralateral hemisphere.  相似文献   

18.
Threat demands fast and adaptive reactions that are manifested at the physiological, behavioral, and phenomenological level and are responsive to the direction of threat and its severity for the individual. Here, we investigated the effects of threat directed toward or away from the observer on motor corticospinal excitability and explicit recognition. Sixteen healthy right‐handed volunteers completed a transcranial magnetic stimulation (TMS) task and a separate three‐alternative forced‐choice emotion recognition task. Single‐pulse TMS to the left primary motor cortex was applied to measure motor evoked potentials from the right abductor pollicis brevis in response to dynamic angry, fearful, and neutral bodily expressions with blurred faces directed toward or away from the observer. Results showed that motor corticospinal excitability increased independent of direction of anger compared with fear and neutral. In contrast, anger was better recognized when directed toward the observer compared with when directed away from the observer, while the opposite pattern was found for fear. The present results provide evidence for the differential effects of threat direction on explicit recognition and motor corticospinal excitability. In the face of threat, motor corticospinal excitability increases independently of the direction of anger, indicative of the importance of more automatic reactions to threat.  相似文献   

19.
Of all the parameters in the deep brain stimulation (DBS) of the subthalamic nucleus (STN) in the Parkinson disease (PD) animal models, the selection of the stimulation current intensity is alterable and argumentative to affect the stimulation charge or charge density. In order to observe the different performances among several motor tasks during the STN-DBS in rats, we observed the behavioral performance during the stimulation with 0, 100, 150 and 200 μA currents. We found that the DBS efficacy reached the climax during the 200 μA stimulation at the methamphetamine-induced rotational behavioral test, however at the stepping test and rotarod test, the critical current were 150 μA to reach the best improvements. Such findings suggest that the stimulation parameters to reach the climax efficacy among the different symptoms are different during the STN-DBS experiments in rats. The appropriate stimulation parameters should be selected by the symptoms separately according to the aim of each study.  相似文献   

20.
Current concepts of transcranial magnetic stimulation (TMS) over the primary motor cortex are still under debate as to whether inhibitory motor effects are exclusively of cortical origin. To further elucidate a potential subcortical influence on motor effects, we combined TMS and unilateral subcortical electrical stimulation (SES) of the corticospinal tract. SES was performed through implanted depth electrodes in eight patients treated with deep brain stimulation (DBS) for severe dystonia. Chronaxie, conduction velocity (CV) of the stimulated fibres and poststimulus time histograms of single motor unit recordings were calculated to provide evidence of an activation of large diameter myelinated fibres by SES. Excitatory and inhibitory motor effects recorded bilaterally from the first dorsal interosseus muscle were measured after SES and focal TMS of the motor cortex. This allowed us to compare motor effects of subcortical (direct) and cortical (mainly indirect) activation of corticospinal neurons. SES activated a fast conducting monosynaptic pathway to the alpha motoneuron. Motor responses elicited by SES had significantly shorter onset latency and shorter duration of the contralateral silent period compared to TMS induced motor effects. Spinal excitability as assessed by H-reflex was significantly reduced during the silent period after SES. No ipsilateral motor effects could be elicited by SES while TMS was followed by an ipsilateral inhibition. The results suggest that SES activated the corticospinal neurons at the level of the internal capsule. Comparison of SES and TMS induced motor effects reveals that the first part of the TMS induced contralateral silent period should be of spinal origin while its later part is due to cortical inhibitory mechanisms. Furthermore, the present results suggest that the ipsilateral inhibition is predominantly mediated via transcallosal pathways.This paper is dedicated to Bernd-Ulrich Meyer, who died in a plane accident  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号