首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
STUDY DESIGN: Coil springs were stretched and attached to produce a compressive force across the lumbar intervertebral discs of dogs for up to 53 weeks. OBJECTIVE: To test the hypothesis that compressive forces applied to the intervertebral disc for a long period of time cause disc degeneration in vivo in a dog model. SUMMARY OF BACKGROUND DATA: It is a commonly held belief that high forces applied to the intervertebral disc, and to joints in general, play a role in causing degeneration. METHODS: Coil springs were stretched and attached to produce a compressive force across the lumbar intervertebral discs (L3/L4) of 12 dogs. After up to a year, the dogs were killed, and their lumbar spines were removed and radiographed. The L3/L4 disc and the controls (T13/L1 and L4/L5) were excised and examined for visible signs of degeneration. The discs then were assessed using immunohistochemical analysis and enzyme-linked immunosorbent assay. Disc chondrocytes also were assayed for apoptosis. RESULTS: No obvious signs of degeneration in the discs (L3/L4) that had been under compression for up to a year could be observed. There was no disc bulging, anular fissures, or disc space narrowing. Some changes were observed at the microscopic level, although no thickening of the endplate was apparent. The enzyme-linked immunosorbent assay analysis provided significant data for all three regions of the disc (nucleus, inner anulus, and outer anulus). When comparing the compressed disc (L3/L4) with either of the control discs (T13/L1 and L4/L5), in the compressed disc: 1) the nucleus contained less proteoglycan and more collagen I and II; 2) the inner anulus contained less proteoglycan and collagen I; and 3) the outer anulus contained more proteoglycan and less collagen I. The collagen II differences for the inner and outer anulus were not significant. CONCLUSION: Compression applied to the lumbar intervertebral discs of dogs for up to a year does not produce degeneration in any visible form. It does produce microscopic changes and numerical changes, however, in the amounts of proteoglycan and collagen in the nucleus, inner anulus, and outer anulus. The present results add no credence to the commonly held belief that high compressive forces play a causative role in disc degeneration.  相似文献   

2.
Mechanical initiation of intervertebral disc degeneration   总被引:20,自引:0,他引:20  
Adams MA  Freeman BJ  Morrison HP  Nelson IW  Dolan P 《Spine》2000,25(13):1625-1636
STUDY DESIGN: Mechanical testing of cadaveric lumbar motion segments. OBJECTIVES: To test the hypothesis that minor damage to a vertebral body can lead to progressive disruption of the adjacent intervertebral disc. SUMMARY OF BACKGROUND DATA: Disc degeneration involves gross structural disruption as well as cell-mediated changes in matrix composition, but there is little evidence concerning which comes first. Comparatively minor damage to a vertebral body is known to decompress the adjacent discs, and this may adversely affect both structure and cell function in the disc. METHODS: In this study, 38 cadaveric lumbar motion segments (mean age, 51 years) were subjected to complex mechanical loading to simulate typical activities in vivo while the distribution of compressive stress in the disc matrix was measured using a pressure transducer mounted in a needle 1.3 mm in diameter. "Stress profiles" were repeated after a controlled compressive overload injury had reduced motion segment height by approximately 1%. Moderate repetitive loading, appropriate for the simulation of light manual labor, then was applied to the damaged specimens for approximately 4 hours, and stress profilometry was repeated a third time. Discs then were sectioned and photographed. RESULTS: Endplate damage reduced pressure in the adjacent nucleus pulposus by 25% +/- 27% and generated peaks of compressive stress in the anulus, usually posteriorly to the nucleus. Discs 50 to 70 years of age were affected the most. Repetitive loading further decompressed the nucleus and intensified stress concentrations in the anulus, especially in simulated lordotic postures. Sagittal plane sections of 15 of the discs showed an inwardly collapsing anulus in 9 discs, extreme outward bulging of the anulus in 11 discs, and complete radial fissures in 2 discs, 1 of which allowed posterior migration of nucleus pulposus. Comparisons with the results from tissue culture experiments indicated that the observed changes in matrix compressive stress would inhibit disc cell metabolism throughout the disc, and could lead to progressive deterioration of the matrix. CONCLUSIONS: Minor damage to a vertebral body endplate leads to progressive structural changes in the adjacent intervertebral discs.  相似文献   

3.
Cervical spine disorders such as spondylotic radiculopathy and myelopathy are often related to osteophyte formation. Bone remodeling experimental-analytical studies have correlated biomechanical responses such as stress and strain energy density to the formation of bony outgrowth. Using these responses of the spinal components, the present study was conducted to investigate the basis for the occurrence of disc-related pathological conditions. An anatomically accurate and validated intact finite element model of the C4-C5-C6 cervical spine was used to simulate progressive disc degeneration at the C5-C6 level. Slight degeneration included an alteration of material properties of the nucleus pulposus representing the dehydration process. Moderate degeneration included an alteration of fiber content and material properties of the anulus fibrosus representing the disintegrated nature of the anulus in addition to dehydrated nucleus. Severe degeneration included decrease in the intervertebral disc height with dehydrated nucleus and disintegrated anulus. The intact and three degenerated models were exercised under compression, and the overall force-displacement response, local segmental stiffness, anulus fiber strain, disc bulge, anulus stress, load shared by the disc and facet joints, pressure in the disc, facet and uncovertebral joints, and strain energy density and stress in the vertebral cortex were determined. The overall stiffness (C4-C6) increased with the severity of degeneration. The segmental stiffness at the degenerated level (C5-C6) increased with the severity of degeneration. Intervertebral disc bulge and anulus stress and strain decreased at the degenerated level. The strain energy density and stress in vertebral cortex increased adjacent to the degenerated disc. Specifically, the anterior region of the cortex responded with a higher increase in these responses. The increased strain energy density and stress in the vertebral cortex over time may induce the remodeling process according to Wolff's law, leading to the formation of osteophytes.  相似文献   

4.
R Sztrolovics  M Alini  J S Mort  P J Roughley 《Spine》1999,24(17):1765-1771
STUDY DESIGN: An analysis of proteoglycans of the intervertebral disc using immunoblotting of tissue extracts. OBJECTIVES: To investigate the changes in structure and abundance of fibromodulin and lumican in human intervertebral discs during aging and degeneration. SUMMARY OF BACKGROUND DATA: Fibromodulin and lumican are keratan sulfate proteoglycan constituents of the disc's extracellular matrix, whose interaction with collagen fibrils may contribute to the mechanical properties of the tissue. Changes in their abundance and/or structure that occur with aging and degeneration therefore may have an impact on disc function. METHODS: Lumbar intervertebral discs were obtained from individuals of different ages, and extracts of anulus fibrosus and nucleus pulposus were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting using antibodies specific for fibromodulin and lumican. RESULTS: The major changes in abundance observed with age were a decrease in fibromodulin in the adult nucleus pulposus and an increase in lumican in anulus fibrosus during early juvenile development. In addition, fibromodulin in the anulus fibrosus exhibited a structural change with increasing age, characterized by a shift toward the predominance of its glycoprotein form lacking keratan sulfate. Fibromodulin was more abundant in the anulus fibrosus than in nucleus pulposus at all ages, whereas lumican was much more abundant in nucleus pulposus than in anulus fibrosus in the young juvenile; in the adult, however, lumican was present in comparable levels in both tissues. With increasing degrees of degeneration, fibromodulin exhibited an increase in abundance. CONCLUSIONS: Growth, aging, and degeneration of the intervertebral disc are associated with changes in the abundance and structure of fibromodulin and lumican, which presumably influence the functional properties of the tissue.  相似文献   

5.
Edwards WT  Ordway NR  Zheng Y  McCullen G  Han Z  Yuan HA 《Spine》2001,26(16):1753-1759
STUDY DESIGN: The stress distributions within cadaveric lumbar intervertebral discs were measured for a range of loading conditions. OBJECTIVES: To examine the distribution of stress across the area of the intervertebral disc and to compare regional variations in peak stress during compression loading with various flexion angles. SUMMARY OF BACKGROUND DATA: The rate of disc degeneration and the occurrence of low back disorders increase with higher mechanical loading of the spine. The largest peak stresses occur in the anulus. METHODS: Human lumbar L2--L3 and L4--L5 cadaver functional spinal units were obtained and tested. The distribution of disc stress was measured using a pressure probe with loads applied, pure compression and compression with 5 degrees of either flexion or extension. RESULTS: Stress profiles were recorded across the intervertebral disc at a compressive force of 1000 N and each of the three flexion-extension angles. The highest values (2.99 +/- 1.31 MPa) were measured during extension-compression lateral to the midline of the disc in the posterior anulus. The pressure in the nucleus was relatively unchanged by flexion angle remaining about 1.00 MPa for a 1000-N compression. CONCLUSIONS: Pressure measurements of the cadaveric nucleus have been used to validate models of lumbar spine loading and to evaluate the risk of low back injury and disc herniation. Previous observations limited to midsagittal measurements of the nucleus did not identify the regions of highest stress. The highest values observed here within the posterolateral anulus correspond to common sites of disc degeneration and herniation.  相似文献   

6.
To study the relationships between the changes due to aging in lumbar intervertebral discs and the development of protrusion or prolapse, we carried out histological studies on operative specimens of thirty-one discs, of which twenty-two had been protruded and nine, prolapsed. The specimens were obtained during twenty-nine operations for herniation of a lumbar intervertebral disc in patients who were sixty years old or older. Changes in the anulus fibrosus were more extensive in the nine prolapsed discs than in the twenty-two protruded discs. Of the nine prolapsed discs, myxomatous degeneration, fibrosis, and swollen anular fibers were found in all nine, and cysts were seen in five. Of the twenty-two protruded discs, only five showed myxomatous degeneration; ten, fibrosis; one, a cyst; and sixteen, swollen fibers. For comparison, we also studied specimens that had been obtained at operation from twenty-one other patients, twenty to fifty-nine years old, who had a prolapsed disc. The anulus showed myxomatous degeneration in all twenty-one specimens, cysts in eight, and fibrosis in ten. In addition, we examined 368 autopsy specimens from people who had been between twenty-five and eighty-five years old at the time of death. In many of the subjects who had died in the sixth decade of life or later, we found that the orientation of the inner fiber bundles of the anulus fibrosus was reversed, so that they bulged inward. The reversal appeared to be the result of myxomatous degeneration of the middle fibers of the anulus, atrophy of the nucleus, and narrowing of the disc space. These histological findings suggest explanations for the predominance of protrusions of the nucleus pulposus in patients who are less than sixty years old and of prolapse of the anulus fibrosus in the few patients who are more than sixty years old who have herniation of an intervertebral disc.  相似文献   

7.
STUDY DESIGN: Relations between induced concentric tears in the sheep disc and the mechanics of the intervertebral joint and vertebral body bone were analyzed. OBJECTIVE: To examine the effect of concentric disc tears on the mechanics of the spine. SUMMARY OF BACKGROUND DATA: Degeneration of the intervertebral disc results in changes to the mechanics and morphology of the spine, but the effect of concentric disc tears is unknown. METHODS: In this study, 48 merino wethers were subjected to surgery, and discs were randomly selected for either a needlestick injury or induction of a concentric tear in the anterior and left anterolateral anulus. Sheep were randomly assigned to groups for killing at 0, 1, 3, 6, 12, and 18 months. From each sheep, two spine segments were mechanically tested: one with a needlestick injury and one with a concentric tear. Macroscopic disc morphology was assessed by three axial slices of the disc. Sagittal bone slices were taken from cranial and caudal vertebral bodies for histologic analysis. RESULTS: Induced concentric tears decrease the stiffness of intact spine segments in left bending and the disc alone in flexion. In all other mechanical tests, the needlestick injury had the same effect as the induced concentric tear. In the isolated disc, the disc stiffness at 6 months was increased for right bending, as compared with the response at 1 month. This was associated with increased anterior lamellar thickening and increased vertebral body bone volume fraction. CONCLUSIONS: Concentric tears and needlestick injury in the anterior anulus lead to mechanical changes in the disc and both anular lamellar thickness and vertebral body bone volume fraction. A needlestick injury through the anulus parallel to the lamellae produces progressive damage.  相似文献   

8.
9.
Kuga N  Kawabuchi M 《Spine》2001,26(17):E379-E384
STUDY DESIGN: In vitro experimental intervertebral disc ruptures of aged rats were examined histologically. OBJECTIVES: To clarify the mechanism of intervertebral disc herniations by microscopic investigation of ruptured discs. SUMMARY OF BACKGROUND DATA: Clinically, disc herniations have been classified into two types: extrusion and protrusion. However, the pathogenesis of protrusion type herniations has not yet been demonstrated by any studies. To clarify this issue, it is essential to establish an appropriate model producing disc herniations, and to examine the sequential changes in the structure of herniated discs. METHODS: Lumbar discs of 2-year-old rats were examined histologically and compared with human lumbar discs. To examine structural changes in discs subjected to repetitive motion stress, 400 repetitions of a sequence of flexion (30 degrees ) and axial rotation (6 degrees ) were applied in vitro to the lumbar discs of the animals. RESULTS: The microstructure of normal lumbar discs in aged rats was similar in many ways to the human lumbar discs in a 20- to 40-year-old adult. Of 10 discs subjected to repetitive stress, 4 were ruptured at the junction between the posterior anulus fibrosus and the sacral cartilage endplate. One had an extruded nucleus pulposus, and three had a protruded anulus fibrosus, which displayed disorganized structure containing widened and flaccid lamellae. CONCLUSIONS: The results from this study indicate that disc protrusion can be caused by disorganization of the ruptured annular lamellae, not by focal compression of the nucleus pulposus.  相似文献   

10.
Studies were carried out to demonstrate residual chymopapain activity in intervertebral discs after chemonucleolysis; protease assay, enzyme-linked immunosorbent assay, and immunohistochemical localization of the chymopapain in the disc tissue were done. Chymopapain, one milligram per level, was injected into the normal lumbar intervertebral discs of adult mongrel dogs and the discs were excised after two weeks. Proteolytically active chymopapain was still present in the extract of intervertebral disc at this time. The proteolytic activity was decreased by sulfhydryl inhibitors but not by inhibitors of metalloproteases or serine proteases. Protease and enzyme-linked immunosorbent assays showed that 0.60 +/- 0.48 per cent and 0.49 +/- 0.38 per cent of the original dose was present two weeks after the injection. Chymopapain was shown by immunohistochemical staining to be diffusely located throughout the extracellular matrix of the anulus fibrosus and the nucleus pulposus. Some cells, located mainly in the inner portion of the anulus, contained vacuoles filled with immunoreactive product.  相似文献   

11.
The human intervertebral disc acts as an osmotic system. Water, salt and other low-molecular substances penetrate the cartilage plates and anulus fibrosus. The content of water, sodium, potassium and ashes in different regions of 69 human lumbar intervertebral discs was examined before and after loading them with certain weights. Under load the disc looses water - anulus 11%, nucleus 8% - and gains sodium and potassium. The higher concentration of electrolytes in the disc after a long period of weight-bearing enlarge its osmotic absorptive forces and enable the disc to hold the rest-water also against a great amount of pressure. After reducing the pressure water is quickly reabsorbed and the disc gains height and volume. The pumping mechanism keeps up the nutrition and biomechanical function of the intervertebral disc.  相似文献   

12.
The intervertebral disc is a highly organized matrix laid down by relatively few cells in a specific manner. The central gelatinous nucleus pulposus is contained within the more collagenous anulus fibrosus laterally and the cartilage end plates inferiorly and superiorly. The anulus consists of concentric rings or lamellae, with fibers in the outer lamellae continuing into the longitudinal ligaments and vertebral bodies. This arrangement allows the discs to facilitate movement and flexibility within what would be an otherwise rigid spine. At birth, the human disc has some vascular supply within both the cartilage end plates and the anulus fibrosus, but these vessels soon recede, leaving the disc with little direct blood supply in the healthy adult. With increasing age, water is lost from the matrix, and the proteoglycan content also changes and diminishes. The disc-particularly the nucleus-becomes less gelatinous and more fibrous, and cracks and fissures eventually form. More blood vessels begin to grow into the disc from the outer areas of the anulus. There is an increase in cell proliferation and formation of cell clusters as well as an increase in cell death. The cartilage end plate undergoes thinning, altered cell density, formation of fissures, and sclerosis of the subchondral bone. These changes are similar to those seen in degenerative disc disease, causing discussion as to whether aging and degeneration are separate processes or the same process occurring over a different timescale. Additional disorders involving the intervertebral disc can demonstrate other changes in morphology. Discs from patients with spinal deformities such as scoliosis have ectopic calcification in the cartilage end plate and sometimes in the disc itself. Cells in these discs and cells from patients with spondylolisthesis have been found to have very long cell processes. Cells in herniated discs appear to have a higher degree of cellular senescence than cells in nonherniated discs and produce a greater abundance of matrix metalloproteinases. The role that abnormalities play in the etiopathogenesis of different disorders is not always clear. Disorders may be caused by a genetic predisposition or a tissue response to an insult or altered mechanical environment. Whatever the initial cause, a change in the morphology of the tissue is likely to alter the physiologic and mechanical functioning of the tissue.  相似文献   

13.
J Antoniou  V Arlet  T Goswami  M Aebi  M Alini 《Spine》2001,26(10):E198-E206
STUDY DESIGN: We measured concentrations of specific molecules reflecting matrix synthesis and degradation in normal and scoliotic intervertebral discs and endplates. OBJECTIVES: The aim of this work was to quantitate markers of matrix turnover in normal versus adolescent idiopathic scoliotic intervertebral discs and cartilaginous endplates. SUMMARY OF BACKGROUND DATA: Changes in the intervertebral disc and endplate composition have been implicated as possible etiologic factors in the pathogenesis of adolescent idiopathic scoliosis. To better understand this process, it is important to compare the turnover of matrix components in scoliotic and normal intervertebral disc and endplate tissues. This comparison may help to improve our understanding of the role that disc and endplate tissues may play in the induction and/or progression of idiopathic scoliosis. METHODS: Fifteen scoliotic and 17 normal intervertebral discs and endplates were analyzed for their water, collagen, proteoglycan, and protein content. In addition, newly synthesized aggrecan and collagen Types I and II were measured. Percent total denatured collagen was also determined. RESULTS: The total collagen content was significantly lower in the scoliotic anulus and endplate regions, whereas glycosaminoglycan (GAG) content was significantly lower in the scoliotic endplates and nucleus regions. Conversely, total protein content was significantly higher in scoliotic endplates and elevated in scoliotic nucleus regions. Water content was significantly lower in the scoliotic anulus and endplate regions. When comparing the concave and convex regions of scoliotic endplates, there was no significant difference in concentration of any matrix component. The major difference in the synthetic marker levels relates to the synthesis of Type II collagen, which was higher in the nucleus, anulus, and endplate regions of scoliotic discs than in the corresponding regions of normal tissues. By contrast, the percent total denatured collagen was significantly elevated in the nucleus of normal tissues compared with the scoliotic ones. CONCLUSIONS: The higher collagen Type II synthetic levels and increased total protein content with no matrix turnover suggest that scoliotic changes are due to an altered and ineffective synthetic response to a pathologic mechanical environment.  相似文献   

14.
目的 观察水通道蛋白-3(aquaporin-3)在人正常椎间盘中的表达及分布.方法 收集10例青年人因腰椎骨折行椎间融合手术摘除的正常椎间盘样本,运用免疫组织化学、逆转录-聚合酶链反应(RT-PCR)、 Western blot检测AQP3在椎间盘中的表达及分布.结果 免疫组织化学显示AQP3表达于椎体软骨终板类软骨细胞,髓核和纤维环未见表达;RT-PCR显示AQP3 mRNA在椎体软骨终板及髓核组织有表达;Western blot检测显示椎间盘组织在29×103左右有一特异性条带.结论 AQP3在人正常椎间盘中的表达及分布提示其可能参与椎间盘内液体平衡,对维持椎间盘组织的正常生理功能、在椎间盘退变的发病机制中可能有重要作用.  相似文献   

15.
Kusaka Y  Nakajima Si  Uemura O  Aoshiba H  Seo Y  Hirasawa Y 《Spine》2001,26(9):E174-E181
STUDY DESIGN: The movement of cross sections of the monofilament nylon threads inserted into the axially loaded intervertebral disc was traced with magnetic resonance imaging (MRI). This technique allowed the observation of the sequential solid phase displacement of the loaded intervertebral disc. OBJECTIVES: To clarify sequential solid phase displacement of the axially loaded intervertebral disc to elucidate the cause of centripetal fluid shift within a disc. SUMMARY OF BACKGROUND DATA: We already have reported that there is a centripetal fluid shift within the axially loaded intervertebral disc during the early phase of loading. We assumed that there should be an elaborate intradiscal matrix displacement that generates a pressure gradient within the disc to cause a centripetal fluid shift. METHODS: Thirteen freshly obtained bovine caudal intervertebral discs were prepared. Three to five monofilament nylon threads were inserted into each disc in the anterior-posterior direction to trace the intradiscal solid phase displacement on the midcoronal MR images. Sequential displacement of the disc matrix was recorded during a 294 N axial loading. RESULTS: Relatively large centrifugal expansion at the inner layer of the anulus fibrosus compared with less centrifugal expansion of the outer anulus fibrosus was observed in accord with gradual creep of the disc thickness. CONCLUSIONS: The uneven displacement of the intradiscal solid phase observed in the present study expels the fluid phase from the inner anulus fibrosus, thus resulting in accumulation of fluid phase in the nucleus pulposus. The present study suggests the presence of a mechanism that retains water within the normal intervertebral disc, in spite of an external load, because it forms a water-abundant nucleus pulposus, which is surrounded by an anulus fibrosus with decreased water permeability caused by fluid loss. A more detailed analysis is required to clarify topographic volumetric changes within the disc.  相似文献   

16.
STUDY DESIGN: A combined experimental and theoretical biomechanical study to quantify the mechanical properties of living cells of the porcine intervertebral disc. OBJECTIVES: To quantify zonal variations in the mechanical properties and morphology of cells isolated from the intervertebral disc. SUMMARY OF BACKGROUND DATA: Cellular response to mechanical stimuli is influenced by the mechanical properties of cells and of the extracellular matrix. Significant zonal variations in intervertebral disc matrix properties have been reported. No information is currently available on the corresponding regional variations in the mechanical properties of intervertebral disc cells, despite evidence of significant differences in cellular phenotype and biologic response to loading. METHODS: The micropipette aspiration test was used in combination with a three-parameter viscoelastic solid model to measure the mechanical properties of cells isolated from the anulus fibrosus, transition zone, and nucleus pulposus. RESULTS: Intervertebral disc cells exhibited viscoelastic solid behaviors. Highly significant differences were observed in the morphology, cytoskeletal arrangement, and biomechanical properties of the nucleus pulposus cells as compared with anulus fibrosus or transition zone cells. Cells of the nucleus pulposus were approximately three times stiffer and significantly more viscous than cells of the anulus fibrosus or transition zone. CONCLUSIONS: The findings of this study provide new evidence for the existence of two biomechanically distinct cell populations in the intervertebral disc. These differences in mechanical behavior may be related to observed differences in the cytoskeletal architecture between these cells, and may further play an important role in the development, maintenance, and degeneration of the intervertebral disc.  相似文献   

17.
In the adult mongrel dog, in vivo injection of chymopapain into the intervertebral disc resulted, at two weeks, in disc space narrowing. However, [35S]sulfate labeling and proteoglycan characterization demonstrate that the nucleus retains the ability to synthesize proteoglycans, although they were degraded rapidly by residual proteolytic activity. Three months following chymopapain treatment, the intervertebral dog disc shows that an increase in disc height, return of nuclear material, and proteoglycan aggregate is present. At six months following chymopapain treatment, proteoglycans of similar characteristics to normal canine intervertebral disc are identified with a glucosamine/galactosamine ratio approaching normal values. Biomechanically, the short-term (30-120 minutes) in vitro effects of chymopapain appear to be the same as the carrier causing increased disc height, stiffness values, and creep rates. In the vivo study, after three weeks, chymopapain-injected discs had significant reductions in disc height and compressive stiffness, but the creep rate was increased substantially. However, at three months postinjection, these biomechanical properties began to reverse and approached those of the uninjected controls. The observations reported in this study suggest that chymopapain has a profound but reversible effect on normal canine intervertebral disc. The radiographic narrowing of the intervertebral disc following chymopapain injection correlates with loss of proteoglycan content, structure, and biomechanical properties. The restoration of normal disc height following chymopapain injection is explained by reconstitution of normal intervertebral disc. EDTA and cysteine used alone have no discernable in vivo enzymatic effect on intervertebral disc proteoglycan biochemistry. Chemonucleolysis with chymopapain would appear less likely to alter permanently proteoglycan biochemistry and the biomechanical properties of the disc than surgical excision in experimental animals.  相似文献   

18.
STUDY DESIGN: Intervertebral disc cells were extracted from the surrounding matrix, and their metabolic activities and phenotypes were studied. OBJECTIVES: To compare the metabolic activities and phenotypes of cell populations extracted from the intervertebral discs of young rabbits with those of articular and growth plate chondrocytes from the same animals. SUMMARY OF BACKGROUND DATA: The phenotype of intervertebral disc cells has been poorly studied and still is debated. METHODS: The intervertebral discs as well as articular and vertebral growth plate cartilage of rabbits were digested enzymatically. The morphology of freshly isolated cells was examined. Their contents of collagen II and X mRNAs were determined by Northern blot analysis, and their sulfation activity by 35S-sulfate incorporation as chondrocytic markers. Cells were cultured at high density or low density and grown in primary culture. The stability of their phenotype was monitored by evaluating the collagen I and II mRNA ratio. The proteoglycans newly synthesized by the cells also were quantified, and their elution profile analyzed on Sepharose 2B columns. RESULTS: The anulus fibrosus cells were morphologically undistinguishable from articular chondrocytes. The nucleus pulposus contained mainly large vacuolated cells and a few smaller cells. All freshly extracted cells expressed different levels of collagen II mRNA. Anulus fibrosus and nucleus pulposus cells contained, respectively, 22% and 8% of collagen II mRNA compared with that found in articular or growth plate chondrocytes from the same animal. Only growth plate chondrocytes expressed collagen X. When anulus fibrosus cells were incubated for 48 hours at high density, they had collagen II mRNA contents similar to those of articular and growth plate chondrocytes, but synthesized five to six times fewer sulfated proteoglycans. When seeded at low density, anulus fibrosus cells divided more slowly than articular chondrocytes and incorporated four times fewer 35S-sulfate into proteoglycans. Their collagen II mRNA content was 2.75-fold lower than that of chondrocytes, and the procollagen alpha 1II/alpha 1I mRNA ratio was 3.1 for anulus fibrosus cells and 7 for chondrocytes. No collagen X mRNA was detected. When incubated for 48 hours at high density, the nucleus pulposus giant cells had four times less collagen II mRNA content than cartilage cells but synthesized the same amounts of sulfated proteoglycans. They did not divide during 21 days in culture and still contained collagen II mRNA but no collagen X mRNA. CONCLUSIONS: Findings showed that intervertebral disc cells all express cartilage-specific matrix proteins with quantitative differences, depending on their anatomic situation. It is suggested that anulus fibrosus cells are chondrocytic cells at a different stage of differentiation than articular and growth plate chondrocytes. The phenotype of nucleus pulposus cells still is unclear. They could be chondrocytic or notochordal. A definitive answer to this important question requires differentiating markers of notochordal cells.  相似文献   

19.
Background ContextDiscectomy is a common procedure for treating sciatica. However, both the operation and preceding herniated disc alter the biomechanical properties of the spinal segment. The disc mechanics are also altered in patients with chronic contained herniation. The biomechanical properties of the disc can potentially be restored with an elastomeric nucleus replacement implanted via minimally invasive surgery.PurposeThe purpose of this study was to determine whether the compressive characteristics of the intervertebral disc after a nucleotomy can be restored with an elastomeric nucleus replacement.Study DesignA finite element model of the L4–L5 intervertebral disc was created to investigate the effect of the implantation of an elastomeric nucleus replacement on the biomechanical properties of the disc under axial loading.MethodA L4–L5 physiologic intervertebral disc model was constructed and then modified to contain a range by volume of nucleotomies and nucleus replacements. The material properties of the nucleus replacement were based on experimental data for an elastomeric implant. The compressive stiffness, radial annular bulge, and stress distribution of the nucleotomy and nucleus replacement models were investigated under displacement-controlled loading.ResultsRemoval of nucleus pulposus from the physiologic disc reduced the force necessary to compress the disc 2 mm by 50%, altered the von Mises stress distribution, and reduced the outward radial annular bulge. Replacing the natural nucleus pulposus of the physiologic disc with an artificial nucleus reduced the force required to compress the disc 2 mm by 10%, indicating a restoration of disc compressive stiffness. The von Mises stress distribution and annular bulge observed in the disc with an artificial nucleus were similar to that observed in the physiologic disc.ConclusionThis study demonstrates that despite having different material properties, a nucleus replacement implant can restore the axial compressive mechanical properties of a disc after a discectomy. The implant carries compressive load and transfers the load into annular hoop stress.  相似文献   

20.
The effect of hydrostatic pressure on intervertebral disc metabolism.   总被引:17,自引:0,他引:17  
STUDY DESIGN: By the use of pressure vessels, hydrostatic pressure was applied to intervertebral disc cells cultured in an alginate. OBJECTIVE: To test the hypothesis that hydrostatic pressure directly affects the synthesis of collagen and proteoglycan by the intervertebral disc cells. SUMMARY OF BACKGROUND DATA: The influence of compression (both hydrostatic and mechanical) on chondrocyte metabolism was examined in a number of earlier studies. However, in most of these studies, articular cartilage, not intervertebral disc, was used, and in none of these was hydrostatic pressure applied to intervertebral disc cells cultured in alginate. METHODS: Fresh cells were harvested from the lumbar intervertebral discs of dogs. Before their suspension in an alginate gel system, the cells were plated and expanded until they reached confluence. Then, by use of the alginate gel system, the cells were exposed (for up to 9 days) to specific values of hydrostatic pressure inside two stainless steel pressure vessels. One vessel was kept at 1 MPa and the other at atmospheric pressure. The effects of 1 MPa were compared against atmospheric pressure by measuring the incorporation of [3H]-proline and [35S]-sulfate into collagen and proteoglycans, respectively, for the anulus cells and nucleus cells separately, and by determining whether this incorporation was reflected by changes in the levels of mRNA for aggrecan and Types I and II collagen. RESULTS: Comparisons with atmospheric pressure yielded the following findings: 1) In the incorporation studies, the nucleus and anulus cells exhibited a differential response to a hydrostatic pressure of 1 MPa. Collagen and proteoglycan syntheses were stimulated in the nucleus cells and inhibited in the anulus cells. 2) There was no significant increase in cell proliferation, as measured by DNA content, at 1 MPa for either the anulus or nucleus cells. 3) The mRNA levels of collagen (Col 1A1 and Col 2A1) and aggrecan increased at 1 MPa in both the nucleus and anulus cells. CONCLUSIONS: Hydrostatic pressure directly affects the synthesis of collagen and proteoglycan by the intervertebral disc cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号