首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical field stimulation (EFS) of isolated strips of opossum lower esophageal sphincter (LES) produced a relaxation that was accompanied by an elevation of intracellular cyclic GMP content. In order to compare the time dependence of the EFS-induced relaxation with that of the elevation of cyclic GMP, the ability of EFS to produce relaxation and increase cyclic GMP was measured. The results of these experiments showed that cyclic GMP content increased before the onset of relaxation. Cumulative addition of atriopeptin II, an activator of particulate guanylate cyclase, produced a concentration-dependent relaxation of this tissue and increased cyclic GMP content. In other experiments, zaprinast, an inhibitor of a cyclic GMP selective-phosphodiesterase, produced a concentration-related relaxation of opossum LES and increased cyclic GMP content. However, pretreatment with zaprinast (3 microM) did not potentiate the EFS-induced relaxation or the increase in cyclic GMP content. At this concentration, however, zaprinast increased the basal content of cyclic GMP. Finally, 8-Br-cyclic GMP, a membrane-permeable analog of cyclic GMP, produced a concentration-dependent relaxation of isolated strips of opossum LES. In conclusion, these data extend the initial findings that an elevation in cyclic GMP content is associated with relaxation and suggest that cyclic GMP is a potential intracellular messenger of neurally- and drug-induced relaxation of opossum LES.  相似文献   

2.
The mechanical and biochemical responses of the canine trachealis to SK&F 94836 [2-cyano-1-methyl-3-[4-(4-methyl-6-oxo- 1,4,5,6-tetrahydropyridazine-3-yl)phenyl]guanidine], a selective inhibitor (ki = 1-3 microM) of the low km cyclic AMP (cAMP) phosphodiesterase, were assessed. Time course studies indicated that SK&F 94836-induced relaxation of trachealis strips contracted with 0.1 microM methacholine was accompanied by an activation of cAMP-dependent protein kinase (cAMP-PK). In subsequent experiments, trachealis strips were contracted with three concentrations of methacholine (0.1, 1.0 or 3.0 microM) or two concentrations of histamine (10 or 300 microM) before being relaxed by the cumulative addition of SK&F 94836. The relaxant response to SK&F 94836 (EC50 = 1-10 microM) decreased progressively as tissues were contracted with higher concentrations of methacholine. In parallel with its inhibitory effect on SK&F 94836-induced relaxation, methacholine suppressed the ability of SK&F 94836 to activate cAMP-PK. Interestingly, the inhibition of cAMP-PK activity was not accompanied by a significant inhibition of SK&F 94836-stimulated cAMP accumulation. Unlike the results with methacholine, the concentration of histamine used to contract tissues had no effect on SK&F 94836-induced relaxation or cAMP-PK activation. To determine the effect of SK&F 94836 on the mechanical and biochemical responses to the beta adrenoceptor agonist isoproterenol, tissues were first contracted with 3.0 microM methacholine and then incubated with 0, 0.3, 3.0 or 30 microM SK&F 94836 before being relaxed by the cumulative addition of isoproterenol. In these experiments, SK&F 94836 potentiated isoproterenol-induced relaxation, cAMP accumulation and cAMP-PK activation in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Forskolin, an activator of adenylate cyclase, was used to examine the regulation of [3H]acetylcholine (ACh) release by cyclic AMP (cAMP)-related mechanisms in myenteric plexus-longitudinal muscle preparations of guinea pig small intestine. Forskolin evoked a dose-related increase in [3H]ACh release. Both dibutyryl-cAMP and 8-Br-cAMP significantly elevated [3H]ACh secretion. In the presence of phosphodiesterase inhibitors (theophylline and 3-isobutyl-1-methylxanthine), the basal [3H]ACh output was increased. There was a significantly greater stimulation when forskolin was used to incite endogenous cAMP synthesis and phosphodiesterase inhibitors were simultaneously applied to prevent cAMP breakdown. The enhancement of forskolin-stimulated release by theophylline or 3-isobutyl-1-methylxanthine strongly implicates a synergistic interaction between the two. These findings suggest that forskolin acts to increase ACh release by a modulation of endogenous cAMP and further support a cAMP-mediated mechanism in the secretion of ACh from myenteric cholinergic neurons.  相似文献   

4.
These studies were performed in vitro to investigate the nature of the second messenger for lower esophageal sphincter (LES) smooth muscle relaxation in response to electrical field stimulation (EFS) and vasoactive intestinal polypeptide (VIP). It was seen that VIP, permeant derivatives of the cyclic nucleotide 8-bromo cyclic GMP (BrcGMP) and 8-bromo cyclic AMP (8-BrcAMP), the guanylate cyclase stimulant sodium nitroprusside (SNP), the adenylate cyclase stimulant forskolin, M&B 22,948 (cGMP phosphodiesterase inhibitor) and SK&F 94,120 (cAMP phosphodiesterase inhibitor) caused dose-dependent and tetrocotoxin resistant fall in LES tension. Guanylate cyclase inhibitor methylene blue (MB) (3 x 10(-5) M), caused significant antagonism of fall in LES tension by SNP without modifying the inhibitory response of forskolin. The possible adenylate cyclase inhibitor N-ethylmaleimide (NEM) (1 x 10(-4) M), on the other hand, caused significant antagonism of fall in LES tension by forskolin without any effect on that caused by SNP. The inhibitory responses of 8-BrcGMP and 8-BrcAMP were not modified by MB or NEM. NEM (1 x 10(-4) M) and MB (3 x 10(-5) M) caused significant inhibition of the fall in LES tension with EFS. NEM also caused inhibition of fall in LES tension by VIP. Furthermore, SK&F 94,120 and not M&B 22,948 caused significant potentiation of fall in LES tension by EFS. From these results we conclude that: 1) cAMP and cGMP may act as second messengers for LES relaxation with EFS and VIP, and 2) VIP may act primarily via cAMP system and remains a strong possibility for one of the inhibitory neurotransmitters in the LES.  相似文献   

5.
Forskolin caused a concentration-dependent relaxation and increase in cyclic AMP levels in rabbit detrusor muscle. Propranolol, a beta-adrenoceptor antagonist, did not affect the relaxation induced by forskolin. 3-isobutyl-1-metylxanthine (IBMX), a cyclic nucleotide phosphodiesterase inhibitor, potentiated the relaxation induced by forskolin. These data suggest that the relaxation of rabbit detrusor muscle induced by forskolin is mediated by cyclic AMP accumulation resulting from activation of adenylate cyclase.  相似文献   

6.
The present study was designed to examine the roles of protein kinase C (PKC) and phosphodiesterase (PDE) in modulating the action of kappa receptor stimulation on cAMP accumulation in isolated iris-ciliary bodies (ICBs) of New Zealand White rabbits. The kappa receptor agonist, (+/-)-1-(3,4-dichlorophenyl)acetyl-2-(1-pyrrolidinyl)methylpiperidine (BRL-52537) (BRL), and the PKC activator, phorbol 12,13-dibutyrate (PDBu), both caused a concentration-dependent inhibition of forskolin-stimulated cAMP production. The inhibitory effect of BRL on cAMP levels was significantly reduced in the presence of the selective kappa receptor antagonist, norbinaltorphimine (10(-6) M), but the effect of PDBu was not, thus supporting the involvement of kappa-opioid receptors in the response to BRL. In the presence of 3-isobutyl-1-methylxanthine or rolipram (10(-5) M), the inhibitory effect of BRL or PDBu (10(-6) M) on cyclic AMP accumulation was abolished. In the presence of the selective PKC antagonist, chelerythrine (10(-6) M), the inhibitory effect of PDBu or BRL (10(-6) M) was significantly reduced. Direct measurement of PDE activity demonstrated the ability of BRL and PDBu (10(-6) M) to augment the activity of these enzymes. Preincubation of ICBs with rolipram (10(-5) M) or chelerythrine (10(-6) M) caused significant reversal of both BRL- and PDBu-induced increases in PDE activity. These results indicate that stimulation of PKC and PDE4 activity is part of the complex mechanism whereby kappa-opioid receptor agonists reduce levels of cAMP in the rabbit ICB. This mechanism of action could contribute to the ability of kappa-opioid agonists to suppress aqueous flow rate and to lower intraocular pressure.  相似文献   

7.
The role of cyclic GMP (cGMP) in mediating relaxation of canine trachealis produced by nitrovasodilators (NVDs), compounds that activate guanylate cyclase, was examined. Sodium nitroprusside (SNP) produced a concentration-dependent relaxation of the canine trachealis that was accompanied by a concentration-related increase in cGMP content. In time course studies, relaxation of isolated trachealis strips induced by 30 microM SNP was paralleled by an increase in cGMP that reached a maximum of 18-fold above basal levels within 2 min. Zaprinast, an inhibitor of the cGMP-specific phosphodiesterase, potentiated both SNP-induced relaxation and cGMP accumulation. A cell-permeable analog of cGMP, 8-bromo-cGMP, mimicked the relaxant effects of SNP. Also assessed were the effects of methylene blue, an agent that inhibits soluble guanylate cyclase activity, and hemoglobin, an agent that competitively binds NO-containing compounds. In these experiments, tissues were pretreated with the above agents for 10 min, contracted with 1 or 3 microM methacholine, and then relaxed by the cumulative addition of SNP or two other NVDs, S-nitroso-N-acetyl-penicillamine (SNAP) and glyceryl trinitrate (GTN). Tissues were flash-frozen after adding the final concentration of the various NVDs and assayed for cGMP. Methylene blue and hemoglobin suppressed both cGMP accumulation and relaxation in response to SNAP and GTN. in contrast, methylene blue and hemoglobin inhibited SNP-induced cGMP accumulation but, paradoxically, potentiated SNP-induced relaxation. The results of this study generally support a role for cGMP in NVD-induced relaxation of airway smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Calcium and cyclic AMP are important in the stimulation of insulin release. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) raises islet cAMP levels and causes insulin release at nonstimulatory glucose concentrations. In isolated rat pancreatic islets maintained for 2 d in tissue culture, the effects of IBMX on insulin release and 45Ca++ fluxes were compared with those of glucose. During perifusion at 1 mM Ca++, 16.7 mM glucose elicited a biphasic insulin release, whereas 1 mM IBMX in the presence of 2.8 mM glucose caused a monophasic release. Decreasing extracellular Ca++ a monophasic release. Decreasing extracellular Ca++ to 0.1 mM during stimulation reduced the glucose effect by 80% but did not alter IBMX-induced release. Both glucose and IBMX stimulated 45Ca++ uptake (5 min). 45Ca++ efflux from islets loaded to isotopic equilibrium (46 h) was increased by both substances. IBMX stimulation of insulin release, of 45Ca++ uptake, and of efflux were not inhibited by blockade of Ca++ uptake with verapamil, whereas glucose-induced changes are known to be inhibited. Because IBMX-induced insulin release remained unaltered at 0.1 mM calcium, it appears that cAMP-stimulated insulin release is controlled by intracellular calcium. This is supported by perifusion experiments at 0 Ca++ when IBMX stimulated net Ca++ efflux. In addition, glucose-stimulated insulin release was potentiated by IBMX. These results suggest that cAMP induced insulin release is mediated by increases in cytosolic Ca++ and that cAMP causes dislocation of Ca++ from intracellular stores.  相似文献   

9.
A possible role for cyclic adenosine 3',5'-monophosphate (cAMP) in islet B cell replication was examined in neonatal rat pancreatic monolayer cultures. Islet cells deteriorated and insulin release decreased during 12 d of culture in medium with 5.6 mM glucose, whereas the cells survived and insulin release increased during culture in medium with 5.6 mM glucose plus the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 0.1 mM), or in medium with 16.7 mM glucose with or without IBMX. IBMX also increased the mitotic index and stimulated dose-dependent increases in [(3)H]thymidine incorporation in nuclei of islet B cells in aldehydethionine stained radioautographs; maximal stimulation of B cell replication occurred with addition of 0.1 mM IBMX to 5.6 mM glucose (+170%, P < 0.001), and this increase was similar to that observed with 16.7 mM glucose (+185%, P < 0.001). Also, 8-bromo-adenosine-3',5-monophosphate, but not 8-bromo-guanosine-3',5'-monophosphate produced dose-dependent increases in islet B cell replication in medium with 5.6 mM glucose. Measurement of cAMP levels in the cultures revealed dissociations between effects on B cell replication and insulin release. Thus, addition of 0.1 mM IBMX, or 0.1 nM cholera toxin, to 5.6 mM glucose produced slightly greater increases in cAMP levels and B cell replication than did 16.7 mM glucose, whereas insulin release was increased significantly more with 16.7 mM glucose. Also, addition of 0.1 mM IBMX, or 0.1 nM cholera toxin, to 16.7 mM glucose stimulated further increases in cAMP levels and insulin release in the cultures, but no further increases in B cell replication. We conclude that (a) cAMP stimulates islet B cell replication, (b) cAMP may mediate the effects of glucose on B cell replication, and (c) mechanisms regulating B cell replication may be more sensitive to cAMP and/or different from those regulating insulin secretion.  相似文献   

10.
This study determined whether phosphodiesterase (PDE) was activated by protein kinase C (PKC) upon kappa-receptor stimulation, and if so, to identify the isozyme. We first studied the effects of trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl] cyclohexyl) benzeneacetamide methanesulphonate (U50,488H), a selective kappa-opioid receptor (OR) agonist, and phorbol-12-myristate-13-acetate (PMA), a PKC activator, on cAMP accumulation and PDE activity in rat ventricular myocytes when PKC and PDE were inhibited by respective inhibitors. Like PMA, U50,488H decreased the forskolin-stimulated cAMP accumulation and dose-dependently stimulated the PDE activity, which were antagonized by 10(-6) M chelerythrine and bisindolylmaleimide I, selective PKC antagonists. In addition, 3-isobutyl-1-methylxanthine, a PDE inhibitor, dose-dependently attenuated the inhibition on forskolin-stimulated cAMP accumulation and abolished the stimulation on PDE activity by U50,488H and PMA. The observations suggest that PKC may enhance cAMP degradation through activating PDE upon kappa-OR stimulation. To identify the isozyme(s) mediating the effect of PKC upon kappa-OR stimulation, selective inhibitors were used. We found that 10(-5) M Ro-20-1724, a selective cAMP-specific PDE (PDE-IV) inhibitor, abolished the inhibitory effects of U50,488H and PMA, whereas 8-methoxymethyl-3-isobutyl-1-methylxanthine, erythro-9-(2-hydroxy-3-nonyl) adenine, cilostamide, and zaprinast, selective inhibitors of Ca(2+)/calmodulin-dependent PDE (PDE-I), cGMP-stimulated PDE (PDE-II), cGMP-inhibited PDE (PDE-III), and cGMP-specific PDE (PDE-V), respectively, had no effect. Moreover, rolipram, another selective PDE-IV inhibitor, also dose-dependently attenuated the inhibition on forskolin-stimulated cAMP accumulation and stimulation on PDE activity by U50,488H and PMA. In conclusion, this study has provided evidence for the first time that PKC and PDE-IV mediate the action of kappa-OR.  相似文献   

11.
Radioligand binding studies disclosed one class of high affinity atrial natriuretic factor (ANF) receptors on human fibroblast membranes (Kd = 66 pM; maximum number of binding sites [Bmax] = 7,000 sites/cell). ANF increased cellular cyclic guanosine monophosphate (cGMP) content and suppressed isoproterenol- and PGE1-elevated, but not basal, cAMP content. Pertussis toxin pretreatment, which maximally ADP-ribosylated Gi, the guanine nucleotide-binding protein that couples inhibitory receptors to adenylate cyclase and blocks receptor-mediated inhibition of adenylate cyclase, did not interfere with ANF suppression of isoproterenol- or PGE1-elevated cellular cAMP content. Preliminary incubation of fibroblasts with 8-bromo cGMP or phosphodiesterase inhibitors, including 3-isobutyl-1-methylxanthine, Ro 20-1724, and cilostamide, however, prevented the ANF suppression of cAMP. MB 22948, an inhibitor that is partially selective for cGMP phosphodiesterase, did not block the effect of ANF. We conclude that in these cells, unlike other systems, ANF reduces cAMP content by activating a phosphodiesterase rather than by inhibiting adenylate cyclase.  相似文献   

12.
The dose as well as the time kinetics of insulin and adenosine-3', 5' -monophosphate (cyclic AMP) responses to glucose were compared in pancreatic islets of fed and starved rats. There was a preferential impairment of the early phase of glucose-induced insulin release in perifused islets of rats starved for 16 and 48 h. Similarly, the accumulation of 3H cyclic AMP in islets prelabeled with 3H-2-adenine was less in islets of 48 h starved than fed rats, during the first 10-min of stimulation with 26.7 mM glucose in the presence of 0.1 mM of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, whereas at 30 and 60 min 3H cyclic AMP responses to glucose were similar in fed and starved islets. Also, in 10-min incubations with glucose 3.3, 6.7, 10.0, 13.3, and 26.7 mM without and with 0.1 mM and 1.0 mM 3-isobutyl-1-methylxanthine, insulin release correlated strongly with the accumulation of 3H cyclic AMP in the islets of fed as well as starved rats. The thresholds for glucose-induced insulin and 3H cyclic AMP responses were higher and the maximal responses were lower in starved than fed islets. Preincubation of islets of 48-h starved rats with 16.7 mM glucose for 60 min corrected the impaired insulin and 3H cyclic AMP responses to glucose. Starvation-induced impairment of insulin secretory responses to glucose, and their restoration by preincubation with glucose in vitro, may represent acute regulatory effects of glucose on the adenylate cyclase-cyclic AMP system in the pancreatic beta cell.  相似文献   

13.
We investigated the relationships between relaxation, cyclic AMP (cAMP) accumulation and cAMP-dependent protein kinase (cAMP-PK) activity in canine tracheal smooth muscle. In time course and concentration-response studies, forskolin and isoproterenol elicited relaxation of isolated trachealis strips that was accompanied by an increase in cAMP content and an activation of cAMP-PK. Although these results were consistent with the proposal that cAMP is a second messenger mediating relaxation of airway smooth muscle, close inspection of the data revealed a discrepancy in the relationship between cAMP accumulation and relaxation. To induce equivalent degrees of tracheal relaxation, forskolin generated greater increments in cAMP accumulation than did isoproterenol. On the other hand, the activation state of cAMP-PK correlated reasonably well with relaxation regardless of which agonist was used. Further analysis of the data revealed that the apparent disparity between cAMP accumulation and relaxation could largely be explained at the level of the relationship between cAMP content and cAMP-PK activity: compared to isoproterenol, forskolin induced greater increases in cAMP accumulation to achieve the same activation state of cAMP-PK. These observations lend support to the proposal that in canine trachealis, various components of the cAMP/cAMP-PK cascade exist in distinct subcellular compartments such that not all of the cAMP generated in response to forskolin has access to its target enzyme, cAMP-PK.  相似文献   

14.
Isolated lower esophageal sphincter (LES) relaxation, defined as a transient sphincteric relaxation unaccompanied by esophageal peristalsis, has been shown to precede most episodes of gastroesophageal reflux in humans. We studied the genesis of isolated LES relaxation in anesthetized opossums by observing the response of four components of the deglutition reflex (mylohyoid electrical activity, pharyngeal contraction, esophageal peristalsis, and LES relaxation) to pharyngeal tactile stimulation, electrical stimulation of superior laryngeal nerve (SLN) afferents or cervical vagal efferents, and to balloon distention of the esophageal body. A single pharyngeal stroking evoked isolated LES relaxation in 56% of 160 instances. The proportion of isolated relaxations in response to SLN electrical stimulation varied inversely with the stimulus frequency, occurring in 64% of the responses at 5 Hz and 4% of the responses at 30 Hz. A full four-component deglutition sequence was most likely to occur at the higher frequencies of SLN electrical stimulation. Esophageal balloon distention elicited isolated LES relaxations or no response at low distending volumes, whereas at higher volumes LES relaxation and esophageal contraction predominated. Isolated LES relaxation had significantly less magnitude than relaxations accompanied by esophageal contractions. Bilateral cervical vagotomy abolished all LES and esophageal body responses induced by pharyngeal stroking and SLN stimulation, and rendered the esophageal body and LES less responsive to small volumes of distention. Vagal efferent stimulation produced isolated LES relaxation at lower frequency stimulation and LES relaxation with esophageal contractions at higher frequency stimulation. These studies show that isolated LES relaxation represents incomplete expression of either the deglutitive reflex or the peripheral reflex mediating secondary peristalsis.  相似文献   

15.
Inoculation of golden Syrian hamsters with Venezuelan encephalitis (VE) virus results in a sustained diminution in glucose-stimulated insulin release that is correctable by cyclic (c) AMP analogs and phosphodiesterase inhibitors. This suggested the importance of directly measuring cAMP content in VE-infected and control islets in response to insulin secretagogues. The basal cAMP content of VE-infected islets (0.14 +/- 0.02 pmol/micrograms islet DNA) was approximately half that of control islets (0.27 +/- 0.02 pmol/micrograms islet DNA) (P less than 0.05). In the presence of 10 microM glucagon (and 3 mM glucose), the rate of cAMP generation in VE-infected islets was only half that of control islets. With 10 mM alpha-ketoisocaproic acid, the rates of cAMP generation were indistinguishable between control and experimental groups. In response to 20 mM glucose and 3-isobutyl-1-methylxanthine (IBMX) (a phosphodiesterase inhibitor), cAMP generation in VE-infected islets was 81% (NS) of the control rate. When a more specific phosphodiesterase inhibitor, RO 20-1724, was used with 20 mM glucose, cAMP generation in the infected islets was only 44% (P less than 0.001) of the control value. Insulin secretion over the perifusion period paralleled the cAMP levels. In the presence of 10 mM alpha-ketoisocaproic acid, there was no difference in insulin secretion between VE-infected and control islets, while there was a statistically significant (P less than 0.05) difference with 10 microM glucagon or 20 mM glucose (in 1 mM RO 20-1724). These data point to a defect in the cAMP generation system of VE-infected islets, although additional factors involved in insulin secretion may also be impaired by the virus.  相似文献   

16.
Stimulation of N-methyl-D-aspartate (NMDA) receptors on neurons activates both cAMP and cGMP signaling pathways. Experiments were carried out to determine which phosphodiesterase (PDE) families are involved in the hydrolysis of the cyclic nucleotides formed via this mechanism, using primary neuronal cultures prepared from rat cerebral cortex and hippocampus. The nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) potentiated the ability of NMDA to increase cAMP and cGMP. However, among the family-selective inhibitors, only the PDE4 inhibitor rolipram enhanced the ability of NMDA to increase cAMP in the neurons. In contrast, only the PDE2 inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) enhanced the ability of NMDA to increase cGMP. Neither adenosine nor an adenosine deaminase inhibitor mimicked the effect of EHNA; this suggests that EHNA's inhibition of PDE2, not its effects on adenosine metabolism, mediates its effects on NMDA-stimulated cGMP concentrations. The PDE inhibitor-augmented effects of NMDA on cAMP and cGMP formation were antagonized by 5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate (MK-801), verifying NMDA receptor mediation. In contrast, only NMDA-mediated cGMP formation was affected by altering either nitric oxide signaling or guanylyl cyclase; this suggests that NMDA-induced changes in cAMP are not secondary to altered cGMP concentrations. Overall, the present findings indicate that cAMP and cGMP formed in neurons as a result of NMDA receptor stimulation are hydrolyzed by PDE4 and PDE2, respectively. Selective inhibitors of the two PDE families will differentially affect the functional consequences of activation of these two signaling pathways by NMDA receptor stimulation.  相似文献   

17.
The biochemical basis for the functional interaction between bronchoconstricting and bronchodilating pathways was investigated. Contracting canine trachealis strips with increasing concentrations of methacholine resulted in a progressive shift to the right of isoproterenol concentration-response curves. Thus, the EC50 for the relaxant response to isoproterenol was nearly 500-fold higher in preparations exposed to 3.0 microM methacholine than in tissues exposed to 0.03 microM methacholine. The maximum relaxation produced by isoproterenol was also dependent upon the initial muscarinic cholinergic tone. For example, isoproterenol reversed completely the contraction induced by 0.03 microM methacholine but did not relax trachealis strips contracted with 30 microM methacholine. To identify the molecular mechanism responsible for this functional antagonism, experiments were conducted to determine the effect of methacholine on isoproterenol-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation. Methacholine did not alter basal cyclic AMP content but did reduce cyclic AMP accumulation in response to isoproterenol. Furthermore, the ability of isoproterenol to activate cyclic AMP-dependent protein kinase was inhibited by methacholine in a concentration-dependent manner. This inhibition paralleled the decrease in mechanical responsiveness to isoproterenol. These results suggest that muscarinic cholinergic stimulation of canine tracheal smooth muscle functionally antagonizes the relaxant responses to beta adrenergic agonists and that a portion of this antagonism may be due to a suppression of catecholamine-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation.  相似文献   

18.
The effects of papaverine, a smooth muscle relaxant agent, on the voltage-dependent Ca++ current were examined in isolated smooth muscle cells from the guinea pig trachea. The tight-seal whole cell voltage clamp technique was used. Papaverine (1-100 microM) inhibited the Ba++ inward current (IBa) through the voltage-dependent L-type Ca++ channel in a concentration-dependent fashion. The inhibitory effect of papaverine on IBa appeared to have both tonic and use-dependent components. In addition to the reduction of the maximal conductance of IBa, papaverine (20 microM) shifted the quasi-steady-state inactivation curve of IBa to more negative membrane potentials by approximately 10 mV. These effects of papaverine on IBa were completely reversible. Although it has been suggested that papaverine inhibited phosphodiesterase to increase intracellular cyclic AMP, phosphodiesterase inhibitors (theophylline, 500 microM, and 3-isobutyl-1-methylxanthine, 500 microM), isoproterenol (2 microM) and dibutyryl cyclic AMP (1 mM) did not affect IBa. Thus, papaverine inhibits IBa in a way independent of intracellular cyclic AMP. Papaverine also had inhibitory effects on other membrane currents (i.e., the voltage-dependent transient outward K+ current and the Ca(++)-activated oscillatory K+ current), which may result in an enhancement of the excitability of the cells. These results suggest that inhibition of the voltage-dependent L-type Ca++ channel is involved in the papaverine-induced relaxation of the tracheal smooth muscle.  相似文献   

19.
Fluoride (F-), a known stimulator of G-proteins, was used to examine the relationship between G-proteins and calcium channels (CaC) in rat vascular smooth muscle (VSM). Treatment of isolated rat tail artery helical strips with F- (2.5-20 microM) produced a Ca++-dependent contraction. In the absence of added AlCl3, subthreshold NaF shifted the KCl, as well as the arginine vasopressin and norepinephrine concentration-related tension curves to the left. Nifedipine and verapamil, known CaC blockers, inhibited the NaF-related contraction. AlCl3 (20 microM), which is required for G-protein stimulation by F-, strikingly potentiated the contractile response to F-. The NaF-induced contraction was relaxed by 3-isobutyl-1-methylxanthine as well as by forskolin and by dibutyryladenosine-cyclic AMP, and the effect therefore may be independent of cAMP. 45Ca-uptake was elevated by NaF, and partially blocked by nifedipine and verapamil. NaF also inhibited the basal and forskolin-stimulated cAMP production, suggesting that F- stimulated the putative Gi in the intact VSM cells. NaF stimulated accumulation of IP in a concentration-dependent manner, indicating that F- stimulated the putative G-protein Gp which couples various receptors to hydrolysis of phosphoinositides and mobilization of Ca++. These results indicate that NaF-induced vasoconstriction is related to the opening of the CaC in the plasma membrane and perhaps a subsequent entry of the extracellular Ca++ into the cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study is based on the hypothesis that isosorbide dinitrate (ISDN)-induced relaxation of coronary arterial smooth muscle is causally linked to formation of cyclic (c) GMP. The hypothesis requires the extent of relaxation to be correlated to both time-and concentration-dependent increases in coronary content of cGMP. Accordingly, studies were performed with bovine coronary arterial strips to determine the relationships among isometric force and coronary content of cGMP and cAMP with respect to time of exposure to and concentration of ISDN. Cyclic nucleotide levels were determined by radioimmunoassay. No change in cAMP levels was observed during ISDN-induced relaxation of KCl contracted strips. In sharp contrast, cGMP levels increased significantly with time of exposure and concentration of ISDN stimulation. Moreover, the addition of methylene blue, a reported inhibitor of guanylate cyclase, to the bathing medium significantly inhibited the relaxation and cGMP increase during ISDN stimulation. In addition, prolonged exposure to ISDN resulted in a redevelopment of force with a parallel decrease in cGMP content. The increase in cGMP during ISDN stimulation also occurs in the absence of depolarization by KCl and in an essentially Ca++-free medium. These data support the hypothesis that the relaxation of coronary arterial strips in response to ISDN stimulation is causally linked to cGMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号