首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Detailed analysis of urine from two strains of rats and mice dosed po with trichloroethylene at four doses from 10 to 2000 mg/kg failed to detect any major species or strain differences in the metabolism of trichloroethylene. Although a greater proportion of the dose was metabolized in mice than in rats, the relative proportions of the major metabolites were very similar in both strains and were unaffected by the dose amount. Analysis of the same urine samples for minor metabolites failed to establish a major species difference. Small amounts of dichloroacetic acid (less than 1% of the dose) were present in both rat and mouse urine and were not considered significant. Monochloroacetic acid accounted for less than 0.1% of the dose. Daily dosing of trichloroethylene (1000 mg/kg po) for 180 days did not induce the overall metabolism of trichloroethylene but did double the urinary excretion of trichloroacetic acid. This finding was accompanied by an equivalent percentage decrease in the concentration of trichloroethanol. CO2 has been shown to be a major metabolite of trichloroacetic acid, suggesting that this is the source of trichloroethylene-derived CO2. Trichloroacetic acid was also excreted in bile in both rats and mice suggesting possible conjugation of this metabolite in the liver. Very little evidence was found for the formation of chemically reactive species from trichloroethylene in either rats or mice and none that could be the basis of a major species difference. The increased rate of metabolism in the mouse, the resulting high blood concentrations of trichloroacetic acid, and stimulation of hepatic peroxisome proliferation in this species appears to be the major species difference possibly related to tumor formation in the liver. The conjugation of trichloroacetic acid and its metabolism to CO2 may be related to peroxisome proliferation.  相似文献   

4.
The elimination of radioactivity in two strains of rats and mice following a single po dose of trichloro[14C]ethylene at dose levels from 10 to 2000 mg/kg has shown a marked dose dependence in rats but not in mice. The metabolism of trichloroethylene in the mouse was linear over the range of doses used, whereas in the rat it became constant and independent of dose at 1000 mg/kg and above. At the 10-mg/kg dosage, both species metabolized trichloroethylene almost completely, 60% of the dose being excreted in urine with only 1 to 4% being eliminated unchanged in expired air in the first 24 hr. At 2000 mg/kg, 78% of the dose was eliminated unchanged in the rat, but only 14% in the mouse. Consequently at high dosages, the mouse was exposed to significantly higher concentrations of trichloroethylene metabolites than the rat. Blood level kinetics of trichloroethylene and its metabolites confirmed a faster rate of metabolism in the mouse than in the rat. Peak concentrations of the metabolites were reached within 2 hr of dosing in the mouse compared to 10 to 12 hr in the rat. The concentrations of both trichloroethanol (4X) and trichloroacetic acid (7X) were significantly higher in the mouse than in the rat. Whereas trichloroethanol was rapidly eliminated from blood, the higher concentrations of trichloroacetic acid were maintained for over 30 hr. The high blood quantities of trichloroethylene-derived trichloroacetic acid are known to induce hepatic peroxisome proliferation in mice but are insufficient to induce this response in rats. These data suggest that trichloroacetic acid blood amounts, peroxisome proliferation, and the link between peroxisomes and liver cancer are the basis of species difference in response to trichloroethylene.  相似文献   

5.
Trichloroacetate (TCA) and dichloroacetate (DCA) have been shown to be hepatocarcinogenic in mice when administered in drinking water. However, DCA produces pathological effects in the liver that are much more severe than those observed following TCA treatment in both rats and mice. To identify potential mechanisms involved in the liver pathology, the biotransformation of TCA and DCA was investigated in male Fischer 344 rats and B6C3F1 mice. Rodents were administered 5, 20, or 100 mg/kg [14C]TCA or [14C]DCA as a single oral dose in water. Elimination was examined by counting radioactivity in urine, feces, exhaled air, and carcass. Blood concentration over time curves were constructed for both TCA and DCA at the 20 and 100 mg/kg doses. Analysis of the data reveals two significant differences in the systemic clearance of TCA relative to DCA. First, DCA was much more extensively metabolized than TCA. More than 50% of any single dose of TCA was excreted unchanged in the urine of both rats and mice. In contrast, less than 2% of any dose of DCA was recovered in the urine as the parent compound. Second, while the blood concentration over time curves for TCA were similar in rats and mice, the blood concentrations of DCA were markedly greater in rats compared to those in mice, both when DCA was administered and when DCA resulted from metabolism of TCA. DCA was detected in the urine of TCA-treated animals and chloroacetate was found in the urine of DCA-treated animals. These metabolic products would be expected to arise from a free radical-generating, reductive dechlorination pathway. To evaluate the ability of acute doses of TCA and DCA to elicit a lipoperoxidative response, additional groups of mice were administered 0, 100, 300, 1000, and 2000 mg/kg TCA or DCA and thiobarbituric acid-reactive substances (TBARS) measured in liver homogenates. Both TCA and DCA enhanced the formation of TBARS in a dose-dependent manner, thereby providing further evidence of a reductive metabolic pathway. DCA was found to be the more potent of the chlorinated acetates in increasing TBARS formation in the livers of both rats and mice. In view of these data, it appears that the more extensive metabolism and rapid rate of elimination of DCA relative to TCA and the more potent lipoperoxidative activity of DCA may be important factors in the pathological effects associated with DCA treatment.  相似文献   

6.
The metabolism of trichloroethylene (TRI) and its metabolites, chloral hydrate (CH), trichloroethanol (free-TCE) and trichloroacetic acid (TCA), were examined in the isolated perfused rat liver, to clarify the role of the liver in the metabolism of TRI. TRI was rapidly converted to TCE and TCA by the perfused liver. TCA was produced from TRI about 2.5 times greater than was total-TCE. CH was metabolized to TCE and TCA immediately. TCA was also a dominant metabolite of CH over total-TCE. TCE(free type) was speedily conjugated by the liver. A portion of TCE was converted to TCA. Less than 10% of these metabolites produced by the liver were excreted into the bile. Most of them appeared in the perfusate.  相似文献   

7.
8.
We have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks. In other studies, incubations of monkey epididymal microsomes were performed in the presence of TCE and NADPH. Our results showed that seminal fluid from all eight subjects contained TCE, chloral, and TCOH. DCA was present in samples from two subjects, and only one contained TCA. TCA and/or TCOH were also identified in urine samples from only two subjects. TCE, chloral, and TCOH were detected in murine epididymis after inhalation exposure with TCE for 1 to 4 weeks. Levels of TCE and chloral were similar throughout the entire exposure period. TCOH levels were similar at 1 and 2 weeks but increased significantly after 4 weeks of TCE exposure. Chloral was identified in microsomal incubations with TCE in monkey epididymis. CYP2E1, a P450 that metabolizes TCE, was localized in human and monkey epididymal epithelium and testicular Leydig cells. These results indicated that TCE is metabolized in the reproductive tract of the mouse and monkey. Furthermore, TCE and its metabolites accumulated in seminal fluid, and suggested associations between production of TCE metabolites, reproductive toxicity, and impaired fertility.  相似文献   

9.
10.
Walgren JL  Kurtz DT  McMillan JM 《Toxicology》2005,211(3):220-230
Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic metabolites of the common groundwater contaminant, 1,1,2-trichloroethylene. DCA and TCA have been shown to induce hepatocyte proliferation in vivo, but it is not known if this response is the result of direct mitogenic activity or whether cell replication occurs indirectly in response to tissue injury or inflammation. In this study we used primary cultures of rat hepatocytes, a species susceptible to DCA- but not TCA-induced hepatocarcinogenesis, to determine whether DCA and TCA are direct hepatocyte mitogens. Rat hepatocytes, cultured in growth factor-free medium, were treated with 0.01-1.0 mM DCA or TCA for 10-40 h; cell replication was then assessed by measuring incorporation of 3H-thymidine into DNA and by cell counts. DCA or TCA treatment did not alter 3H-thymidine incorporation in the cultured hepatocytes. Although an increase in cell number was not observed, DCA treatment significantly abrogated the normal background cell loss, suggesting an ability to inhibit apoptotic cell death in primary hepatocyte cultures. Furthermore, treatment with DCA synergistically enhanced the mitogenic response to epidermal growth factor. The data indicate that DCA and TCA are not direct mitogens in hepatocyte cultures, which is of interest in view of their ability to stimulate hepatocyte replication in vivo. Nevertheless, the synergistic enhancement of epidermal growth factor-induced hepatocyte replication by DCA is of particular interest and warrants further study.  相似文献   

11.
The effects of a vitamin E-restricted diet on the induction of phagocytic activation by dichloroacetate (DCA) and trichloroacetate (TCA) was investigated. Groups of B6C3F1 male mice were either kept on standard diet (Std diet group) or diet that had the vitamin provided only by its natural ingredients (Low-E diet group). The animals in each diet group were administered 77 mg of DCA or TCA/ kg/day, or 5 ml/kg water (controls), by gavage, for 13 weeks. Thereafter, peritoneal lavage cells (PLC) were assayed for superoxide anion (SA), tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO), as well as for the activities of the anti-oxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). SA and TNFα production, as well as MPO, SOD, CAT and GSH-Px activities were significantly increased in the cells from the Low-E diet group treated with the compounds as compared with cells from hosts in the Std-diet group that received the corresponding treatments. The results indicate that consumption of a Vitamin E-restricted diet enhances the induction of phagocytic activation by DCA and TCA, a mechanism that was previously suggested to be an initial adaptive/protective response against the compounds long-term effects.  相似文献   

12.
1-Nitronaphthalene (1-NN) is a mutagenic nitroaromatic that has been detected in emissions from both heavy- and light-duty diesel engines, as well as in urban airborne particles. 1-NN is a cytochrome P450-bioactivated, nonciliated bronchiolar epithelial (Clara) cell cytotoxicant. Our recent studies demonstrated that 1-NN was metabolized by rat lung and liver microsomal enzymes to six 1-NN GSH conjugates via intermediate C(5),C(6)- and C(7),C(8)-epoxides. These studies examined the metabolism of 1-NN in mouse, and compared the differences in rates of 1-NN GSH conjugate formation between the two species. HPLC radioactivity profiles demonstrated that seven different conjugates were generated in mouse lung and liver microsomal incubations. Six of the seven conjugates corresponded with those observed in incubations with rat microsomes. Mass spectrometry of the new conjugate yielded a m/z 497 (M+H) and identical daughter ions as in the other six conjugates when analyzed by mass spectrometry in electrospray positive ion mode. The major conjugate generated in mouse and rat lung microsomal incubations was conjugate 4 (1-nitro-7-glutathionyl-8-hydroxy-7, 8-dihydronaphthalene). In comparison, the formation of conjugate 6 (1-nitro-5-hydroxy-6-glutathionyl-5,6-dihydronaphthalene) predominated in mouse liver, whereas in rat liver, conjugate 5, a diastereomer of conjugate 6, was generated at the highest rate. We concluded that the rates of formation of regio- and stereoisomeric epoxides from 1-NN differed substantially in target and nontarget tissues, but there was no clear pattern of correlation of tissue susceptibility to the rate or metabolite produced.  相似文献   

13.
1. The excretion and metabolism of radiolabelled fenclofenac (2-(2, 4-dichlorophenoxy)phenylacetic acid, FlenacR) has been studied in five species.

2. In the rat, absorption of oral doses of fenclofenac was virtually complete and elimination occurred mainly by the bile and faeces. The guinea-pig excreted equal amounts of radioactivity in urine and faeces, while in rabbit, baboon and man renal excretion was the more important route.

3. In all species the majority of excreted radioactivity was present as fenclofenac ester glucuronide. Amino acid conjunction with fenclofenac was minimal in all species studied.

4. Mono- and di-hydroxylated metabolites have been detected in urine from guineapig, baboon and man. The major hydroxylated metabolite in baboon urine has been identified as 2-(2,4-dichlorophenoxy)-5′-hydroxyphenylacetic acid.  相似文献   

14.
1. After i.v. injection of camazepam, plasma camazepan concn. declined biexponentially. The half-life of the elimination phase (t1/2, β) increased in the order: mice (0.73?h), rats (1.3?h), dogs (5.3?h).

2. After oral dosing of camazepam, absorption was almost complete whereas systemic availability varied eight-fold, i.e., rats and mice (10.15%) < dogs and monkeys (about 60%) < humans (> 90%), indicating species difference in the first-pass effect.

3. Camazepam was metabolized extensively in all species investigated to more than 10 metabolites, which were desmethyl, descarbamoyl and/or hydroxy products.

4. In comparison with camazepam, plasma concn. of pharmacologically active metabolites, temazepam, oxazepan and hydroxy camazepam, were much higher in rats and mice than in dogs and monkeys.  相似文献   

15.
1. The disposition and metabolism of sulfinpyrazone have been studied in rats, guineapigs, rabbits, dogs, rhesus monkeys and miniature swine after intravenous administration of 100mg/kg of 14C-labelled drug.

2. In all species, the integrated plasma concentration (AUC, 0-24h) of total radioactivity was almost completely covered by the sum of the AUC-values of unchanged sulfinpyrazone and six metabolites, i.e. the sulphide, the sulphone, p-hydroxy-sulfinpyrazone, the p-hydroxy-sulphide, the p-hydroxy-sulphone and 4-hydroxy-sulfinpyrazone.

3. Comparison of the plasma level profiles of unchanged sulfinpyrazone and the metabolites revealed pronounced differences between the species. Unchanged sulfinpyrazone was the most prominent compound in plasma of rats, dogs, monkeys and swine, whereas the sulphide metabolite predominated in guinea-pigs. In plasma of rabbits, these two compounds were found in similar amounts.

4. Species with predominant renal excretion of the 14C dose, i.e. rabbits, dogs and monkeys, eliminated sulfinpyrazone to a high extent unchanged. The renal excretion of the sulphide metabolite was low in all species.

5. Species differences in the biotransformation of sulfinpyrazone explain previously observed differences in inhibitory effect on platelet aggregation. This effect is intensive and long-lasting in species showing high plasma concentrations of the sulphide metabolite.  相似文献   

16.
After i.v. injection of camazepam, plasma camazepan concn. declined biexponentially. The half-life of the elimination phase (t1/2, beta) increased in the order: mice (0.73 h), rats (1.3 h), dogs (5.3 h). After oral dosing of camazepam, absorption was almost complete whereas systemic availability varied eight-fold, i.e., rats and mice (10-15%) less than dogs and monkeys (about 60%) less than humans (greater than 90%), indicating species difference in the first-pass effect. Camazepam was metabolized extensively in all species investigated to more than 10 metabolites, which were desmethyl, descarbamoyl and/or hydroxy products. In comparison with camazepam, plasma concn. of pharmacologically active metabolites, temazepam, oxazepan and hydroxy camazepam, were much higher in rats and mice than in dogs and monkeys.  相似文献   

17.
Microsomal monooxygenases catalyze the biosynthesis of epoxides from olefinic and aromatic compounds whilst microsomal epoxide hydratase and cytoplasmic glutathione S-transferases are responsible for their further biotransformation. Although catalytically very efficient the cytoplasmic glutathione S-transferases play, due to their subcellular localization, a minor role in the inactivation of epoxides derived from large lipophilic compounds and were, therefore, not included in this study. It was shown with such a lipophilic compound, benzo(a)pyrene, as a model substance and with liver enzyme mediated bacterial mutagenesis as biological endpoint that species and strain differences in epoxide hydratase and monooxygenases are reflected in very dramatic differences in mutagenicity of benzo(a)pyrene which varied from extremely potent to a degree which could easily be overlooked. In order to investigate whether the differences in enzyme activities were causally linked to the observed differences in mutagenicity, the enzyme activities were modulated by inhibition and induction. These manipulations were always accompanied by the corresponding changes in mutagenicity.It is concluded that species such as mice which possess high monooxygenase activity but very low epoxide hydratase activity are much more susceptible than man to those toxic effects which are mediated by metabolically formed epoxides which are substrates of epoxide hydratase. In this regard, it is especially noteworthy that mice possess a much lower hepatic epoxide hydratase activity than man.Presented at the Symposium Influence of Metabolic Activations and Inactivations on Toxic Effects held at the 18th Spring Meeting of the Deutsche Pharmakologische Gesellschaft, Section Toxicology, D-6500 Mainz, March 15, 1977  相似文献   

18.
Trimethylolpropane triacrylate (TMPTA) is a multifunctional monomer with industrial applications. To determine the carcinogenic potential, male and female F344/N rats and B6C3F1/N mice were administered TMPTA (0, 0.3, 1.0, or 3.0 mg/kg) in acetone dermally for 2 years. There were no differences in the body weights and survival in the treated animals compared to controls. Nonneoplastic skin lesions at the site of application included epidermal hyperplasia and hyperkeratosis in both rats and mice. There were no incidences of tumors at the site of application in rats and mice. Rare malignant liver neoplasms were observed in female mice that included hepatoblastoma in the 0.3 and 3.0 mg/kg groups, and hepatocholangiocarcinoma in the 1.0 and 3.0 mg/kg groups. The incidences of uterine stromal polyp and stromal polyp or stromal sarcoma (combined) in female mice occurred with positive trends and the incidences were significantly increased in the 3.0 mg/kg group. A marginal increase in the incidences of malignant mesothelioma in male rats may have been related to TMPTA treatment. In conclusion, our studies show that TMPTA is a dermal irritant in both rats and mice of either sex. Increased incidences of tumor formation were observed in female mice and male rats.  相似文献   

19.
1. The metabolism of N, N-dimethyl-N'-(2-pyridyl)-N'-(2-thienylmethyl)-1,2- ethanediamine(methapyrilene, I) by liver microsomes from rat, guinea pig, and rabbit has been examined.

2. Methapyrilene-N-oxide, (III), normethapyrilene, (II), 2-thiophene methanol, (VI), 2-thiophene carboxylic acid, (VII), N-(2-pyridyl)-N',N'-dimethylethylenediamine, (IX), and methapyrilene amide, (XIV) were found in all species.

3. N-(2-Thienylmethyl)-2-amino pyridine, (VIII), 2-aminopyridine, (X), and (5-hydroxypridyl)-methapyrilene, (XII), were detected in rat and rabbit only.

4. N-Hydroxynormethapyrilene, (XXI), was tentatively identified by mass spectral fragmentation patterns only in rabbit liver microsomes incubations; however, it was found in 9000?g supernatant fraction incubations of rabbit, rat and guinea pig.

5. The formation of IX and XII was quantitatively more important in the rat than in either rabbit or guinea pig.  相似文献   

20.
1. The metabolism of N,N-dimethyl-N'-(2-pyridyl)-N'-(2-thienylmethyl)-1,2- ethanediamine(methapyrilene, I) by liver microsomes from rat, guinea pig, and rabbit has been examined. 2. Methapyrilene-N-oxide, (III), normethapyrilene, (II), 2-thiophene methanol, (VI), 2-thiophene carboxylic acid, (VII), N-(2-pyridyl)-N',N'-dimethylethylenediamine, (IX), and methapyrilene amide, (XIV) were found in all species. 3. N-(2-Thienylmethyl)-2-amino pyridine, (VIII), 2-aminopyridine, (X), and (5-hydroxypridyl)-methapyrilene, (XII), were detected in rat and rabbit only. 4. N-Hydroxynormethapyrilene, (XXI), was tentatively identified by mass spectral fragmentation patterns only in rabbit liver microsomes incubations; however, it was found in 9000 g supernatant fraction incubations of rabbit, rat and guinea pig. 5. The formation of IX and XII was quantitatively more important in the rat than in either rabbit or guinea pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号