首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Stroke is a devastating condition occurring in at least 1 in 4000 live births in the neonatal period. Since hypoxia-inducible factor (HIF)-1alpha can modulate ischemic injury via induction of target genes that may protect cells against ischemia, and is induced after preconditioning by hypoxia in the neonatal rat brain hypoxia-ischemia model, we evaluated whether HIF-1alpha is induced after focal ischemia-reperfusion, a model for neonatal stroke. We developed an ischemia-reperfusion model in postnatal day 10 (P10) rats by transiently occluding the middle cerebral artery (MCA) for 1.5 h. The MCA territory was reperfused for 0, 4, 8, or 24 h and the expression of HIF-1alpha and its target gene, vascular endothelial growth factor (VEGF), were delineated. HIF-1alpha protein and VEGF protein peaked at 8 h, and declined subsequently at 24 h in injured cortex following 1.5 h of MCA occlusion. Double-immunolabeling indicated that both HIF-1alpha and VEGF are expressed together in neurons with a similar time course of expression. The presence of HIF-1alpha and VEGF after moderate ischemia-reperfusion injury suggests potential avenues to exploit for neuroprotection.  相似文献   

2.
3.
4.
5.
Treatment with deferoxamine (DFO) is protective against focal ischemia with global hypoxia when given as a preconditioning stimulus in neonatal rodents. DFO acts as an iron chelator and may stabilize HIF1alpha. Therefore, we hypothesized that DFO would protect against pure ischemia-reperfusion injury when given after the insult and that the protection would be associated with expression of hypoxia-inducible factor 1alpha (HIF1alpha) and downstream target genes such as erythropoietin (Epo). To test these hypotheses, we performed middle cerebral artery (MCA) occlusion in postnatal day 10 (P10) rats for 1.5 h followed by treatment with DFO or vehicle upon reperfusion. Preserved brain volumes were measured with cresyl violet staining 1 week after the insult. HIF1alpha and Epo expression were determined by Western blot and immunocytochemical analyses at different time points after injury. We found that DFO treatment preserved brain volumes when compared to vehicle (P < 0.05). In DFO-treated ischemic cortices, HIF1alpha expression peaked early, while Epo expression was seen in two phases and in different cell populations. Epo immunoreactivity colocalized with neuronal markers at 8 h but with astrocytic markers at 1 week. These results suggest that DFO is protective when administered after neonatal ischemic stroke and that this protection may be like that afforded by preconditioning through the upregulation of similar downstream pathways.  相似文献   

6.
7.
Tolerance to cerebral ischemia is achieved by preconditioning sublethal stresses, such as ischemia or hypoxia, paradigms in which the decrease of O2 availability may constitute an early signal inducing tolerance. In accordance with this concept, this study shows that hypoxia induces tolerance against focal permanent ischemia in adult mice. Normobaric hypoxia (8% O2 of 1-hour, 3-hour, or 6-hour duration), performed 24 hours before ischemia, reduces infarct volume by approximately 30% when compared with controls. To elucidate the mechanisms underlying this neuroprotection, the authors investigated the effects of preconditioning on cerebral expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, erythropoietin and vascular endothelial growth factor (VEGF). Hypoxia, whatever its duration (1 hour, 3 hours, 6 hours), rapidly increases the nuclear content of HIF-1alpha as well as the mRNA levels of erythropoietin and VEGF. Furthermore, erythropoietin and VEGF are upregulated at the protein level 24 hours after 6 hours of hypoxia. The authors' findings show that (1) hypoxia elicits a delayed, short-lasting (<72 hours) tolerance to focal permanent ischemia in the adult mouse brain; (2) HIF-1 target genes could contribute to the establishment of tolerance; and (3) this model might be a useful paradigm to further study the mechanisms of ischemic tolerance, to identify new therapeutic targets for stroke.  相似文献   

8.
目的观察去铁敏(Desferoxamine,DFO)预处理后大鼠脑组织和体外培养神经元中缺氧诱导因子1α(hypoxia inducible factor1α,HIF-1α)和促红细胞生成素(erythropoietin,EPO)表达的变化,探讨预处理是否对体内及体外的脑缺血损伤的具有保护效应。方法去铁敏预处理大鼠后不同时间点制作大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)模型,术后24h后处死动物。采用神经功能评分(neurological severity scores,NSS)和计算梗死体积(TTC染色)评价DFO的脑保护效应,细胞活力测定评价DFO对缺氧缺糖条件下(oxygen-glucosede privation,OGD)皮层神经元的保护效应。免疫荧光染色检测HIF-1α和EPO蛋白表达情况。结果与生理盐水对照组比较,去铁敏预处理后2d,MCAO大鼠出现梗塞面积缩小,神经功能损伤减轻,在预处理后3d达到高峰,7d仍然有效,14d去铁敏预处理的保护效应消失。去铁敏对OGD神经元同样具有神经保护作用:与未进行预处理的神经元细胞相比,预处理后8h的细胞活力增加23%,12h增加34%,24h增加40%,36h增加48%,48h增加56%(P〈0.05)。免疫荧光染色发现,大鼠脑组织的HIF-1α和EPO在去铁敏预处理后3d及7d表达上调;皮层神经元细胞的HIF-1α和EPO在去铁敏预处理后36h及48h表达上调。结论去铁敏预处理有确切有效的脑保护效应,不仅可以预防脑缺血损伤,对体外培养的OGD皮层神经元细胞损伤也具有保护作用,其机制可能与脑神经细胞的HIF-1α和EPO蛋白表达增加有关。  相似文献   

9.
10.
Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O2/92% N2) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO2) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; ≤70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1α (HIF-1α) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1α protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve upregulation of VEGF.  相似文献   

11.
12.
13.
14.
15.
The brain's adaptive response to ischemic preconditioning (IPC) is mediated in part via hypoxia inducible factor (HIF)-responsive genes. We previously showed that IPC induces cytochrome P450 2C11 expression in the brain, associated with protection from stroke. Cytochrome P450 2C11 is an arachidonic acid (AA) epoxygenase expressed in astrocytes, which metabolizes AA to epoxyeicosatrienoic acids (EETs). We tested the hypotheses that hypoxic preconditioning (HPC) induces 2C11 expression in astrocytes via HIF-1alpha, and that the P450 epoxygenase pathway contributes to enhanced astrocyte tolerance to ischemia-like injury induced by oxygen-glucose deprivation (OGD). Primary cultured astrocytes were incubated under normoxic or hypoxic conditions for 1, 3, 6, 24, or 48 h, and protein levels of P450 2C11 and HIF-1alpha were measured by Western blotting. Additionally, 2C11 mRNA was measured by Northern blotting, and binding of HIF-1alpha to 2C11 promoter was evaluated using electrophoretic mobility shift assay (EMSA) with 2C11 promoter DNA containing putative HIF-binding sites. Levels of 2C11 mRNA and protein were significantly increased starting at 3 and 6 h of hypoxia, respectively. The increase in 2C11 expression was preceded by an increase in HIF-1alpha protein at 1 h of hypoxia, and EMSA showed a specific and direct interaction between 2C11 promoter DNA and HIF-1alpha in nuclear extracts from astrocytes. HPC and EETs reduced astrocyte cell death, and P450 epoxygenase inhibition prevented protection by HPC. We conclude that HPC induces tolerance in astrocytes, at least in part, via HIF-1alpha-linked upregulation of P450 2C11.  相似文献   

16.
The purpose of this study was to determine whether the antibiotic erythromycin induces tolerance against focal cerebral ischemia, and the possible underlying mechanism including the involvement of neuronal nitric oxide synthase (nNOS) and hypoxia-inducible factor-1α (HIF-1α). In rat focal cerebral ischemia models, we found that erythromycin preconditioning could significantly decrease the cerebral infarct volume and brain edema. Meanwhile, the neurological deficits from day 4 through 7 after surgery were also remarkably decreased after erythromycin preconditioning. Moreover, erythromycin preconditioning induced significantly increased nNOS levels and decreased HIF-1α levels in both mRNA and protein expression. This study for the first time indicated that erythromycin preconditioning could induce focal brain ischemic tolerance and attenuate brain injury of subsequent transient focal cerebral ischemia. The potential mechanism may be due to up-regulation of nNOS, but the HIF-1α system was not involved.  相似文献   

17.
Pretreatment with a low intracerebral dose of thrombin reduces brain edema after hemorrhagic and thrombo-embolic stroke. We have termed this phenomena thrombin preconditioning (TPC) or thrombin-induced brain tolerance. Red blood cell lysis and iron overload contribute to delayed edema formation after intracerebral hemorrhage. The present study examined whether TPC can attenuate the brain edema induced by lysed red blood cells or iron. It also examined whether TPC is associated with increasing hypoxia inducible factor-1alpha (HIF-1alpha) levels and alterations in two HIF-1alpha target genes, transferrin (Tf) and transferrin receptor (TfR), within the brain. Brain edema was measured by wet/dry weight method. HIF-1alpha, Tf, and TfR were measured by Western blot analysis and immunohistochemistry. We found that TPC reduces the edema induced by infusion of lysed red blood cells and iron. Thrombin increases HIF-1alpha levels through p44/42 mitogen activated protein kinases pathway. Thrombin also increases Tf and TfR levels in the brain. These results indicate that HIF-1alpha and its target genes may be involved in thrombin-induced brain tolerance.  相似文献   

18.
19.
Acute cerebral ischemia occurs after subarachnoid hemorrhage (SAH) because of increased intracranial pressure (ICP) and decreased cerebral perfusion pressure (CPP). The effect of hyperbaric oxygen (HBO) on physiological and clinical outcomes after SAH, as well as the expressions of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, such as BNIP3 and VEGF was evaluated. Eighty-five male SD rats (300 to 350 g) were randomly assigned to sham, SAH, and SAH+HBO groups. Subarachnoid hemorrhage was induced by endovascular perforation. Cortical cerebral blood flow (CBF), ICP, brain water content, brain swelling, neurologic function, and mortality were assessed. HBO (100% O2, 2.8 ATA for 2 h) was initiated at 1 h after SAH. Rats were sacrificed at 24 h to harvest tissues for Western blot or for histology. Apoptotic morphology accompanied by strong immunostaining of HIF-1alpha, VEGF, and BNIP3 were observed in the hippocampus and the cortex after SAH. Increased expressions of HIF-1alpha, VEGF, and BNIP3 were quantified by Western blot. HBO reduced the expressions of HIF-1alpha, VEGF, and BNIP3, diminished neuronal damage and improved CBF and neurologic function. HBO reduced early brain injury after SAH, probably by inhibition of HIF-1alpha and its target genes, which led to the decrease of apoptosis and preservation of the blood-brain barrier function.  相似文献   

20.
The current study was undertaken to address the role of mitochondrial reactive oxygen species (ROS), and hypoxia inducible factor-1 alpha (HIF-1α) signaling pathway in the protection against high glucose levels in brain endothelial and NT2 neuron-like cells. Rat brain endothelial cells (RBE4) treated with non-toxic concentrations of cyanide (≤ 1 μM; 1 h) exhibited an increase in ROS levels, particularly hydrogen peroxide (H2O2). Cyanide also induced a modest mitochondrial depolarization, an increase in oxygen consumption and a structural (smaller mitochondria) and spatial (perinuclear region) reorganization of mitochondrial network. The stabilization and nuclear activation of HIF-1α in the presence of cyanide were also observed, which resulted in an increase in vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and erythropoietin (EPO) protein levels reflecting an adaptive response. Importantly, preconditioning induced by cyanide protected brain endothelial cells against high glucose-mediated damage by the prevention of apoptotic cell death. In mitochondrial DNA-depleted NT2 (NT2 ρ0) cells, cyanide (0.1 μM) was unable to stimulate ROS production and, consequently, protect against glucotoxicity. Conversely, in NT2 cells, the parental cells with functional mitochondria, cyanide significantly increased ROS levels protecting against high glucose-induced neuronal cell loss and activation of caspase-3. The free radical scavenger N-acetyl-L-cysteine and the specific HIF-1α inhibitor 2-methoxyestradiol completely abolished the protective effects of cyanide preconditioning. Altogether our results demonstrate that mitochondrial preconditioning induced by cyanide triggers a protective response mediated by mitochondrial ROS and HIF-1α activation and signaling, which render brain endothelial and neuronal cells resistant against glucotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号