首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ichthyophthirius multifiliis (Ich) parasitism on survival, hematology and bacterial load in channel catfish, Ictalurus punctatus, previously exposed to Edwardsiella ictaluri was studied. Fish were exposed to E. ictaluri 1?day prior to Ich in the following treatments: (1) infected by E. ictaluri and Ich at 2,500 theronts/fish; (2) infected by E. ictaluri only; (3) infected by Ich at 2,500 theronts/fish only; and (4) non infected control. Mortality was significantly higher in fish previously exposed to E. ictaluri and then infected by Ich (71.1?%). Mortalities were 26.7?%, 28.9?% and 0?% for fish infected by E. ictaluri only, by Ich only and non-infected control, respectively. Quantitative polymerase chain reaction demonstrated the presence of E. ictaluri in the brain, gill, kidney and liver of fish infected with E. ictaluri regardless of Ich parasitism. At day 8, E. ictaluri parasitized fish had significantly more bacteria present in the brain, gill and liver, with no bacteria detected in these organs in the E. ictaluri-only treatment, suggesting that the bacteria persisted longer in parasitized fish. Decreased red blood cells count and hematocrit in fish at days 8 and 19 after co-infection suggests chronic anemia. Lymphocyte numbers significantly decreased in all infected treatments versus the non-infected controls at days 2, 8 and 19. Lymphopenia suggests that lymphocytes were actively involved in the immune response. Bacterial clearance was probably influenced by the stress of parasitism and/or the mucosal response induced by ectoparasitic Ich that resulted in the higher mortality seen in the co-infected treatment.  相似文献   

2.
Lipopolysaccharide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations in waaG (rfaG), waaI (rfaI), rfaH, waaJ (rfaJ), wbaP (rfbP), waaL (rfaL), or wzy (rfc) into wild-type S. Typhimurium. The LPS structure was confirmed, and a number of in vitro and in vivo properties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaG and ΔwaaI mutations, in particular, were deficient in colonization of Peyer''s patches and liver. This deficiency could be partially overcome in the ΔwaaI mutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA and Salmonella antigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oral Salmonella vaccine, while a wzy mutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.  相似文献   

3.
4.
Outer membrane proteins (OMPs) are a class of proteins that reside in the outer membrane of Gram-negative bacteria. OMPs act as epitopes and are potential vaccine candidates. Outer membrane protein N (OmpN) is a component of the outer membrane of Edwardsiella ictaluri (E. ictaluri). In a previous study, the OmpN1-, OmpN2-, OmpN3-encoding genes of E. ictaluri were cloned, and here they were expressed in Escherichia coli. Western blotting showed that these three proteins had molecular weights of ∼60 kDa. Channel catfish were immunized with recombinant OmpNs (rOmpNs) and then challenged with E. ictaluri. The results showed that rOmpN1, rOmpN2, and rOmpN3, as well as a mixture of all three proteins (in a ratio of 1:1:1) generated moderate immune protection (relative percentage of survival = 62.5, 62.5, 67.5, and 75%, respectively). In an agglutination antibody titer assay, fish antisera showed an antibody titer of 1:128. Furthermore, each of the proteins stimulated high levels of lysozyme activity. In addition, a real-time polymerase chain reaction analysis revealed significant up-regulation of immune-related genes encoding major histocompatibility complex class I (MHC I), MHC II, CD4L, tumor necrosis factor-α, and interferon-γ after 24 and 48 h of challenge, compared with the levels stimulated by phosphate-buffered saline. Taken together, we conclude that rOmpNs may elicit immune responses and generate protection against E. ictaluri in channel catfish. Thus, rOmpNs could be promising vaccine candidates against E. ictaluri.  相似文献   

5.
《Molecular immunology》2015,65(2):276-284
The suppressors of cytokine signaling (SOCS) family genes play important roles in regulating a variety of signal transduction pathways that are involved in immunity, growth and development. Because of their importance, they have been extensively studied in mammalian species, but they have not been systematically studied among teleost fish species. In this study, a total of 12 SOCS genes were characterized to understand the molecular mechanisms of SOCS function in channel catfish. Phylogenetic analyses suggested that all SOCS were clustered into two main clusters. Further syntenic analysis confirmed the phylogenetic analyses and allowed the annotation of SOCS genes in channel catfish. This work, for the first time, determined the expression profiles of the 12 SOCS genes after bacterial infections with Flavobacterium columnare and Edwardsiella ictaluri in channel catfish. The SOCS1a and SOCS3a were significantly up-regulated at 4 h after F. columnare challenge in the gill, but were down-regulated at later stages of pathogenesis. Similarly, SOCS1a and CISH were significantly up-regulated at 3 h in intestine under E. ictaluri infection, but were down-regulated at later stages of pathogenesis at 24 h and 3 days after infection. These expression patterns may indicate that SOCS genes could be induced in acute immune responses after bacterial infections, but the massive cytokine expression, especially chemokine expression after the first day of infection may have had negative feedback leading to the overall down-regulation of the expression of SOCS genes. Moreover, the differential expression patterns of SOCS genes in the catfish gill and intestine after F. columnare and E. ictaluri infection demonstrated that the regulation of SOCS gene expression was both tissue-specific and time-dependent. Taken together, these results suggested that SOCS genes were involved in immune responses to bacterial invasions, and these results set the foundation for future studies of SOCS gene functions.  相似文献   

6.
Salmonella enterica serovar Typhimurium is able to resist antimicrobial peptide killing by induction of the PhoP-PhoQ and PmrA-PmrB two-component systems and the lipopolysaccharide (LPS) modifications they mediate. Murine cathelin-related antimicrobial peptide (CRAMP) has been reported to inhibit S. Typhimurium growth in vitro and in vivo. We hypothesize that infection of human monocyte-derived macrophages (MDMs) with Salmonella enterica serovar Typhi and S. Typhimurium will induce human cathelicidin antimicrobial peptide (CAMP) production, and exposure to LL-37 (processed, active form of CAMP/hCAP18) will lead to upregulation of PmrAB-mediated LPS modifications and increased survival in vivo. Unlike in mouse macrophages, in which CRAMP is upregulated during infection, camp gene expression was not induced in human MDMs infected with S. Typhi or S. Typhimurium. Upon infection, intracellular levels of ΔphoPQ, ΔpmrAB, and PhoPc S. Typhi decreased over time but were not further inhibited by the vitamin D3-induced increase in camp expression. MDMs infected with wild-type (WT) S. Typhi or S. Typhimurium released similar levels of proinflammatory cytokines; however, the LPS modification mutant strains dramatically differed in MDM-elicited cytokine levels. Overall, these findings indicate that camp is not induced during Salmonella infection of MDMs nor is key to Salmonella intracellular clearance. However, the cytokine responses from MDMs infected with WT or LPS modification mutant strains differ significantly, indicating a role for LPS modifications in altering the host inflammatory response. Our findings also suggest that S. Typhi and S. Typhimurium elicit different proinflammatory responses from MDMs, despite being capable of adding similar modifications to their LPS structures.  相似文献   

7.
Previously we showed that the tricarboxylic acid (TCA) cycle operates as a full cycle during Salmonella enterica serovar Typhimurium SR-11 peroral infection of BALB/c mice (M. Tchawa Yimga et al., Infect. Immun. 74:1130-1140, 2006). The evidence was that a ΔsucCD mutant (succinyl coenzyme A [succinyl-CoA] synthetase), which prevents the conversion of succinyl-CoA to succinate, and a ΔsdhCDA mutant (succinate dehydrogenase), which blocks the conversion of succinate to fumarate, were both attenuated, whereas an SR-11 ΔaspA mutant (aspartase) and an SR-11 ΔfrdABCD mutant (fumarate reductase), deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. In the present study, evidence is presented that a serovar Typhimurium SR-11 ΔfrdABCD ΔsdhCDA double mutant is avirulent in BALB/c mice and protective against subsequent infection with the virulent serovar Typhimurium SR-11 wild-type strain via the peroral route and is highly attenuated via the intraperitoneal route. These results suggest that fumarate reductase, which normally runs in the reductive pathway in the opposite direction of succinate dehydrogenase, can replace it during infection by running in the same direction as succinate dehydrogenase in order to run a full TCA cycle in an SR-11 ΔsdhCDA mutant. The data also suggest that the conversion of succinate to fumarate plays a key role in serovar Typhimurium virulence. Moreover, the data raise the possibility that S. enterica ΔfrdABCD ΔsdhCDA double mutants and ΔfrdABCD ΔsdhCDA double mutants of other intracellular bacterial pathogens with complete TCA cycles may prove to be effective live vaccine strains for animals and humans.  相似文献   

8.
We have developed a novel ileal loop model for use in calves to analyze the contribution of Salmonella enterica serovar Typhimurium type III secretion systems to disease processes in vivo. Our model involves constructing ileal loops with end-to-end anastamoses to restore the patency of the small intestine, thereby allowing experimental animals to convalesce following surgery for the desired number of days. This model overcomes the time constraint imposed by ligated ileal loop models that have precluded investigation of Salmonella virulence factors during later stages of the infection process. Here, we have used this model to examine the enteric disease process at 24 h and 5 days following infection with wild-type Salmonella and mutants lacking the virulence-associated Salmonella pathogenicity island 1 (SPI-1) or SPI-2 type III secretion systems. We show that SPI-2 mutants are dramatically attenuated at 5 days following infection and report a new phenotype for SPI-1 mutants, which induce intestinal pathology in calves similar to wild-type Salmonella in the 5-day ileal loop model. Both of these temporal phenotypes for SPI-1 and SPI-2 mutants were corroborated in a second animal model of enteric disease using streptomycin-pretreated mice. These data delineate novel phenotypes for SPI-1 and SPI-2 mutants in the intestinal phase of bovine and murine salmonellosis and provide working models to further investigate the effector contribution to these pathologies.  相似文献   

9.
The bacterial adrenergic sensor kinases QseC and QseE respond to epinephrine and/or norepinephrine to initiate a complex phosphorelay regulatory cascade that modulates virulence gene expression in several pathogens. We have previously shown that QseC activates virulence gene expression in Salmonella enterica serovar Typhimurium. Here we report the role of QseE in S. Typhimurium pathogenesis as well as the interplay between these two histidine sensor kinases in gene regulation. An S. Typhimurium qseE mutant is hampered in the invasion of epithelial cells and intramacrophage replication. The ΔqseC strain is highly attenuated for intramacrophage survival but has only a minor defect in invasion. However, the ΔqseEC strain has only a slight attenuation in invasion, mirroring the ΔqseC strain, and has an intermediary intramacrophage replication defect in comparison to the ΔqseE and ΔqseC strains. The expressions of the sipA and sopB genes, involved in the invasion of epithelial cells, are activated by epinephrine via QseE. The expression levels of these genes are still decreased in the ΔqseEC double mutant, albeit to a lesser extent, congruent with the invasion phenotype of this mutant. The expression level of the sifA gene, important for intramacrophage replication, is decreased in the qseE mutant and the ΔqseEC double mutant grown in vitro. However, as previously reported by us, the epinephrine-dependent activation of this gene occurs via QseC. In the systemic model of S. Typhimurium infection of BALB/c mice, the qseC and qseE mutants are highly attenuated, while the double mutant has an intermediary phenotype. Altogether, these data suggest that both adrenergic sensors play an important role in modulating several aspects of S. Typhimurium pathogenesis.  相似文献   

10.
Invasive nontyphoidal Salmonella (iNTS) disease is a neglected disease with high mortality in children and HIV-positive individuals in sub-Saharan Africa, caused primarily by Africa-specific strains of Salmonella enterica serovars Typhimurium and Enteritidis. A vaccine using GMMA (generalized modules for membrane antigens) from S. Typhimurium and S. Enteritidis containing lipid A modifications to reduce potential in vivo reactogenicity is under development. GMMA with penta-acylated lipid A showed the greatest reduction in the level of cytokine release from human peripheral blood monocytes from that for GMMA with wild-type lipid A. Deletion of the lipid A modification genes msbB and pagP was required to achieve pure penta-acylation. Interestingly, ΔmsbB ΔpagP GMMA from S. Enteritidis had a slightly higher stimulatory potential than those from S. Typhimurium, a finding consistent with the higher lipopolysaccharide (LPS) content and Toll-like receptor 2 (TLR2) stimulatory potential of the former. Also, TLR5 ligand flagellin was found in Salmonella GMMA. No relevant contribution to the stimulatory potential of GMMA was detected even when the flagellin protein FliC from S. Typhimurium was added at a concentration as high as 10% of total protein, suggesting that flagellin impurities are not a major factor for GMMA-mediated immune stimulation. Overall, the stimulatory potential of S. Typhimurium and S. Enteritidis ΔmsbB ΔpagP GMMA was close to that of Shigella sonnei GMMA, which are currently in phase I clinical trials.  相似文献   

11.
12.
Lipopolysaccharide (LPS) is a major constituent of the outer membrane and an important virulence factor of Salmonella enterica subspecies 1 serovar Typhimurium (serovar Typhimurium). To evaluate the role of LPS in eliciting intestinal inflammation in streptomycin-treated mice, we constructed an O-antigen-deficient serovar Typhimurium strain through deletion of the wbaP gene. The resulting strain was highly susceptible to human complement activity and the antimicrobial peptide mimic polymyxin B. Furthermore, it showed a severe defect in motility and an attenuated phenotype in a competitive mouse infection experiment, where the ΔwbaP strain (SKI12) was directly compared to wild-type Salmonella. Nevertheless, the ΔwbaP strain (SKI12) efficiently invaded HeLa cells in vitro and elicited acute intestinal inflammation in streptomycin-pretreated mice. Our experiments prove that the presence of complete LPS is not essential for in vitro invasion or for triggering acute colitis.Salmonella spp. are a common cause of bacterial food-borne infections. Diseases caused by Salmonella spp. range from gastrointestinal symptoms such as fever, diarrhea, abdominal pain, and nausea to severe systemic infections. Salmonella enterica subspecies 1 serovar Typhimurium (serovar Typhimurium) is one of the most frequent enteropathogens, causing large numbers of diarrheal infections worldwide by colonizing the gut and triggering mucosal inflammation (33). The type III secretion system 1 (TTSS-1) and TTSS-2 encoded on Salmonella pathogenicity island 1 (SPI1) and SPI2 on the Salmonella genome are employed by the pathogen for mediating bacterial entry into the gut mucosa (SPI1) as well as the intracellular survival followed by systemic spread of the bacteria (SPI2) (9). Acute enteric serovar Typhimurium infection and the mechanisms leading to intestinal inflammation can be analyzed using a well-defined mouse model for Salmonella colitis: streptomycin-pretreated, naïve mice develop a vigorous local inflammation of the large intestine upon intragastric infection with serovar Typhimurium (3).Besides the SPI1- and SPI2-encoded TTSSs, serovar Typhimurium requires numerous additional virulence factors for colonizing the host, resisting host immune defense, and finally, triggering disease. One key virulence factor for serovar Typhimurium is lipopolysaccharide (LPS), a major surface component (42). It contributes to the stability of the outer membrane, serves as a permeability barrier, and protects the bacterium against environmental challenges (34). LPS is composed of three domains. The lipid A part, also known as endotoxin, anchors LPS molecules in the outer membrane with its fatty acid chains. It is connected through the inner core consisting of heptoses and Kdo (3-deoxy-d-manno-octulosonic acid), with the outer core containing hexoses and N-acetylhexoses. Linked to the last glucose of the outer core is the polymeric O-antigen region. This region is composed of 16 to >100 repeats of an oligosaccharide structure containing four to six monosaccharides (27).The endotoxic properties of LPS are mediated by the lipid A moiety, which can be recognized by Toll-like receptor 4 and thus triggers an innate immune response (16, 32). The O antigen, in combination with the inner and outer cores, serves as protection against complement antimicrobial peptides, detergents, and certain antibiotics. Furthermore, the O-antigen region is a key determinant for recognition by the adaptive immune response (40).A number of studies have established an important role for O-antigen side chains in Salmonella virulence. A signature-tagged mutagenesis screening by Morgan and coworkers proved that mutations in genes for enzymes involved in the biosynthesis of O-antigen side chains attenuated bacteria in their ability to colonize chick and calf intestines (25). Interestingly, a mutant in wbaP, the phosphogalactosyltransferase starting O-antigen biosynthesis, was able to colonize calves but showed an attenuated phenotype in chicks (25). Moreover, screening for Salmonella genes required for long-term systemic infection after intraperitoneal injection showed negative selection for mutants in O-antigen biosynthesis (21). Coinfection experiments by Nevola et al. show that mutants lacking O antigen are still able to colonize the murine intestine but are attenuated in competitive infection experiments (30). Furthermore, a recent in vitro study with Salmonella enterica serovar Typhi showed that O-antigen side chains are not necessary for adhesion to and invasion of epithelial cells. However, mutants lacking the complete outer core are severely attenuated (14). In general, the loss of core structures seems more detrimental than the loss of O-antigen side chains. However, it had remained unclear whether the O-antigen side chains are required for triggering intestinal inflammation.We wanted to analyze the role of O-antigen side chains in a well-established mouse model for enteric infections (3) and in an in vitro cellular invasion assay (36). Thus, we deleted the gene encoding the phosphogalactosyltransferase WbaP. This enzyme adds phosphogalactose to undecaprenylphosphate, the first step in O-antigen side chain biosynthesis in the cytoplasm of serovar Typhimurium (35, 43, 44). Streptomycin-pretreated mice were orally infected with the wbaP mutant strain (SKI12), and in line with published work, we found that the ΔwbaP mutant strain (SKI12) was significantly attenuated in a competitive infection assay. In spite of this, the wbaP mutant alone was able to trigger acute colitis. This demonstrates that serovar Typhimurium permits substantial manipulation of the O-antigen structure without losing its ability to trigger mucosal inflammation.  相似文献   

13.
Previous in vitro work demonstrated that Edwardsiella ictaluri produces an acid-activated urease that can modulate environmental pH through the production of ammonia from urea. Additional work revealed that expression of the E. ictaluri type III secretion system (T3SS) is upregulated by acidic pH. Both the urease and the T3SS were previously shown to be essential to intracellular replication. In this work, fluorescence microscopy with LysoTracker Red DND-99 (LTR) indicated that E. ictaluri-containing vacuoles (ECV) became acidified following ingestion by head kidney-derived macrophages (HKDM). In vivo ratiometric imaging demonstrated a lowered ECV pH, which fell to as low as pH 4 but subsequently increased to pH 6 or greater. Inhibition of vacuolar H+-ATPases by use of the specific inhibitor bafilomycin A1 abrogated both ECV acidification and intracellular replication in HKDM. Failure of an E. ictaluri urease knockout mutant to increase the ECV pH in the in vivo ratiometric assay suggests that ammonia produced by the urease reaction mediates the pH increase. Additionally, when the specific arginase inhibitor l-norvaline was used to treat E. ictaluri-infected HKDM, the ECV failed to neutralize and E. ictaluri was unable to replicate. This indicates that the HKDM-encoded arginase enzyme produces the urea used by the E. ictaluri urease enzyme. Failure of the ECV to acidify would prevent both upregulation of the T3SS and activation of the urease enzyme, either of which would prevent E. ictaluri from replicating in HKDM. Failure of the ECV to neutralize would result in a vacuolar pH too low to support E. ictaluri replication.  相似文献   

14.
Attaching and effacing (A/E) pathogens adhere intimately to intestinal enterocytes and efface brush border microvilli. A key virulence strategy of A/E pathogens is the type III secretion system (T3SS)-mediated delivery of effector proteins into host cells. The secreted protein EspZ is postulated to promote enterocyte survival by regulating the T3SS and/or by modulating epithelial signaling pathways. To explore the role of EspZ in A/E pathogen virulence, we generated an isogenic espZ deletion strain (ΔespZ) and corresponding cis-complemented derivatives of rabbit enteropathogenic Escherichia coli and compared their abilities to regulate the T3SS and influence host cell survival in vitro. For virulence studies, rabbits infected with these strains were monitored for bacterial colonization, clinical signs, and intestinal tissue alterations. Consistent with data from previous reports, espZ-transfected epithelial cells were refractory to infection-dependent effector translocation. Also, the ΔespZ strain induced greater host cell death than did the parent and complemented strains. In rabbit infections, fecal ΔespZ strain levels were 10-fold lower than those of the parent strain at 1 day postinfection, while the complemented strain was recovered at intermediate levels. In contrast to the parent and complemented mutants, ΔespZ mutant fecal carriage progressively decreased on subsequent days. ΔespZ mutant-infected animals gained weight steadily over the infection period, failed to show characteristic disease symptoms, and displayed minimal infection-induced histological alterations. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining of intestinal sections revealed increased epithelial cell apoptosis on day 1 after infection with the ΔespZ strain compared to animals infected with the parent or complemented strains. Thus, EspZ-dependent host cell cytoprotection likely prevents epithelial cell death and sloughing and thereby promotes bacterial colonization.  相似文献   

15.
Patterns of invasiveness of Salmonella serotypes Typhimurium, Choleraesuis and Dublin in Caco-2 cells (without centrifugation) were compared with previously published studies of the rabbit ileal invasion assay (RIIA) and (where relevant) a HEp-2 cell invasion assay. Optimal conditions for the use of Caco-2 cell monolayers in bacterial invasion assays were defined. Centrifuge-assisted attachment of bacteria to cells was not used routinely as this increased the invasiveness of known hypo-invasive strains and detachment of Caco-2 cells. Inocula with too high bacterial numbers resulted in rapid acidification of media and detachment of the monolayers. The invasiveness of Typhimurium strains TML, WAKE, WII8, LT7, SL1027 and M206 in Caco-2 cells reflected that seen in the RIIA. The invasiveness of Choleraesuis strain A50 was similar to that in the RIIA except that bacteria grown at 37 degrees C and used without storage at 4 degrees C were slightly more invasive than those grown at 37 degrees C and stored at 4 degrees C before use. Dublin strain 3246 showed no apparent temperature-regulated invasiveness in Caco-2 cells, in contrast to the results observed in the RIIA. Dublin strain 3246 did not cleave tight junctions in the Caco-2 cell monolayer as it did in rabbit ileal epithelia both in vitro and in vivo. Three TnphoA insertion LPS mutants of Typhimurium TML were uniformly hypo-invasive in both Caco-2 cells and the RIIA; in contrast, they were differentially invasive in HEp-2 cells. Three smooth TnphoA insertion mutants of Typhimurium TML (invH, invG and pagC) were hypo-invasive in both the Caco-2 and HEp-2 cell invasion assays but not in the RIIA.  相似文献   

16.
The recognition of flagellin by Toll-like receptor 5 (TLR5) is the dominant means by which model intestinal epithelia activate proinflammatory gene expression in response to Salmonella enterica. The role of the flagellin-TLR5 interaction in vivo has been addressed primarily via studies that use flagellar mutants. Such studies suggest that host recognition of flagellin promotes rapid neutrophil recruitment that protects the host from this pathogen. However, these works do not directly address the role of TLR5 and are subject to the caveat that flagellar mutations may broadly affect Salmonella gene expression. Thus, we examined the role of the flagellin-TLR5 interaction via the use of TLR5-deficient (TLR5KO) mice. We utilized both the traditional model of murine Salmonella infection, wherein low-dose oral infection of mice with Salmonella enterica subsp. enterica serovar Typhimurium results in systemic typhoid-like disease, and a more recently characterized model in which mice are pretreated with streptomycin to result in gut-restricted acute enteritis. In the enteritis model, TLR5KO mice had more severe gut pathology, thus “phenocopying” previous results obtained with Salmonella mutants. In contrast, TLR5KO mice were resistant to Salmonella-induced typhoid-like disease. However, such resistance was not specific for flagellated serovar Typhimurium, but rather, TLR5KO mice were also resistant to challenges by flagellin-deficient serovar Typhimurium. Such resistance associated with elevations in the microbiota was ablated by antibiotic pretreatment and correlated with basal elevations in intestinal host defense gene expression. All together, these results indicate that the resistance of TLR5KO mice to Salmonella-induced typhoid-like illness resulted from alterations in their basal phenotype rather than from the lack of TLR5 ligation during the infection per se.  相似文献   

17.
Heat-labile enterotoxin preparations obtained from two enteropathogenic strains of Escherichia coli of porcine and human origin were shown to stimulate adenylate cyclase activity of human embryonic intestinal epithelial cells in culture. Comparable results were also obtained when cholera toxin was used. The degree of enzyme stimulation was proportional to the concentration of enterotoxin. Similar preparations from two strains of non-enterotoxigenic E. coli had no effect on adenylate cyclase activity. Cells exposed to enterotoxin could be washed after 1 min of contact time without altering the subsequent course of maximum adenylate cyclase activity, which was maintained for at least 18 h at 37 C. During long periods (18 h) of tissue culture incubation, the determination of adenylate cyclase activity was 200- to 300-fold more sensitive than quantitating fluid accumulation in the adult rabbit ileal loop model. Decreasing the incubation time appreciably reduced the sensitivity of the epithelial cells to enterotoxin. E. coli enterotoxin is an effective activator of nonintestinal adenylate cyclase systems. Treatment of KB and HEp-2 cell lines with enterotoxin also resulted in significant enzyme stimulation. The intestinal epithelial cell tissue culture model provides a sensitive homogenous biological system for studying the response of intestinal adenylate cyclase to enterotoxin while eliminating the numerous cellular and tissue components present in the ligated ileal loop model.  相似文献   

18.
The intestinal stage of listeriosis was studied in a rat ligated ileal loop system. Listeria monocytogenes translocated to deep organs with similar efficiencies after inoculation of loops with or without Peyer’s patches. Bacterial seeding of deep organs was demonstrated as early as 15 min after inoculation. It was dose dependent and nonspecific, as the ΔinlAB, the Δhly, and the ΔactA L. monocytogenes mutants and the nonpathogenic species, Listeria innocua, translocated similarly to wild-type L. monocytogenes strains. The levels of uptake of listeriae by Peyer’s patches and villous intestine were similar and low, 50 to 250 CFU per cm2 of tissue. No listeria cells crossing the epithelial sheet of Peyer’s patches and villous intestine were observed by transmission electron microscopy. The lack of significant interaction of listeriae and the follicle-associated epithelium of Peyer’s patches was confirmed by scanning electron microscopy. The follicular tissue of Peyer’s patches was a preferential site of Listeria replication. With all doses tested, the rate of bacterial growth was 10 to 20 times higher in Peyer’s patches than in villous intestine. At early stages of Peyer’s patch infection, listeriae were observed inside mononuclear cells of the dome area. Listeriae then disseminated throughout the follicular tissue except for the germinal center. The virulence determinants hly and, to a lesser extent, actA, but not inlAB, were required for the completion of this process. This study suggests that Peyer’s patches are preferential sites for replication rather than for entry of L. monocytogenes, due to the presence of highly permissive mononuclear cells whose nature remains to be defined.  相似文献   

19.
《Mucosal immunology》2014,7(1):57-67
MyD88 adapter-like (Mal)-deficient mice displayed increased susceptibility to oral but not intraperitoneal infection with Salmonella Typhimurium. Bone marrow chimeras demonstrated that mice with Mal-deficient non-hematopoietic cells were more susceptible to infection, indicating a role for Mal in non-myeloid cells. We observed perturbed barrier function in Mal−/− mice, as indicated by reduced electrical resistance and increased mucosa blood permeability following infection. Altered expression of occludin, Zonula occludens-1, and claudin-3 in intestinal epithelia from Mal−/− mice suggest that Mal regulates tight junction formation, which may in part contribute to intestinal integrity. Mal interacted with several protein kinase C (PKC) isoforms in a Caco-2 model of intestinal epithelia and inhibition of Mal or PKC increased permeability and bacterial invasion via a paracellular route, while a pan-PKC inhibitor increased susceptibility to oral infection in mice. Mal signaling is therefore beneficial to the integrity of the intestinal barrier during infection.  相似文献   

20.
Three precisely defined deletion mutants of Salmonella enterica serovar Enteritidis were constructed, a guanine auxotrophic ΔguaB mutant, a nonflagellated ΔfliC mutant, and an auxotrophic and nonflagellated ΔguaB ΔfliC double mutant. All three mutants were less invasive than the wild-type strain in primary chicken cecal epithelial cells and the human epithelial cell line T84 and less efficiently internalized in the chicken macrophage cell line HD11. The ΔfliC mutant was pathogenic in orally infected BALB/c mice, while the ΔguaB mutant was attenuated and conferred protection against a challenge with the pathogenic parent strain. The ΔguaB ΔfliC double mutant was totally asymptomatic and conferred better protection than the ΔguaB mutant. This indicates that the major flagellar protein flagellin is not required for efficient vaccination of BALB/c mice against Salmonella infection. The ΔguaB ΔfliC mutant was also safe for vaccination of 1-day-old chickens. After two immunizations, it induced statistically significant protection against infection of the internal organs of the birds by a virulent S. enterica serovar Enteritidis challenge strain but not against intestinal colonization. These data demonstrate that nonflagellated attenuated Salmonella mutants can be used as marker vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号