首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The development of cerebellar afferents has been studied in the clawed toad, Xenopus laevis, from stage 46 to 64, with the horseradish peroxidase retrograde tracer technique. Already in stage 48 tadpoles, i.e. before the formation of the limbs, a distinct set of cerebellar afferents was found. Vestibulocerebellar (mainly arising bilaterally in the nucleus vestibularis caudalis) and contralateral olivocerebellar projections dominate. Secondary trigeminocerebellar (from the descending nucleus of the trigeminal nerve) and reticulocerebellar connections were also found. At stage 50, spinocerebellar projections appear originating from cervical and lower thoracic/upper lumbar levels. The cells of origin of the spinocerebellar projection can be roughly divided in two neuronal types: ipsilaterally projecting large cells, which show a marked resemblance to primary motoneurones (spinal border cells) and smaller contralaterally projecting neurons. Primary spinocerebellar projections from spinal ganglion cells could not be demonstrated.At stage 50, a possible anuran homologue of the mammalian nucleus prepositus hypoglossi was found to project to the cerebellum. In only one of the experiments labeled neurons were found in the contralateral mesencephalic tegmentum. At none of the studied stages a raphecerebellar projection could be demonstrated.It appears that already early in cerebellar development, before the formation of the limbs, most of the cerebellar afferents as found in adult Xenopus laevis are present.  相似文献   

2.
本文应用荧光素双标记法研究了后索核、孤束核、三叉神经脊束核向下丘和丘脑投射神经元的分布及其分支投射。作者将Propidium Iodide注入大白鼠右侧丘脑,Bisbenzimide注入右侧下丘,结果如下:楔束核内被标记的神经元中有88.2%向丘脑投射,它们位于核的主部;11.2%向下丘投射,它们在尾侧主要位于核的边缘部,向吻侧(至闩平面)主要位于核的背外侧端。薄束核内被标记的神经元中向下丘投射者(10.9%)与向丘脑投射者(86.7%)混杂在一起。在此两核内仅有极少量分支投射的双标神经元。孤束核和三叉神经脊束核内被标记的神经元中约有2/3投向丘脑,1/3投向下丘,未见分支投射的双标神经元。  相似文献   

3.
Antinociceptive effects elicited from the midbrain may involve both ascending and descending projections from the periaqueductal gray and dorsal raphe nucleus. To investigate the relationship between these different efferent pathways in the rat, we performed a double-labeling study using two retrograde tracers, colloidal gold-coupled wheatgerm agglutinin-apo horseradish peroxidase and a fluorescent dye. One tracer was microinjected in the medullary nucleus raphe magnus; the second was injected into one of several regions rostral to the periaqueductal gray that have been implicated in nociceptive and antinociceptive processes. The results can be grouped into two categories. First, injections into the ventrobasal thalamus, lateral hypothalamus, amygdala, and cerebral cortex labeled neurons in the dorsal raphe nucleus but not in the periaqueductal gray. Up to 90% of these projection neurons were serotonin immunoreactive, and up to 17% were also retrogradely labeled from the nucleus raphe magnus. Second, only injections into the ventrobasal hypothalamus (which included the beta-endorphin-containing arcuate neurons) or into the medial thalamus labeled neurons in the periaqueductal gray itself. Injections into the medial thalamus, but not into the ventrobasal hypothalamus, also labeled neurons in the dorsal raphe nucleus. Up to 20% of the neurons retrogradely labeled from these regions were also retrogradely labeled from nucleus raphe magnus. The presence of large populations of rostrally projecting periaqueductal gray neurons that collateralize to the nucleus raphe magnus implies that activity in ascending projections necessarily accompanies any activation of the periaqueductal gray-nucleus raphe magnus pathway. Possibly, projections from the medial thalamus and medial hypothalamus mediate antinociceptive effects that complement descending inhibition. Finally, possible antidromic activation of these pathways must be considered when interpreting the results of electrical brain stimulation studies.  相似文献   

4.
The projections from the medullary and spinal dorsal horns to the dorsolateral pons were investigated in the cat utilizing both the retrograde and anterograde transport of a wheat germ agglutinin-horseradish peroxidase complex and the retrograde transport of the fluorescent dyes Fast Blue and Nuclear Yellow. After injections of wheat germ agglutinin-horseradish peroxidase into the area surrounding the brachium conjunctivum, numerous neurons were labeled ipsilaterally near levels of the obex in the paratrigeminal nucleus. Such neurons were located in connected pockets of neuropil located within the spinal trigeminal tract and along its medial edge. Most of the neurons labeled in the dorsal horns after such injections were found in lamina I. Those found in the medullary dorsal horn were mostly ipsilateral to the injection while those in the spinal dorsal horn were found bilaterally. Some labeled neurons were also found in lamina V of both the medullary and spinal dorsal horns bilaterally. When the injection was centered in either the medial parabrachial nucleus or the Kolliker-Fuse nucleus, a greater number of neurons were labeled ipsilaterally in lamina V of the medullary dorsal horn. Since neurons in lamina I of the medullary dorsal horn also project to the medial thalamus, fluorescent dyes were used to determine if the same neuron might project to both targets. Fast Blue was first injected into either the peribrachial area or the medial thalamus. After an appropriate period, Nuclear Yellow was injected into that target not injected first with Fast Blue. The injection of Nuclear Yellow was always placed on the side of the brain opposite to the first injection. Both dyes were transported retrogradely and were found in neurons located in lamina I of the medullary dorsal horn. However, no double-labeled neurons were seen. In general those labeled after injections of the medial thalamus were more superficial than those labeled after injections of the dorsolateral pons. The anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine the termination of the projections from neurons in the medulary dorsal horn and the cervical spinal cord to the peribrachial area. After injections into these areas a moderate to sparse labeling of the lateral parabrachial nucleus and the Kolliker-Fuse nucleus was seen. It was mostly ipsilateral in cases with injections of the medullary dorsal horn but was bilateral following injections into the cervical enlargement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Summary Branching neurons with descending propriospinal collaterals and ascending collaterals to the dorsal medulla, the thalamus and the tectum were studied in the rat's cervical spinal cord (C1–C8), using the retrograde fluorescent double-labeling technique: Diamidino Yellow Dihydrochloride (DY) was injected in the cord at T2, True Blue (TB) was injected in the brain stem. DY-labeled descending propriospinal neurons were present in all laminae, except lamina IX. They were concentrated in lamina I, laminae IV to VIII, and in the lateral spinal nucleus, LSN. TB-labeled neurons projecting to the dorsal medulla were concentrated in lamina IV and the medial parts of laminae V and VI (probably representing postsynaptic dorsal column — PSDC — neurons), but were also present in lamina I, the LSN, the lateral dorsal horn, and in laminae VII and VIII. DY-TB double-labeled neurons giving rise to both a descending propriospinal collateral and an ascending collateral to the dorsal medulla were intermingled with the TB single-labeled neurons. About 4% of the descending propriospinal neurons gave rise to an ascending collateral to the dorsal column nuclei; these double-labeled cells constitute a sizable fraction (10%) of the PSDC neurons. TB-labeled spinothalamic and spinotectal neurons were located in lamina I, the lateral cervical nucleus (LCN), the LSN, the lateral lamina V, lamina VII and VIII, lamina X and in the spinal extensions of the dorsal column nuclei, predominantly contralateral to the TB injections. DY-TB double-labeled neurons were present throughout C1–C8 in the LSN, lateral lamina V, lamina VIII, ventromedial lamina VII, and lamina X. Only very few were observed in lamina I and the LCN, and none in the spinal extensions of the dorsal column nuclei. The double-labeled neurons constituted only a minor fraction of all labeled neurons; 3–5% of the spinothalamic neurons and about 1–7% of the spinotectal neurons were double-labeled. Conversely, only about 1% of the labeled descending propriospinal neurons gave rise to an ascending spinothalamic collateral, and even fewer (0.1 to 0.6%) to a collateral to the dorsal midbrain. The LSN displayed the highest relative content of branching neurons. Up to 20% of its ascending spinothalamic and spinotectal neurons and up to 8% of its descending propriospinal neurons were found to be branching neurons, indicating that the LSN constitutes an unique cell-group in the rat spinal cord.  相似文献   

6.
Using the retrograde horseradish peroxidase technique, we have examined the distribution of labeled thalamic-, spinal- and cerebellar-projecting neurons in the trigeminal sensory nuclei of the cat.Injections into the nucleus ventralis posterior of the thalamus resulted in labeling of neurons in lamina I (subnucleus zonalis), the deeper part of lamina IV (the subhucleus magnocellularis) of the nucleus caudalis and in lamina V (the lateral extension of the nucleus medullae oblongatae centralis) on the contralateral side. A very large number of labeled small neurons were observed mainly in the caudal part of the nucleus interpolaris and in the ventral division of the principal sensory nucleus on the contralateral side and in the dorsal division of the principal sensory nucleus on the ipsilateral side.Injections into the known projection areas of the cerebellar cortex labeled mainly ipsilaterally the trigeminocerebellar neurons in a restricted ventrolateral area of lamina IV of the nucleus caudalis at its rostral level and in lamina V. Many labeled neurons were also observed in the nucleus interpolaris. Although the distribution overlapped with that of the trigeminothalamic neurons, the greatest majority were concentrated in its rostral part where the trigeminothalamic neurons were very small in number. In addition, labeled neurons were observed in the rostral part of the nucleus oralis and the ventralmost part of the ventral division of the principal sensory nucleus. No labeled neurons were observed in the dorsal division of the principal sensory nucleus and the mesencephalic nucleus.The trigeminospinal neurons were labeled mainly ipsilaterally following injections into the upper cervical cord. They were located in laminae I and III, the deeper part of lamina IV of the nucleus caudalis and in lamina V. Only scattered labeled neurons were found in the nucleus interpolaris. The number of labeled neurons increased in the nucleus oralis at the level of the superior olive. They tended to be distributed around or dorsal to the groups of the trigeminothalamic neurons at the caudal part of the principal sensory nucleus. No neurons of the principal sensory nucleus appeared to project to the spinal cord. Based on the large size and location, the trigeminospinal neurons could be differentiated from the other projection neurons in the nucleus oralis.The present study demonstrates that the trigeminal sensory nuclei are composed of groups of neurons with different projections, since the main aggregations are localized at different levels. However, it should be examined whether the neuronal groups, which are labeled from the different structures in similar locations, are composed of individual neurons projecting to more than one of these structures.  相似文献   

7.
The location of neurons in the caudal medulla oblongata that project to the superficial or deep dorsal horn was studied in the rat, by means of retrograde labelling from confined spinal injection sites. The tracer cholera toxin subunit B was injected into laminae I–III (fuve rats) or I–V (three rats) at C4–7 spinal segments. Neurons projecting to the superficial dorsal horn were located in the dorsomedial part of the dorsal reticular nucleus ipsilaterally, the subnucleus commissuralis of the nucleus tractus solitarius bilaterally, and a region occupying the lateralmost part of the ventrolateral reticular formation between the lateral reticular nucleus and the caudal pole of the spinal trigeminal nucleus, pars caudalis, bilaterally. Neurons projecting to the deep dorsal horn, which were only labelled when laminae I–V were filled by the tracer, occurred in the dorsomedial and ventrolateral parts of the dorsal reticular nucleus and in the ventral reticular nucleus bilaterally. A few cells were located in the above described lateralmost portion of the ventrolateral reticular formation bilaterally and in the ventral portion of the ipsilateral cuneate nucleus. In the light of previous data demonstrating that dorsal horn neurons project to the dorsal reticular nucleus, the ventrolateral reticular formation, and the nucleus tractus solitarius, and that neurons in these three medullary regions are involved in pain inhibition at the spinal level, the descending projections demonstrated here suggest the occurrence of spino-medullary-spinal loops mediating the analgesic actions elicited in each nucleus upon the arrival of nociceptive input from the dorsal horn.  相似文献   

8.
Summary The central projections of primary afferent fibers of the greater splanchnic nerve of the rat were investigated using the transganglionic horseradish peroxidase transport technique. In addition, the corresponding spinal ganglion cells and the preganglionic sympathetic neurons were demonstrated. For comparing visceral and somatic afferents, intercostal nerve afferents were labelled by the same technique.Splanchnic afferent dorsal root ganglion cells were found at segments T3 to T13 ipsilaterally, with the greatest density at T8 to T12. Labelled cells represented about 10%–15% of all neurons in the ganglia at maximal projection levels. They were randomly distributed within individual ganglia. The great majority were medium to small sized and round to slightly oval in shape.In the spinal cord, labelled visceral afferent axons were found maximally at T8 to T11, but could be detected in decreasing density up to T1 and down to L1. They were distributed over Lissauer's tract and the dorsal funiculus to a medial and lateral collateral pathway (MCP and LCP, respectively). The MCP, somewhat more prominent than the LCP, was destined primarily to clustered presumptive terminal fields in medial lamina I and outermost lamina IIa. Only a few axons continued further to laminae V and X. Splanchnic afferent axons, most likely derived from the MCP, formed a longitudinal bundle ventral to the central canal. The LCP consisted of more or less well-defined axon bundles emanating from the lateral Lissauer's tract and curving round the lateral edge of the dorsal horn and through the dorsolateral funiculus. Presumptive terminal sites of LCP axons are the lateral laminae I and IIa, the nucleus of the dorsolateral funiculus and the dorsal part of lamina V. A few LCP axons were seen in the vicinity of lateral dendrites of preganglionic sympathetic axons. Visceroafferent terminals were absent from laminae IIb–IV and VII. The possible consequences of the MCP/LCP duality for the central connections of splanchnic afferents are discussed. Some splanchnic afferents ascended to the gracile and cuneate nuclei, and rarely to the spinal trigeminal nucleus.These results fit into the general concept of visceroafferent terminal organization that has emerged during the last few years. Differences to other reports in the detailed arrangement of fibers and terminals are discussed.Somatoafferent cell bodies represented the vast majority of neurons in the respective spinal ganglia. Cell sizes encompassed the whole range from very small to very large without a clear predominance of one particular size class. Cell shapes of somatic neurons were more variable than those of visceral afferent neurons. Somatic afferent fibers and presumptive terminals in the spinal cord are distributed ipsilaterally to dorsal horn laminae I–V, most heavily II–IV, to the nucleus dorsalis Clarke, to the ventral horn, and also sparsely to the dorsal horn contralaterally.Labelled preganglionic sympathetic neurons were found in segments T3–T13. The vast majority was located in the intermediolateral nucleus. Fewer neurons occurred in the intercalated nucleus, and occasionally a neuron was labelled in the dorsal grey commissure.Parts of this study have been presented in abstract form at the 8th ENA meeting in Den Haag, September 1984Dedicated to Prof. Dr. W. Zenker on occasion of his 60th birthday  相似文献   

9.
Interconnections between the dorsal column nucleus and the cerebellum were examined in one group of reptiles, Caiman crocodilus. After anterograde tracer injections into the dorsal column nucleus, efferents terminated nearly exclusively in the white matter and ventral portion of the granule cell layer of the ipsilateral cerebellum. Subsequent to deposition of a retrograde tracer into the cerebellum, neurons in the central and ventral half of the dorsal column nucleus were labeled. When compared with the origin of midbrain and spinal cord projecting cells in Caiman, cerebellar projecting neurons arose from a more rostral location in the dorsal column nucleus than did neurons that terminated in either of these two other targets. The results of the present and previous experiments suggest that the dorsal column nucleus in this reptilian group is organized into sectors based on efferent target in a fashion similar to what has been described in certain mammals. Furthermore, the presence of this circuit in crocodilians and turtles suggests that his pathway from the dorsal column nucleus to the cerebellum arose early in amniote evolution.  相似文献   

10.
The location of sensory, somatic, and autonomic neurons projecting to the pig cremaster muscle (CM) was studied by means of the retrograde neuronal tracer Fast Blue (FB) technique. FB was randomly injected in the left CM of four impuberal pigs and serial sections of sensory and autonomic ganglia and spinal cord were examined under a fluorescence microscope. Additionally, some indications about the number and size of labeled neurons were given. Sensory pseudounipolar somata were located ipsilaterally in the L2-L6 and S1-S2 dorsal root ganglia, their total number ranging between 125 and 194, their mean diameter between 24 and 89 microm. Somatic multipolar motoneurons were located ipsilaterally in the L2-L4 neuromeres of the spinal cord, their total number ranging between 53 and 169, their mean diameter between 29 and 53 microm. Autonomic multipolar paravertebral ganglia neurons were located ipsilaterally from L1 to S4 and contralaterally from L2 to S2. Their total number ranged from 2,015 to 3,067 and their mean diameter between 25 and 55 microm. The multipolar caudal mesenteric ganglia neurons were located bilaterally, their total number ranging between 14 and 1,408 and their diameter from 22 to 39 microm. In two subjects only, multipolar neurons were also found ipsilaterally in the microganglia of pelvic plexus (2 and 13 neurons). Their mean diameter ranged between 28 and 54 microm. Our study documented that the CM-projecting neurons were located at different neural levels, with a predominance in the autonomic ganglia.  相似文献   

11.
应用HRP和荧光金标记技术,在荧光显微镜下观察了猫骶體“內脏面”的传出神经元和二级传入神经元的分布?咀偌磷⑷肱枭窬?标记的骶髓副交感节前神经元主要分布于同侧中间带外侧核,由它组成的骶髓副交感核在以S2为中心的两个骶髓节段内(有时为三个),形成长约6-10mm的细胞柱。在横切面上,核的中段以上分为位于Ⅶ层外侧缘的外侧带和位于Ⅴ层的背侧带,但在核的尾侧段则二者融合为一。中介核和中间带内侧核也存在少量逆标神经元。示踪剂注于臂旁外侧核或Barrington核(一侧或双侧)后,逆标的盆内脏二级传入神经元主要存在于骶髓中间带外侧核和骶髓后连合核,在中间带外侧核位于两团传出神经元之间的中间带,但在核的尾侧段则位于骶髓副交感核的背外侧部,个别细胞混杂于副交感节前神经元之间,中介核和中间带內侧核也有少量二级传入神经元分布?送?相当数量的盆内脏二级传入神经元位于后角Ⅰ层。本文结果证明猫骶髓中间带外侧核至少由两种不同性质的神经元即骶髓副交感节前神经元和盆内脏二级传入神经元组成,两者在中间带外侧核区有明确的定位分布,因此,可将骶髓中间带外侧核划分为传出亚核和传入亚核,传统上笼统地将骶髓副交感核等同于中间带外侧核是不恰当的。  相似文献   

12.
Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway   总被引:3,自引:0,他引:3  
In mammals, sensory projection pathways are provided by just three classes of spinal interneuron that develop from the roof-plate. We asked whether similar sensory projection interneurons are present primitively in a developing lower vertebrate where function can be more readily studied. Using an immobilized Xenopus tadpole spinal cord preparation, we define the properties and connections of spinal sensory projection interneurons using whole cell patch recordings from single neurons or pairs, identified by dye filling. Dorsolateral interneurons lie in the tadpole equivalent of the spinal dorsal horn, and have dorsally located dendrites and an ipsilateral ascending axon that projects into the midbrain. These neurons receive direct, mainly AMPA receptor (AMPAR)-mediated, excitation from skin touch sensory neurons. They in turn produce AMPAR and N-methyl-d-aspartate receptor (NMDAR)-mediated excitation of spinal locomotor pattern generator neurons rostrally on the same side of the cord. During swimming, they receive glycinergic modulatory inhibition from ascending interneurons in the spinal locomotor central pattern generator. We conclude that spinal dorsolateral interneurons are a primitive class of excitatory sensory projection neurons activated by ipsilateral cutaneous afferents and carrying excitation ipsilaterally and rostrally as far as the midbrain to initiate or accelerate swimming.  相似文献   

13.
将逆行追踪剂荧光金分别注射到三叉神经感觉主核、三叉神经脊束核吻侧亚核和极间亚核,观察到尾侧亚核Ⅰ~Ⅴ层的神经元均向同侧上述核团发出上行投射。值得注意的是尾侧亚核Ⅱ层(胶状质)也有神经元向上述各核团投射。结合免疫荧光组织化学研究表明,在尾侧亚核浅层(Ⅰ、Ⅱ层)约10%~30%荧光金逆标神经元呈calbindin-D28k样阳性.而在浅层仅偶见荧光金逆标神经元呈parvalbumin样阳性者。本研究的结果进一步支持Ⅱ层神经元有传出投射的观点,也提示calbindin-D28k样阳性神经元和parvalbumin样阳性神经元在尾侧亚核浅层可能分别代表着具有不同特性的两类神经元。  相似文献   

14.
The spinal projections from the raphe-associated brainstem areas containing serotonergic neurons were studied with aldehyde-induced fluorescence in combination with the retrograde fluorescent tracer True Blue in the rat. This technique makes it possible to determine simultaneously the projections of individual neurons and to detect whether serotonin is present in the same neurons. After tracer injections into the spinal cord retrogradely labeled serotonergic and non-serotonergic neurons were found in the medullary raphe nuclei and adjacent regions and to a lesser extent in association with the dorsal and median raphe nuclei in the mesencephalon. Large True Blue injections that covered one side of the spinal cord at mid-cervical level labeled about 60% of the ipsilaterally situated serotonergic neurons in the medullary raphe regions while the corresponding figure contralaterally was about 25%. On both sides a larger number of labeled non-serotonergic neurons were found; these were sometimes located dorsal to, but often intermingled with, the serotonergic cells. While the serotonergic projection from the mesencephalon could not be labeled from injections below cervical levels, the labeling in more caudal brainstem regions exhibited only minor variations depending on the rostrocaudal level of the spinal segment injected. Furthermore, quantitative data from injections at different levels indicate that the majority of the spinal-projecting neurons traverse most of the length of the cord. Summarizing the results obtained from small injections restricted to subregions of the cord we feel that it is possible to distinguish three fairly distinct pathways for spinal projections from the medullary raphe and adjacent regions: The dorsal pathway originates mainly from cells in the caudal pons and rostral medulla oblongata (rostral part of nucleus raphe magnus, nucleus raphe magnus proper, nucleus reticularis gigantocellularis pars alpha and nucleus paragigantocellularis). This pathway, which contains a large non-serotonergic component, descends through the dorsal part of the lateral funiculus and terminates mainly in the dorsal horn at all spinal cord levels. The intermediate pathway is largely serotonergic with its cell bodies located within the arcuate cell group (situated just ventral and lateral to the pyramids very close to the ventral surface of the brainstem) and in the nucleus raphe obscurus and pallidus and terminates in the intermediate grey at thoracolumbar and upper sacral levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
Previous studies showed that ipsilaterally projecting dorsal horn dorsal spinocerebellar tract (dh-DSCT) neurons located outside Clarke's column in mid- and caudal-lumbar segments of the spinal cord receive different afferent inputs. Here, we examined, using extracellular recordings in anaesthetized cats, whether there are also input differences to these populations of dh-DSCT neurons from: (a) the spinocervical tract (SCT), estimated by stimulation of the ipsilateral dorsolateral funiculus at cervical cord C3 and rostral C1, below and above the termination of SCT axons in the lateral cervical nucleus (LCN), and (b) descending/ascending fibres activated by electrical stimulation at rostral C1. Seventy percent (21/30) of the lower-lumbar (L6-L7) dh-DSCT neurons received significantly greater excitation from C3 than rostral C1, whereas only 17% (5/30) of the mid-lumbar (L5) dh-DSCT neurons had greater responses from C3 than rostral C1. Inhibition of background activity was seen in 30% of the lower-lumbar neurons, but only in 3% of mid-lumbar neurons. These findings suggest that lower-lumbar dh-DSCT neurons are much more likely, than mid-lumbar ones, to be influenced by the SCT and by systems descending from the brain, LCN and/or ascending systems. The experiments provide further evidence for differences in input to the subpopulations of dh-DSCT neurons.  相似文献   

17.
Quantitative and qualitative analysis of crossed vs uncrossed projections from the substantia nigra, entopeduncular nucleus and individual cerebellar nuclei to the thalamus was undertaken in nine adult cats using retrograde labeling with horseradish peroxidase and fluorescent dyes. The results indicate that about 90% of entopeduncular nucleus neurons and 50% of substantia nigra neurons give rise to ipsilateral projections to the thalamus whereas the contralateral component of these projections originates from about 10 and 7% neurons of entopeduncular nucleus and substantia nigra, respectively. Some of the fibers constituting the contralateral component are represented by branching axon collaterals of the neurons projecting ipsilaterally. In the basal ganglia thalamic projection, its minor component (contralateral) targets the ventral anterior and ventral medial nuclei the same as its major component (ipsilateral). However, some preferential distribution of the contralateral projections to the ventral medial nucleus appears to exist. In regard to the cerebellothalamic projections it was found that about 90% of neurons located in the dentate and interpositus nuclei and 50% of neurons in the fastigial nucleus project to the contralateral thalamus while 16% of dentate nucleus neurons and 40% of fastigial nucleus neurons give rise to the ipsilateral cerebellothalamic projections. A considerable number of ipsilateral cerebellothalamic fibers are represented by divergent axon collaterals of the same neurons projecting to the contralateral thalamus. The cerebellothalamic projections from all cerebellar nuclei including the fastigial nucleus are targeted primarily to the ventral lateral nucleus both contra- and ipsilaterally. The ventral medial nucleus receives bilateral input from the fastigial nucleus which originates from about one quarter of the thalamus projecting neurons in this nucleus. Of all other cerebellar nuclei only the dentate nucleus projects to the ventral medial nucleus and this projection is exclusively contralateral.  相似文献   

18.
Termination and cells of origin of the ascending intranuclear fibers in the spinal trigeminal nucleus were studied with the anterograde and retrograde horseradish peroxidase (HRP) techniques in the cat.HRP injections into the nucleus caudalis labeled many axons ascending ipsilaterally within the trigeminal spinal nucleus. These fibers gave off collaterals to the nucleus interpolaris and oralis, and the ventral part of the principal sensory nucleus. HRP injections into the principal sensory nucleus labeled ipsilaterally many small neurons in the caudal portion of the nucleus interpolaris and in laminae III and IV of the nucleus caudalis. A few neurons were labeled in laminae I and V.  相似文献   

19.
Postsynaptic dorsal column pathway of the rat. I. Anatomical studies   总被引:2,自引:0,他引:2  
As one of a series of studies of the ascending spinal cord pathways that might be involved in nociception in the rat, we have examined the projection to the dorsal column nuclei that originates in the spinal cord dorsal horn using the retrograde transport of horseradish peroxidase (HRP). This projection in other animals has been called the postsynaptic dorsal column (PSDC) pathway. Small iontophoretic injections of HRP into the cuneate nucleus (CN) labeled more than 350 neurons in alternate sections within the ipsilateral gray matter of segments C6-8. Fewer than 25 neurons were labeled in L4-6 by injections into CN. Injections of HRP confined to the gracile nucleus (GN) labeled more than 200 neurons within a narrow band extending across the ipsilateral dorsal horn subjacent to substantia gelatinosa of L4-6. Fewer than 10 cells were labeled in C6-8 by such injections. Labeling in lumbar neurons following injections into GN was prevented by transection of the dorsal columns at T10, T8, or C2. Thus, neurons labeled by such injections ascend entirely within the dorsal columns. Lesions of the dorsal columns in C2 reduced the number of labeled neurons in the cervical cord following CN injections by approximately 90%. Combined lesions of the dorsal columns and ipsilateral dorsal lateral funiculus (DLF) reduced the number of cells labeled in C6-8 by approximately 98%. Thus, the majority of labeled neurons in the cervical enlargement project to CN via the dorsal columns; a small secondary component of the cervical projection to CN appears to ascend within the DLF. To compare the relative sizes of the projections to the dorsal column nuclei from PSDC neurons and dorsal root ganglion cells (DRG), labeled neurons were counted in the gray matter of the cervical and lumbar enlargements and the corresponding DRG. In the four animals so examined, PSDC neurons constituted over 38% of the neurons that projected to CN and approximately 30% of the cells that projected to GN. These findings indicate that the PSDC projection of the rat is capable of providing a large somatotopically organized input to the dorsal column nuclei.  相似文献   

20.
The amygdaloid central nucleus and the pontine parabrachial nucleus receive direct, ascending projections from autonomic regulatory nuclei of the dorsal medulla and are recognized as important components of a forebrain system which contributes to autonomic regulation. The present study was designed to provide more detailed information on the anatomical organization of this ascending system in the rabbit by determining (a) the extent to which separate populations of neurons within the solitary complex project to the central nucleus and parabrachial nucleus, (b) the topographical distribution of the projections of the solitary complex within the amygdaloid central nucleus and parabrachial nucleus and (c) the extent to which projections from the solitary complex to the parabrachial nucleus terminate in the region of origin of projections from the parabrachial nucleus to the amygdaloid central nucleus.

A fluorescent dye, double retrograde-labeling technique demonstrated that separate populations of neurons in the solitary complex projected to the amygdaloid central nucleus and parabrachial nucleus. Neurons of both populations were more heavily concentrated within the caudal two thirds of nucleus of the solitary tract and were most numerous within the commissural, medial and dorsomedial subnuclei. Labeled neurons were also located within the dorsal motor nucleus of the vagus nerve. Autoradiographic experiments demonstrated that injections of amino acids into the solitary complex resulted in terminal labeling in the central nucleus. This labeling extended rostrally into the adjacent sublenticular substantia innominata and lateral component of the bed nucleus of the stria terminalis. Label was also observed within the lateral, medial, and Kolliker-Fuse regions of the parabrachial nucleus. A particularly dense field was observed overlying cells located within the ventrolateral region of the lateral parabrachial nucleus. This region contained the majority of labeled neurons within the parabrachial nucleus following fluorescent dye injections into the central nucleus. Furthermore, injections of amino acids into this region resulted in terminal labeling within the central nucleus, with a particularly dense area observed within the medial aspect of the nucleus.

The results demonstrate that separate populations of neurons within the solitary complex of the rabbit project to the central amygdaloid and parabrachial nuclei and that the majority of these are located within the caudal two-thirds of the complex. Furthermore, the results suggest that the solitary complex projects both directly and indirectly, primarily via the lateral parabrachial nucleus, to the central amygdaloid nucleus. These projections offer an anatomical substrate by which visceral afferent information may influence the limbic forebrain.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号