首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
颈椎椎弓根螺钉内固定技术有关问题探讨   总被引:14,自引:1,他引:13       下载免费PDF全文
目的 探讨经颈椎椎弓根内固定治疗颈椎病变临床常见问题及其处理方法。方法 采用AXIS内固定系统 ,经颈椎椎弓根螺钉固定技术对 4 0例颈椎病患者进行了手术治疗 ,对手术中常遇到的问题及处理方法进行总结。结果  4 0例手术中 ,有 13例在置钉后感觉松动 ,9例在打椎弓根孔道时出血较多 ,术中正确处理后未发现神经血管症状。结论 经颈椎弓根内固定固定牢固 ,康复快 ,效果好 ,但手术中风险较大 ,处理不好 ,会出现严重的并发症。故熟悉解剖及手术操作技巧、冷静处理手术中遇到的问题非常重要。  相似文献   

2.
Abumi K  Shono Y  Ito M  Taneichi H  Kotani Y  Kaneda K 《Spine》2000,25(8):962-969
STUDY DESIGN: Retrospective evaluation of complications in 180 consecutive patients with cervical disorders who had been treated by using pedicle screw fixation systems. OBJECTIVES: To determine the risks associated with pedicle screw fixation in the cervical spine and to emphasize the importance of preoperative planning and surgical techniques in reducing the risks of this procedure. SUMMARY OF BACKGROUND DATA: Generally, pedicle screw fixation in the cervical spine has been considered too risky for the neurovascular structures. There have been several reports describing the complications of lateral mass screw-plate fixation. However, no studies have examined in detail the complications associated with cervical pedicle screw fixation. METHODS: One hundred eighty patients who underwent cervical reconstructive surgery using cervical pedicle screw fixation were reviewed to clarify the complications associated with the pedicle screw fixation procedure. Cervical disorders were spinal injuries in 70 patients and nontraumatic lesions in 110 patients. Seven hundred twelve screws were inserted into the cervical pedicles, and the locations of 669 screws were radiologically evaluated. RESULTS: Injury of the vertebral artery occurred in one patient. The bleeding was stopped by bone wax, and no neurologic complication developed after surgery. On computed tomographic (CT) scan, 45 screws (6.7%) were found to penetrate the pedicle, and 2 of 45 screws caused radiculopathy. Besides these three neurovascular complications directly attributed to screw insertion, radiculopathy caused by iatrogenic foraminal stenosis from excessive reduction of the translational deformity was observed in one patient. CONCLUSIONS: The incidence of the clinically significant complications caused by pedicle screw insertion was low. Complications associated with cervical pedicle screw fixation can be minimized by sufficient preoperative imaging studies of the pedicles and strict control of screw insertion. Pedicle screw fixation is a useful procedure for reconstruction of the cervical spine in various kinds of disorders and can be performed safely.  相似文献   

3.
Pedicle screw instrumentation of the upper cervical spine is rarely performed in trauma surgery because of the risk of damaging neurovascular structures. We report successful treatment of an unstable hangman's fracture with posterior pedicle screw fixation using Iso-C3D fluoroscopy-based computer navigation guidance. Postoperative computed tomographic images confirmed accurate placement of the pedicle screws. The navigation system is useful, especially in an unstable upper cervical spine injury where the likelihood of change in the inter-segmental relationship is maximal before and after positioning for surgery. The navigation system has the advantage of data acquisition after patient positioning, thus making safe pedicle fixation of the C1 and C2 vertebrae possible despite fractured posterior elements.  相似文献   

4.
目的 探讨在下颈椎经颈后正中入路应用经关节螺钉联合侧块螺钉或椎弓根螺钉行内固定治疗的固定效果.方法 2003年2月至2007年10月,对22例患者通过后路应用经关节螺钉联合侧块螺钉或椎弓根螺钉行内固定治疗,男14例,女8例;年龄24~73岁,平均43岁.其中下颈椎创伤性骨折脱位13例,颈椎后纵韧带骨化症4例,颈椎管狭窄伴Ⅱ型齿突骨折1例,颈椎间盘突出伴椎管狭窄4例.结果 共置入经关节螺钉45枚,其中C4,5 2枚,C5,639枚,C6,74枚;共置入侧块螺钉12枚,C3、C4各6枚;共置入椎弓根螺钉41枚,其中C24枚,C32枚,C46枚,C721枚,T18枚.术中所有螺钉均成功置入,未出现椎动脉、神经根和脊髓损伤等置钉相关并发症.22例患者均获随访,随访时间10个月~3年8个月,平均17个月.植骨融合时间3~5个月,平均3.5个月.术后发现1例患者的2枚经关节螺钉松动,部分脱出.经加强颈托制动,术后4个月获得融合.结论 通过后路固定下颈椎时,采用经关节螺钉联合侧块螺钉或椎弓根螺钉固定,均可取得较好的固定效果.  相似文献   

5.
颈椎椎弓根螺钉徒手植入技术的临床研究   总被引:14,自引:3,他引:11  
目的 评价颈椎椎弓根螺钉徒手植入技术(无须术中影像技术引导)的安全性和可靠性。方法应用Axis内固定系统(美国枢法模公司)对36例颈椎疾病患者进行颈后路经椎弓根内固定术,共植入螺钉144枚,方法如下:①术中清晰地显露颈椎侧块和突间关节,用直径3,0mm高速球形磨钻去除侧块外上象限处骨皮质,然后用2.0mm的自制手锥沿椎弓根事先确定的方向轻轻钻入,若遇阻力则需略改变方向,使其自然置入,深约2~2,5cm。确定无误后,则安置Axis钛板和置入长度合适的椎弓根螺钉。②安装完毕后,即用C型臂X线机作双斜位透视,无误后关闭切口。结果从G~G,共植入根弓根螺钉144枚,其中10枚(6.8%)钉初次置入后感觉松动,经校正后二次置入成功,11枚(3.5%)钉道钻孔后出血较多,但及时处理后出血停止并无不良结果。术后X线斜位片及CT片显示,16枚(11.1%)螺钉穿破椎弓根,其中10枚螺钉(6.9%)穿破椎弓根外侧皮质,4枚(2.8%)穿破椎弓根上侧皮质,2枚(1.3%)穿破椎弓根下侧皮质。随访未发现与螺钉置入穿破椎弓根皮质有关的神经血管损伤问题。结论本研究提示,在事先充分的对每个患者颈椎椎弓根X线及CT解剖结构了解的情况下,徒手置入椎弓根螺钉行颈椎后路内固定安全可行。  相似文献   

6.
C2 pedicle screws or transarticular atlantoaxial screws are technically demanding and carry an increased risk of vertebral artery injury. In up to 20% of cases, pedicle and transarticular screw placement is not possible due to a high-riding vertebral artery or very small C2 pedicles in addition to other anatomical variations. Translaminar screws have been reported to rigidly capture posterior elements of C2 and therefore appear to be a suitable alternative. We present our first experiences and clinical results with this new method in two neurosurgical spine centers. Twenty-seven adult patients were treated between 2007 and 2010 in two neurosurgical spine departments with C2 translaminar screw fixation for upper cervical spine instability of various origins (e.g., trauma, tumor, dens pseudarthrosis). Eight patients were men and 19 were women. Mean age was 68.9 years. In most cases, translaminar screws were used because of contraindications for pedicle or transarticular screws as a salvage technique. All patients were clinically assessed and had CT scans postoperatively to verify correct screw placement. Follow-up was performed with reexamination on an ambulatory basis. Mean follow-up was 7.6 months for all patients. In 27 patients, 52 translaminar screws were placed. There were no intraoperative complications. Postoperatively, we identified four screw malpositions using a new accuracy grading scale. One screw had to be revised because of violation of the spinal canal >4 mm. None of the patients had additional neurological deficits postoperatively, and all showed stable cervical conditions at follow-up. Two patients died due to causes not associated with the stabilization technique. The fusion rate for patients with C1/C2 fixation is 92.9%. Translaminar screws can be used at least as an additional technique for cases of upper cervical spine instability when pedicle screw placement is contraindicated or not possible. The current data suggest comparable biomechanical stability and fusion rates of translaminar screws to other well-known posterior fixation procedures. In addition, translaminar screw placement is technically less demanding and reduces the risk of vertebral artery injury.  相似文献   

7.
目的 评价在三维平板透视系统引导下应用上颈椎椎弓根螺钉内固定加植骨融合技术治疗上颈椎骨折的安全性和临床疗效。方法 回顾性分析自2012-06-2013-10我科收治的11例上颈椎骨折脱位病例,均在术中三维平板透视系统引导下采用上颈椎椎弓根螺钉短节段内固定加植骨融合技术进行手术治疗。结果 术后所有患者的颈椎稳定性均得到即刻恢复,44枚螺钉均在位良好,未发生脊髓及椎动脉损伤等任何与置钉相关的并发症,无螺钉断裂、松动。结论 在三维平板透视系统引导下经上颈椎椎弓根螺钉内固定加植骨融合技术治疗上颈椎骨折脱位,螺钉置入准确性高,有效防止置钉并发症,力学稳定性好,植骨融合率高,是上颈椎骨折后路固定术中理想的手术方式之一。  相似文献   

8.
BACKGROUND CONTEXT: Locking posterior instrumentation in the cervical spine can be attached using 1) pedicle screws, 2) lateral mass screws, or 3) laminar hooks. This order of options is in order of decreasing technical difficulty and decreasing depth of fixation, and is thought to be in order of decreasing stability. PURPOSE: We sought to determine whether substantially different biomechanical stability can be achieved in a two-level construct using pedicle screws, lateral mass screws, or laminar hooks. Secondarily, we sought to quantify the differential and additional stability provided by an anterior plate. STUDY DESIGN: In vitro biomechanical flexibility experiment comparing three different posterior constructs for stabilizing the cervical spine after three-column injury. METHODS: Twenty-one human cadaveric cervical spines were divided into three groups. Group 1 received lateral mass screws at C5 and C6 and pedicle screws at C7; Group 2 received lateral mass screws at C5 and C6 and laminar hooks at C7; Group 3 received pedicle screws at C5, C6, and C7. Specimens were nondestructively tested intact, after a three-column two-level injury, after posterior C5-C7 rod fixation, after two-level discectomy and anterior plating, and after removing posterior fixation. Angular motion was recorded during flexion, extension, lateral bending, and axial rotation. Posterior hardware was subsequently failed by dorsal loading. RESULTS: Laminar hooks performed well in resisting flexion and extension but were less effective in resisting lateral bending and axial rotation, allowing greater range of motion (ROM) than screw constructs and allowing a significantly greater percentage of the two-level ROM to occur across the hook level than the screw level (p<.03). Adding an anterior plate significantly improved stability in all three groups. With combined hardware, Group 3 resisted axial rotation significantly worse than the other groups. Posterior instrumentation resisted lateral bending significantly better than anterior plating in all groups (p<.04) and resisted flexion and axial rotation significantly better than anterior plating in most cases. Standard deviation of the ROM was greater with anterior than with posterior fixation. There was no significant difference among groups in resistance to failure (p=.74). CONCLUSIONS: Individual pedicle screws are known to outperform lateral mass screws in terms of pullout resistance, but they offered no apparent advantage in terms of construct stability or failure of whole constructs. Larger standard deviations in anterior fixation imply more variability in the quality of fixation. In most loading modes, laminar hooks provided similar stability to lateral mass screws or pedicle screws; caudal laminar hooks are therefore an acceptable alternative posteriorly. Posterior two-level fixation is less variable and slightly more stable than anterior fixation. Combined instrumentation is significantly more stable than either anterior or posterior alone.  相似文献   

9.
10.
下颈椎内固定治疗进展及问题探讨   总被引:1,自引:1,他引:0  
王庆  徐荣明  马维虎 《中国骨伤》2007,20(9):652-654
本文介绍了下颈椎前路和后路使用各种器械进行内固定的最新方法,并对其中常见的一些问题进行了探讨。颈椎前路钢板螺钉内固定系统可以明显提高植骨融合率,其并发症以内固定松动或失败最为常见,简要介绍了预防该并发症在操作时需注意的各种事项及方法。颈椎前路界面固定技术可以无须另外取自体髂骨或腓骨等进行植骨,避免了二次手术的并发症。人工椎间盘置换术可以避免融合后相邻节段的继发退变以及由此引起的新症状,最终疗效还需要大宗病例积累和长期随访结果证实。颈椎侧块螺钉内固定操作方法较多,但比较简单,固定可靠。对神经根、脊髓的损伤是其最重要的并发症,熟悉颈椎解剖可以避免这些并发症。颈椎椎弓根内固定技术是目前固定最为牢固的方法,操作比较困难,主要并发症是螺钉穿破椎弓根,术前仔细的影像学研究或使用导航技术,做到个体化置钉,可以有效提高置钉准确率。  相似文献   

11.
Pedicle screws have dramatically improved the outcomes of spinal reconstruction requiring spinal fusion. Short-segment surgical treatments based on the use of pedicle screws for the treatment of neoplastic, developmental, congenital, traumatic, and degenerative conditions have been proved to be practical, safe, and effective. The Funnel Technique provides a straightforward, direct, and inexpensive way to very safely apply pedicle screws in the cervical, thoracic, or lumbar spine. Carefully applied pedicle-screw fixation does not produce severe or frequent complications. Pedicle-screw fixation can be effectively and safely used wherever a vertebral pedicle can accommodate a pedicle screw--that is, in the cervical, thoracic, or lumbar spine. Training in pedicle-screw application should be standard in orthopaedic training programs since pedicle-screw fixation represents the so-called gold standard of spinal internal fixation.  相似文献   

12.
Posterior instrumentation of the cervical spine has become increasingly popular in recent years. Dissatisfaction with lateral mass fixation, especially at the cervico-thoracic junction, has led spine surgeons to use pedicle screws. The improved biomechanical stability of pedicle screws and transarticular C1/2 screws allows for shorter instrumentations and improves the repositioning possibilities. Nevertheless, there are potential risks of iatrogenic damage to the spinal cord, nerve roots or the vertebral artery with both techniques. Therefore, the aim of this study was to evaluate whether C1/2 transarticular screws and transpedicular screws can be applied safely and with high accuracy in the cervical spine and the cervico-thoracic junction using a computer-assisted surgery system (CAS system). Posterior instrumentation was performed using the Brainlab VectorVision System (BrainLAB , Heimstetten, Germany) in 19 patients. Surface matching was used for registration. We placed 22 transarticular screws C1/2, 31 cervical pedicle screws, 10 high thoracic pedicle screws and one lateral mass screw C1. The screw position was evaluated postoperatively using CT with multiplanar reconstruction in the screw axis of each screw. None of the transarticular screws or pedicle screws was significantly (>2 mm) misplaced and no screw-related injury to vascular, neurogenic or bony structures was observed. No screw revision was necessary. The mean operation time was 144 min (90–240 min) and the mean blood loss was 234 ml (50–800 ml). C1/2 transarticular screws, as well as transpedicular screws in the cervical spine and the cervico-thoracic junction, can be applied safely and with high accuracy using a CAS system. Computer-assisted instrumentation is recommended especially for pedicle screws at C3–C6.  相似文献   

13.
To reconstruct highly destructed unstable rheumatoid arthritis (RA) cervical lesions, the authors have been using C1/2 transarticular and cervical pedicle screw fixations. Pedicle screw fixation and C1/2 transarticular screw fixation are biomechanically superior to other fixation techniques for RA patients. However, due to severe spinal deformity and small anatomical size of the vertebra, including the lateral mass and pedicle, in the most RA cervical lesions, these screw fixation procedures are technically demanding and pose the potential risk of neurovascular injuries. The purpose of this study was to evaluate the accuracy and safety of cervical pedicle screw insertion to the deformed, fragile, and small RA spine lesions using computer-assisted image-guidance systems. A frameless, stereotactic image-guidance system that is CT-based, and optoelectronic was used for correct screw placement. A total of 21 patients (16 females, 5 males) with cervical disorders due to RA were surgically treated using the image-guidance system. Postoperative computerized tomography and plane X-ray was used to determine the accuracy of the screw placement. Neural and vascular complications associated with screw insertion and postoperative neural recovery were evaluated. Postoperative radiological evaluations revealed that only 1 (2.1%; C4) of 48 screws inserted into the cervical pedicle had perforated the vertebral artery canal more than 25% (critical breach). However, no neurovascular complications were observed. According to Ranawat's classification, 9 patients remained the same, and 12 patients showed improvement. Instrumentation failure, loss of reduction, or nonunion was not observed at the final follow-up (average 49.5 months; range 24-96 months). In this study, the authors demonstrated that image-guidance systems could be applied safely to the cervical lesions caused by RA. Image-guidance systems are useful tools in preoperative planning and in transarticular or transpedicular screw placement in the cervical spine of RA patients.  相似文献   

14.
Accuracy of cervical pedicle screw placement using the funnel technique.   总被引:27,自引:0,他引:27  
STUDY DESIGN: This was a cadaver study assessing the accuracy of cervical pedicle screw placement. OBJECTIVE: To evaluate the accuracy of the funnel technique of screw placement. SUMMARY OF BACKGROUND DATA: Although excellent results have been reported in clinical studies, with no major neurovascular injuries, several cadaveric studies have shown a high pedicle perforation rate during screw placement. METHODS: Ten fresh frozen cervical spines (C2-C7) were used (120 pedicles, 20 pedicles per level). The average specimen age was 79.6 years (range 65-97); the average height was 159 cm (range 155-175). The male-to-female ratio was 3:7. Pedicle width and angulation were measured on preoperative axial computed tomography (1-mm slices). By use of four bony landmarks and the funnel technique, screws were placed under direct vision. Critical perforations (documented contact of a screw with, or an injury to, a spinal cord, nerve root, or vertebral artery) and noncritical perforations (a perforation with no critical contact) were recorded. RESULTS: In seven pedicles (5.8%) the procedure was aborted because of a small or nonexistent pedicle medullary canal. Ninety-four pedicle screws (83.2%) were placed correctly, whereas 11 pedicles (9.7%) had noncritical perforations and 8 pedicles (7.1%) had critical perforations. The majority of the critical and noncritical perforations were at C3, C4, and C5. CONCLUSIONS: Axial computed tomography is necessary for the preoperative planning. Because of the small diameter and steep angulation of cervical pedicles, every spine surgeon who intends to use pedicle screws should first master the technique on cadavers.  相似文献   

15.
Complications of transpedicular screw fixation in the cervical spine   总被引:8,自引:2,他引:6  
Today, posterior stabilization of the cervical spine is most frequently performed by lateral mass screws or spinous process wiring. These techniques do not always provide sufficient stability, and anterior fusion procedures are added secondarily. Recently, transpedicular screw fixation of the cervical spine has been introduced to provide a one-stage stable posterior fixation. The aim of the present prospective study is to examine if cervical pedicle screw fixation can be done by low risk and to identify potential risk factors associated with this technique. All patients stabilized by cervical transpedicular screw fixation between 1999 and 2002 were included. Cervical disorders included multisegmental degenerative instability with cervical myelopathy in 16 patients, segmental instability caused by rheumatoid arthritis in three, trauma in five and instability caused by infection in two patients. In most cases additional decompression of the spinal cord and bone graft placement were performed. Pre-operative and post-operative CT-scans (2-mm cuts) and plain X-rays served to determine changes in alignment and the position of the screws. Clinical outcome was assessed in all cases. Ninety-four cervical pedicle screws were implanted in 26 patients, most frequently at the C3 (26 screws) and C4 levels (19 screws). Radiologically 66 screws (70%) were placed correctly (maximal breach 1 mm) whereas 20 screws (21%) were misplaced with reduction of mechanical strength, slight narrowing of the vertebral artery canal (<25%) or the lateral recess without compression of neural structures. However, these misplacements were asymptomatic in all cases. Another eight screws (9%) had a critical breach. Four of them showed a narrowing of the vertebral artery canal of more then 25%, in all cases without vascular problems. Three screws passed through the intervertebral foramen, causing temporary paresis in one case and a new sensory loss in another. In the latter patient revision surgery was performed. The screw was loosened and had to be corrected. The only statistically significant risk factor was the level of surgery: all critical breaches were seen from C3 to C5. Percutaneous application of the screws reduced the risk for misplacement, although this finding was not statistically significant. There was also a remarkable learning curve. Instrumentation with cervical transpedicular screws results in very stable fixation. However, with the use of new techniques like percutaneous screw application or computerized image guidance there remains a risk for damaging nerve roots or the vertebral artery. This technique should be reserved for highly selected patients with clear indications and to highly experienced spine surgeons.  相似文献   

16.
下颈椎后路3种固定技术的拔出强度研究   总被引:1,自引:0,他引:1  
目的评价下颈椎后路侧块螺钉、椎弓根螺钉、经关节螺钉3种固定方法的拔出强度。方法6具新鲜颈椎尸体标本(C3~C7),分别用侧块螺钉Roy-Camille法(LMS)、椎弓根螺钉(TPS)和经关节螺钉植入法(TAS)拧入螺钉,使用万能材料实验机,以100、200、300、400、500、600N分级加载,以18mm/min加载速度进行螺钉拔出实验,测试其最大拔出力、最大拔出能量。结果LMS最大拔出力为(426±38)N,最大拔出能量为(5.26±0.39)J;TPS最大拔出力为(502±42)N,最大拔出能量为(7.18±0.67)J;TAS最大拔出力为(482±40)N,最大拔出能量为(6.68±0.47)J。LMS的最大拔出力和最大拔出能量均小于TPS和TAS(P〈0.05),而TPS和TAS之间相近,差异无统计学意义(P〉0.05)。结论经关节螺钉拔出强度优于侧块螺钉,而椎弓根螺钉拔出强度最大。  相似文献   

17.
Lateral mass screws have a history of successful clinical use, but cannot always be used in the subaxial cervical spine. Despite safety concerns, cervical pedicle screws have been proposed as an alternative. Pedicle screws have been shown to be biomechanically stronger than lateral mass screws. No study, however, has investigated the load sharing properties comparing constructs using these screws. To investigate this, 12 fresh-frozen single cervical spine motion segments (C4–5 and C6–7) from six cadavers were isolated. They were randomized to receive either lateral mass or pedicle screw-rod constructs. After preloading, the segments were cyclically loaded with a uniplanar axial load from 0 to 90 N both with and without the construct in place. Pressure data at the disc space were continuously collected using a dynamic pressure sensor. The reduction in disc space pressure between the two constructs was calculated to see if pedicle screw and lateral mass screw-rod constructs differed in their load sharing properties. In both the pedicle screw and lateral mass screw-rod constructs, there was a significant reduction in the disc space pressures from the no-construct to construct conditions. The percentage decrease for the pedicle screw constructs was significantly greater than the percentage decrease for the lateral mass screw constructs for average pressure (p ≤ 0.002), peak pressure (p ≤ 0.03) and force (p ≤ 0.04). We conclude that cervical pedicle screw-rod constructs demonstrated a greater reduction in axial load transfer through the intervertebral disc than lateral mass screw-rod constructs. Though there are dangers associated with the insertion of cervical pedicle screws, their use might be advantageous in some clinical conditions when increased load sharing is necessary.  相似文献   

18.
Sixteen fresh-frozen spines from cadavers (C4-T1) were randomized on the basis of dual energy xray absorptiometry analysis of bone mineral density. The specimens were subjected to physiologic loads (相似文献   

19.
Objective: To describe a free‐hand method for pedicle screw placement in the lower cervical spine with no intraoperative imaging monitors, and to evaluate the safety of this technique. Methods: A study of the free‐hand technique of cervical pedicle screw placement was conducted by postoperative radiological review and follow‐up. Thirty‐six patients who had had cervical reconstruction with posterior plate utilizing pedicle screw fixation, and been followed for a minimum of 2 years, were studied. The position of the pedicle screw was evaluated by postoperative oblique radiographs and axial computed tomograms. Clinical outcomes were measured by Odem's criteria. Results: A total of 144 screws of diameter 3.5 or 4.0 mm were inserted into the cervical pedicles in 36 patients. Postoperative images showed that 16 (11.1%) of the screws had penetrated the pedicle walls. Among them, 10 (6.9%) screws had penetrated the lateral, 4 (2.8%) the superior and 2 (1.3%) the inferior walls. However, there were no neurological or vascular complications related to the malpositioned screws during a minimum of 2 years follow‐up. In addition, Odem's scores were applied postoperatively in all patients except one with complete neurological deficit. Conclusion: Based on 144 screw placements, cervical pedicle screw insertion utilizing a free‐hand technique without intraoperative imaging guidance seems to be safe and reliable. However, solid knowledge of the anatomy of the cervical pedicle and adjacent neurovascular bundles, and careful preoperative review of cervical images, are imperative for successful screw placement in the cervical spine.  相似文献   

20.
Operative techniques to treat traumatic cervical instability have evolved with the development of techniques, such as occipital segmental plating, C1 lateral mass screws, a variety of C2 fixation techniques, C1/C2 transarticular screw fixation, in addition to lateral mass and pedicle screws in the subaxial cervical spine. These advances have led to benefits, such as improved construct strength and enhanced biomechanical stability. In the current era, it is essential to have a good familiarity with the types of instrumentation available and a comprehensive understanding of the regional anatomy to avoid complications and optimize clinical outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号