首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Genetic factors may contribute to the variability of exhaled nitric oxide in healthy individuals. We studied exhaled nitric oxide and genetic variants in both neuronal and endothelial nitric oxide synthases in 105 healthy nonsmoking and smoking subjects. Genomic DNA was screened for a repeat polymorphism in intron 20 of the neuronal nitric oxide synthase gene and for the 894G/T mutation of the endothelial nitric oxide synthase gene. Exhaled nitric oxide was significantly higher in males than females among both nonsmokers (p < 0.0001) and smokers (p = 0.003). No association was found between exhaled nitric oxide and the endothelial nitric oxide synthase gene variant. However, healthy nonsmoking females with greater numbers of repeats (i.e., both alleles with 12 or more repeats) in neuronal nitric oxide synthase had significantly lower nitric oxide levels than did females with fewer numbers of repeats (i.e., at least one allele with fewer than 12 repeats) (13.6 +/- 1.6 versus 19.4 +/- 1.6 ppb, p = 0.02). No association was found between exhaled nitric oxide and neuronal nitric oxide synthase genotype in males. These data suggest that variants in the neuronal nitric oxide synthase gene contribute to the variability of airway nitric oxide concentrations in healthy females.  相似文献   

3.
Diabetes mellitus is one of the major risk factors for coronary artery disease (CAD). A recent study reported that glimepiride, a new third-generation sulfonylurea, inhibited the formation of atheromatous plaques in high-cholesterol fed rabbits. However, the mechanism by which glimepiride induces atheroprotection remains unknown. In the present study, we tested the hypothesis that glimepiride may stimulate NO production in vascular endothelial cells. Human coronary artery endothelial cells (HCAECs) were treated with glimepiride, glibenclamide or vehicle, and NO release was measured. Akt phosphorylation was evaluated by Western blot. The effects of LY294002, a specific PI3-kinase inhibitor, and antisense oligonucleotides directed to Akt, on glimepiride-induced NO production were examined. Glimepiride (0.1-10 microM), but not glibenclamide, induced NO production, significantly increasing it by 1.8-fold (n=6, p<0.05). LY294002 inhibited glimepiride-induced NO production by 68%. Akt was rapidly phosphorylated by glimepiride and antisense oligonucleotides directed to Akt completely inhibited glimepiride-induced NO production. These data demonstrate that glimepiride induces NO production in HCAECs by activating PI3-kinase and Akt, and also suggest that use of glimepiride in type 2 diabetes may show promise for preventing CAD in addition to lowering glucose levels.  相似文献   

4.
5.
In kidney, nitric oxide (NO) synthesized by nitric oxide synthase (NOS) regulates sodium and water excretion, and renal medullary blood flow. The expression of constitutive NOS, endothelial NOS (eNOS) and neuronal NOS (nNOS), were assessed in kidney of the spontaneously hypertensive rat (SHR) and the normotensive Wistar Kyoto (WKY) rat by Western blot analysis and immunocytochemistry. Neuronal NOS expression was observed in the cortex and eNOS was detected only in theinner medulla of both WKY and SHR. In SHR, expression of eNOS was attenuated to 35.1 +/- 10.8%, while expression of nNOS was only 57.5 +/- 5.7% of the levels seen in WKY rat. Immunocytochemical studies revealed decreased staining of nNOS in the macula densa, collecting ducts and in the glomerulus of SHR compared to WKY rat. Endothelial NOS immunoreactivity was restricted to vascular structures of the inner intima cells and smooth muscle cells, and was markedly reduced in the vasculature of SHR. The decreased renal blood flow observed in SHR may be linked to a diminished expression of eNOS and nNOS, underscoring the importance of these enzymes in the pathophysiology and maintenance of genetic hypertension.  相似文献   

6.
Nebivolol is a beta1-adrenergic receptor antagonist that also reduces blood pressure by evoking endothelial NO production and vasodilation. We aimed at assessing whether nebivolol induces NO production also in the heart and delineating the molecular mechanisms involved. Using the fluorescent probe diaminofluorescein, we found that nebivolol induces a dose-dependent NO production in the heart, statistically significant already at 10(-7) mol/L. It is not an effect because of the blockade of beta1-adrenergic receptor, because this effect is not shared by another drug of the same class, atenolol. Because nebivolol has been reported to act as an agonist on other beta-adrenergic receptors, we tested NO production in the presence of receptor antagonists. Nebivolol was not able to induce NO production in presence of the beta3-antagonist SR59230A, indicating a fundamental role for beta3-adrenergic receptors in cardiac NO production by nebivolol. Moreover, inducible NO synthase inhibition abolishes NO release in the heart, indicating that nebivolol induces NO production by acting on the inducible isoform of the enzyme. The action of nebivolol on inducible NO synthase was confirmed by real-time PCR experiments, showing cardiac overexpression of inducible NO synthase but not neuronal NO synthase or endothelial NO synthase, after 5 hours of treatment with nebivolol. In conclusion, our study demonstrates that nebivolol also stimulates NO production in the heart. This action of nebivolol is exerted via a signaling pathway starting from the activation of beta3-adrenergic receptors and leading to overexpression of inducible NO synthase. Cardiac NO production by nebivolol could participate in the cardiovascular effects of nebivolol treatment in patients affected by hypertension and heart failure.  相似文献   

7.
Nitric oxide (NO) synthase (NOS) expression was analyzed in rat adrenal zona fasciculata. Both neuronal NOS and endothelial NOS mRNAs were detected by RT-PCR, immunohistochemistry, and immunoblot analysis. The biochemical characterization of adrenal zona fasciculata NOS enzymatic activity confirmed the presence of a constitutive isoform. In a cell line derived from mouse adrenal cortex, only endothelial NOS expression was detected by both RT-PCR and immunoblot analysis. Nitrate plus nitrite levels in Y1 cell incubation medium were increased in the presence of L-arginine and the calcium ionophore A23187, but not D-arginine, indicating enzymatic activity. Moreover, a low, but significant, conversion of Larginine to L-citrulline, abolished by the NOS inhibitor, N(G)-nitro-L-arginine, was detected in Y1 cells. The effect of L-arginine on pregnenolone production was examined. L-Arginine decreased both basal and ACTH-stimulated pregnenolone production in Y1 cells. The inhibitory effect of L-arginine could be attributed to endogenously generated NO, because it was blocked by N(G)-nitro-L-arginine, and it was mimicked by the addition of a NO donor, diethylenetriamine-NO. An inhibitory effect of NO on pregnenolone production from 22Rhydroxycholesterol and on steroidogenic acute regulatory protein expression was also determined. Taken together, these results suggest that at least part of the adrenal NO could derive from steroidogenic cells and modulate their function.  相似文献   

8.
9.
Enzymatic function of nitric oxide synthases   总被引:33,自引:0,他引:33  
Nitric oxide (NO) is synthesised from L-arginine by the enzyme NO synthase (NOS). The complex reaction involves the transfer of electrons from NADPH, via the flavins FAD and FMN in the carboxy-terminal reductase domain, to the haem in the amino-terminal oxygenase domain, where the substrate L-arginine is oxidised to L-citrulline and NO. The haem is essential for dimerisation as well as NO production. The pteridine tetrahydrobiopterin (BH4) is a key feature of NOS, affecting dimerisation and electron transfer, although its full role in catalysis remains to be determined. NOS can also catalyse superoxide anion production, depending on substrate and cofactor availability. There are three main isoforms of the enzyme, named neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS), which differ in their dependence on Ca2+, as well as in their expression and activities. These unique features give rise to the distinct subcellular localisations and mechanistic features which are responsible for the physiological and pathophysiological roles of each isoform.  相似文献   

10.
11.
Melatonin induces apoptosis in human neuroblastoma cancer cells   总被引:1,自引:0,他引:1  
Low concentrations (nanomolar) of melatonin had been previously shown to inhibit cell proliferation in several cancer cell lines as well as in experimental animal models. Additionally, cell growth inhibition and differentiation of prostate cancer cell lines by high concentrations (micromolar to millimolar) of melatonin have been recently reported. In the present paper, we show the induction of apoptosis by high doses of melatonin in the human neuroblastoma cell line SK-N-MC. We found accumulation of cells in the G2/M cell cycle phase and induction of cellular death, measured as lactate dehydrogenase (LDH) released into the culture medium, under millimolar concentration of melatonin. Apoptosis was evaluated using 4,6-diamidino-2-phenylindole staining, DNA gel electrophoresis, electron microscopy, and annexin V binding. Apoptosis progressed through the classical pathway, which involves caspase-3 activation. Cell death was dose and time-dependent; the lowest effective concentration of melatonin was 100 microm. Treatment with 1 mm melatonin for 6 days induced cell death in 75% of the cells. This novel finding shows that a nontoxic natural indoleamine may be potential therapy for some types of human neuroblastomas.  相似文献   

12.
13.
14.
BACKGROUND AND AIMS: Luminal nitric oxide (NO) is greatly increased in the colon of patients with collagenous and ulcerative colitis. To define the source and consequence of enhanced NO production we have studied expression of NO synthase (NOS) isoforms and nitrotyrosine in mucosal biopsies from these patients. In addition, effects on colonic fluid transfer caused by manipulating the substrate of NOS were studied in patients with collagenous colitis. PATIENTS: Eight patients with collagenous colitis, nine with active ulcerative colitis, and 10 with uninflamed bowel were included. METHODS: Expression of NOS isoforms was quantified by western blotting. Inducible NOS (iNOS) and nitrotyrosine were localised by immunohistochemistry. Modulation of NOS activity by topical N(G)-monomethyl-L-arginine (L-NMMA) or L-arginine was assessed during perfusion of whole colon. Plasma and perfusate nitrite/nitrate (NOx) was measured by Griess' reaction. RESULTS: Both in collagenous and ulcerative colitis, expression of iNOS was 10(2)-10(3) higher (p<0.001) than in uninflamed bowel and localised primarily to the epithelium. Endothelial NOS was evenly expressed in all groups while neuronal NOS was undetectable. Nitrotyrosine was markedly expressed in active ulcerative colitis but rarely detected in collagenous colitis and never in uninflamed bowel. In collagenous colitis, the output of NOx was markedly increased compared with uninflamed bowel (283 (58) v <37 nmol/min; p<0.01) and fluid was net secreted. L-NMMA reduced the output of NOx by 13-66% (95% confidence intervals) and secretion of fluid by 25-109% whereas L-arginine increased the output of NOx by 3-39% and secretion of fluid by 15-93%. CONCLUSIONS: In collagenous colitis, as opposed to ulcerative colitis, upregulation of iNOS occurs in the absence of nitrotyrosine formation and mucosal damage. Excess generation of NO may be the primary cause of diarrhoea in this condition.  相似文献   

15.
16.
H. Inada  H. Shindo  M. Tawata  T. Onaya 《Diabetologia》1998,41(12):1451-1458
Summary We investigated the relation between cyclic AMP (cAMP) and nitric oxide (NO) production, as well as the effect of NO on Na+ , K+-ATPase activity in the human neuroblastoma cell line SH-SY5Y. Two cAMP agonists, dibutyryl cAMP (DBC) and beraprost sodium (BPS), increased cAMP accumulation and NO production in a time and dose dependent manner at 50 mmol/l glucose. On the other hand, cellular sorbitol and myo-inositol contents and protein kinase C activity were not altered by DBC or BPS. A specific protein kinase A inhibitor, H-89, suppressed increases in nitrite/nitrate and cyclic GMP (cGMP) and protein kinase A activity stimulated by DBC or BPS. This finding suggests that cAMP stimulates NO production by activating protein kinase A via a pathway different from the sorbitol-myo-inositol-protein kinase C pathway. We observed that an NO donor, sodium nitroprusside, and an NO agonist, L-arginine, enhanced ouabain sensitive Na+, K+-ATPase activity at 50 mmol/l glucose. We also found that a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), inhibited Na+, K+-ATPase activity at 5 mmol/l glucose, and partially suppressed the enzyme activity stimulated by DBC or BPS. The results of this study suggest that cAMP regulates protein kinase A activity, NO production and ouabain sensitive Na+, K+-ATPase activity in a cascade fashion. The results also suggest that protein kinase A at least partially regulates Na+, K+-ATPase activity without mediation by NO in SH-SY5Y cells. We speculate that cAMP and NO are two important regulatory factors in the pathogenesis of diabetic neuropathy. [Diabetologia (1998) 41: 1451–1458] Received: 17 November 1997 and in final revised form: 27 July 1998  相似文献   

17.
Recent studies have postulated the contribution of nitric oxide (NO) released by the endothelium to the beneficial effects of estrogen. Despite a neuronal-type NO synthase (nNOS) described in neutrophils, less is known about the effect of estrogen in these cells. The aim of the present study was to analyze the expression of nNOS protein in human neutrophils under different estrogenic conditions. We first analyzed nNOS expression in neutrophils obtained from premenopausal women. During the first 2 days of the follicular phase (low circulating estrogen concentrations), nNOS expression in neutrophils was reduced with respect to that found in neutrophils obtained from the same donors during the ovulatory phase (high circulating estrogen concentrations). Moreover, the expression of nNOS protein in neutrophils obtained from postmenopausal women after transdermal estrogen therapy was markedly enhanced with respect to that observed before the treatment. In vitro incubation of neutrophils derived from men for 6 hours with 17beta-estradiol (10(-10) to 10(-8) mol/L) upregulated the expression of nNOS protein. The 17beta-estradiol receptor antagonists, tamoxifen (10(-8) mol/L) and ICI 182780 (10(-8) mol/L), inhibited the upregulation of nNOS protein induced by 17beta-estradiol. The putative functional implication was denoted by a reduced expression of the CD18 antigen on the surface of 17beta-estradiol-incubated neutrophils, which was accompanied by a decreased adhesive capacity. Both effects were prevented by an NO antagonist. In conclusion, the in vivo levels of circulating estrogen concentrations seem to be associated with the level of nNOS protein expression in neutrophils from women. Moreover, low doses of 17beta-estradiol upregulate nNOS protein expression in neutrophils from men. The increased ability of 17beta-estradiol-incubated neutrophils derived from men to produce NO reduced their adhesive properties.  相似文献   

18.
19.
Estrogens are thought to play a protective role against neurodegeneration through a variety of mechanisms including the activation of growth factors and neurotransmitter synthesis, the control of synaptic plasticity and functions, and the blockade of oxidative reactions. We here propose a novel mechanism to explain the neuroprotective effects of estradiol by showing that estrogens may antagonize nitric oxide synthase activity and reduce the accumulation of nitrites and nitrates consequent to various inflammatory stimuli.

The potential anti-inflammatory activity of estradiol is analyzed in vitro in cells in culture including primary cultures of microglia and in vivo in a well-known model of inflammation.  相似文献   


20.
OBJECTIVES: Nitric oxide (NO) has complex effects on myocardial function particularly following ischaemia-reperfusion. The goal of this study was to examine the result of repetitive myocardial stunning on myocardial NO release and expression of inducible (iNOS) and constitutive (eNOS) NO synthases. METHODS AND RESULTS: Propofol anaesthetised pigs underwent ten, 2-min episodes of circumflex artery occlusion (n = 6) or acted as sham operated controls (n = 4). Measurements of segment shortening demonstrated a fall in function in the ischaemic territory to 52.5 +/- 7.3% (mean +/- S.E.M.) of baseline shortening 30 min after the stunning stimulus, recovering to 92 +/- 8.7% 5.5 h later. Function remained stable in sham controls. The change in venous-arterial [NO] between baseline and 6 h reperfusion was found to be significantly different between the two groups (0.2 +/- 0.7 in stunned vs. -4.3 +/- 1.6 microM in shams; P < 0.02). Western blotting and band optical density used to compare tissue from stunned territory (S), non-stunned territory (IC) and sham control animals (SC) demonstrated this was associated with an increase in the expression of both iNOS (S: 93 +/- 13.4, IC: 37 +/- 2.4 and SC: 25 +/- 4 [arbitrary units], P < 0.01 and P = 0.031) and eNOS (S: 104 +/- 7.4, IC; 62.5 +/- 7.4 and SC; 75.7 +/- 0.6, P < 0.03 and P < 0.01) in stunned myocardium. Immunocytochemistry localised iNOS reactivity to vascular smooth muscle cells and cardiomyocytes in stunned tissue and eNOS reactivity to endothelial cells. CONCLUSION: Recovery from repetitive myocardial stunning is associated with the increased expression of both iNOS and eNOS and would be compatible with a protective role for both these enzymes. This finding has possible relevance for both the late window of ischaemic preconditioning and myocardial hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号