首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Primary sensory cortical responses are modulated by the presence or expectation of related sensory information in other modalities, but the sources of multimodal information and the cellular locus of this integration are unclear. We investigated the modulation of neural responses in the murine primary auditory cortical area Au1 by extrastriate visual cortex (V2). Projections from V2 to Au1 terminated in a classical descending/modulatory pattern, with highest density in layers 1, 2, 5, and 6. In brain slices, whole-cell recordings revealed long latency responses to stimulation in V2L that could modulate responses to subsequent white matter (WM) stimuli at latencies of 5-20 ms. Calcium responses imaged in Au1 cell populations showed that preceding WM with V2L stimulation modulated WM responses, with both summation and suppression observed. Modulation of WM responses was most evident for near-threshold WM stimuli. These data indicate that corticocortical projections from V2 contribute to multimodal integration in primary auditory cortex.  相似文献   

2.
This study quantified the magnitude and timing of selective attention effects across areas of the macaque visual system, including the lateral geniculate nucleus (LGN), lower cortical areas V1 and V2, and multiple higher visual areas in the dorsal and ventral processing streams. We used one stimulus configuration and behavioral paradigm, with simultaneous recordings from different areas to allow direct comparison of the distribution and timing of attention effects across the system. Streams of interdigitated auditory and visual stimuli were presented at a high rate with an irregular interstimulus interval (mean of 4/s). Attention to visual stimuli was manipulated by requiring subjects to make discriminative behavioral responses to stimuli in one sensory modality, ignoring all stimuli in the other. The attended modality was alternated across trial blocks, and difficulty of discrimination was equated across modalities. Stimulus presentation was gated, so that no stimuli were presented unless the subject gazed at the center of the visual stimulus display. Visual stimuli were diffuse light flashes differing in intensity or color and subtending 12 degrees centered at the point of gaze. Laminar event-related potential (ERP) and current source density (CSD) response profiles were sampled during multiple paired penetrations in multiple visual areas with linear array multicontact electrodes. Attention effects were assessed by comparing responses to specific visual stimuli when attended versus when visual stimuli were looked at the same way, but ignored. Effects were quantified by computing a modulation index (MI), a ratio of the differential CSD response produced by attention to the sum responses to attended and ignored visual stimuli. The average MI increased up levels of the lower visual pathways from none in the LGN to 0.0278 in V1 to 0.101 in V2 to 0.170 in V4. Above the V2 level, attention effects were larger in ventral stream areas (MI = 0. 152) than in dorsal stream areas (MI = 0.052). Although onset latencies were shortest in dorsal stream areas, attentional modulation of the early response was small relative to the stimulus-evoked response. Higher ventral stream areas showed substantial attention effects at the earliest poststimulus time points, followed by the lower visual areas V2 and V1. In all areas, attentional modulation lagged the onset of the stimulus-evoked response, and attention effects grew over the time course of the neuronal response. The most powerful, consistent, and earliest attention effects were those found to occur in area V4, during the 100-300 ms poststimulus interval. Smaller effects occurred in V2 over the same interval, and the bulk of attention effects in V1 were later. In the accompanying paper, we describe the physiology of attention effects in V1, V2 and V4.  相似文献   

3.
Schizophrenia is associated with perceptual and cognitive dysfunction including impairments in visual attention. These impairments may be related to deficits in early stages of sensory/perceptual processing, particularly within the magnocellular/dorsal visual pathway. In the present study, subjects viewed high and low spatial frequency (SF) gratings designed to test functioning of the parvocellular/magnocellular pathways, respectively. Schizophrenia patients and healthy controls attended to either the low SF (magnocellularly biased) or high SF (parvocellularly biased) gratings. Functional magnetic resonance imaging (fMRI) and recordings of event-related potentials (ERPs) were carried out during task performance. Patients were impaired at detecting low-frequency targets. ERP amplitudes to low-frequency gratings were diminished, both for the early sensory-evoked components and for the attend minus unattend difference component (the selection negativity), which is regarded as a neural index of feature-selective attention. Similarly, fMRI revealed that activity in extrastriate visual cortex was reduced in patients during attention to low, but not high, SF. In contrast, activity in frontal and parietal areas, previously implicated in the control of attention, did not differ between patients and controls. These findings suggest that impaired sensory processing of magnocellularly biased stimuli lead to impairments in the effective processing of attended stimuli, even when the attention control systems themselves are intact.  相似文献   

4.
We measured the timing, areal distribution, and laminar profile of fast, wavelength-insensitive and slower, wavelength-sensitive responses in V1 and extrastriate areas, using laminar current-source density analysis in awake macaque monkeys. There were 3 main findings. 1) We confirmed previously reported significant ventral-dorsal stream latency lags at the level of V4 (V4 mean = 38.7 ms vs. middle temporal mean = 26.9 ms) and inferotemporal cortex (IT mean = 43.4 ms vs. dorsal bank of the superior temporal sulcus mean = 33.9 ms). 2) We found that wavelength-sensitive inputs in areas V1, V4, and IT lagged the wavelength-insensitive responses by significant margins; this lag increased over successive levels of the system. 3) We found that laminar activation profiles in V4 and IT were inconsistent with "feedforward" input through the ascending ventral cortical pathway; the likely alternative input routes include both lateral inputs from the dorsal stream and direct inputs from nonspecific thalamic neurons. These findings support a "Framing" Model of ventral stream visual processing in which rapidly conducted inputs, mediated by one or more accessory pathways, modulate the processing of more slowly conducted feedforward inputs.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) was used to estimate the average receptive field sizes of neurons in each of several striate and extrastriate visual areas of the human cerebral cortex. The boundaries of the visual areas were determined by retinotopic mapping procedures and were visualized on flattened representations of the occipital cortex. Estimates of receptive field size were derived from the temporal duration of the functional activation at each cortical location as a visual stimulus passed through the receptive fields represented at that location. Receptive fields are smallest in the primary visual cortex (V1). They are larger in V2, larger again in V3/VP and largest of all in areas V3A and V4. In all these areas, receptive fields increase in size with increasing stimulus eccentricity. The results are qualitatively in line with those obtained by others in macaque monkeys using neurophysiological methods.  相似文献   

6.
This study was designed to assess the chemoarchitectural organization and extent of the mouse visual cortex. We used nonphosphorylated neurofilament protein, a neuronal marker that exhibits region-specific cellular and laminar patterns, to delineate cortical subdivisions. A comprehensive analysis demonstrated that pyramidal and nonpyramidal neurons expressing neurofilament proteins display striking laminar and regional patterns in the mouse visual cortex permitting the delineation of the primary visual cortex (V1) and its monocular and binocular zones, 2 lateral, and 5 medial extrastriate cortical areas with clear anatomical boundaries and providing evidence that the mouse medial extrastriate cortex is not homogeneous. We also investigated the expression profiles of 2 neuronal activity markers, the immediate early genes c-fos and zif-268, following deprivation paradigms to ascertain the visual nature of all subdivisions caudal, medial, and lateral to V1. The present data indicate that neurochemically identifiable subdivisions of the mouse visual cortex exist laterally and medially to V1 and reveal specific anatomical and functional characteristics at the cellular and regional levels.  相似文献   

7.
Of all areas studied in the accompanying study, attention effects were most consistent and well resolved in V4. In this study, to define some of the anatomical circuits and neural processes underlying the influence of attention, we examined the laminar distribution and physiology of attention effects in V4 and in two lower areas, V1 and V2. Laminar event-related potential (ERP), current source density (CSD) and multiunit activity (MUA) profiles allowed identification of processes occurring in the local ensembles, as well as their sequence and laminar distribution. These methods also permitted us to analyze the brain processes reflected in attention-sensitive components of the surface ERP. As outlined in the previous study, the first robust modulation by attention occurred in V4 during the 100-300 ms poststimulus interval. This is the time frame of the net refractoriness which follows the net local excitatory response to luminance increment. Over this interval, attention reduced CSD amplitudes and increased action potential firing rates, findings consistent with disinhibition as a mechanism for attention in V4. Similar effects were observed during the 100-300 ms time frame in V2. In V4, attention had no effect on the initial excitatory response at the depth of lamina 4, but it did produce large modulations in supragranular and deep laminae, origins of both feedforward and feedback projections. Attentional modulation in V2 was later than in V4 and concentrated in extragranular laminae, with no modulation of the initial layer 4 response. Attentional modulation in V1 was smaller and still later than that in V2 and was focused in the supragranular laminae. In this paradigm, attention did not modulate either the response in lateral geniculate nucleus (LGN) or the initial excitation in lamina 4C of V1. The timing of effects across areas and the laminar distribution of effects within areas indicate that attention effects are mediated by feedback projections. Moreover, our findings suggest that attention may increase the perceptual salience of stimuli by reducing stimulus-evoked refractoriness and/or inhibition in cortical ensembles. Finally, attentional modulation of transmembrane current flow in V4 produced a sustained negative deflection in the laminar ERP profile, that was manifested in the ERP over the occipital surface. This posits a mechanism for the 'selection negativity', a scalp ERP effect noted under similar experimental conditions in human subjects.  相似文献   

8.
Background: The degree of suppression of sensory functions during general anesthesia is controversial. Here, the authors investigated whether discrete flash stimuli induced cortical field potential responses at an isoflurane concentration producing burst suppression and compared the spatiotemporal properties and frequency spectra of flash-induced burst responses with those occurring spontaneously.

Methods: Rats were equipped with multiple epidural and intracortical electrodes to record cortical field potentials in the right hemisphere at several locations along the anterior-posterior axis. At isoflurane concentrations of 1.1, 1.4, and 1.8%, discrete light flashes were delivered to the left eye while cortical field potentials were continuously recorded.

Results: Isoflurane at 1.4-1.8% produced burst suppression. Each flash produced a visual evoked potential in the primary visual cortex followed by secondary bursting activity in more anterior regions. The average latency and duration of these bursts were 220 and 810 ms, respectively. The spontaneous and flash-induced bursts were similar in frequency, duration, and spatial distribution. They had maximum power in the frontal (primary motor) cortex with a dominant frequency of 10 Hz.  相似文献   


9.
The temporal and spatial characteristics of the cortical processes responsible for absolute pitch (AP) and relative pitch (RP) were investigated by multi-channel event-related potentials (ERPs). Compared to listening, pitch-naming of tones in non-possessors of AP elicited three ERP components (P3b, parietal positive slow wave, frontal negative slow wave) over parietal and frontal scalp between 300 and 900 ms in latency, representing the cortical processes for RP. Possessors of AP elicited a unique left posterior-temporal negativity ('AP negativity') at 150 ms in both listening and pitch-naming conditions, representing the cortical processes for AP that were triggered by pitch input irrespective of the task the subjects were asked to perform. Congruency of auditory Stroop stimuli modulated the amplitudes of parietal positive slow wave (non-possessors of AP) and 'AP negativity' (possessors of AP), confirming that these components reflect the verbal labeling or pitch-to-pitch-name associative transformation that is central to pitch-naming. These results are consistent with the hypothesis that AP is subserved by neuronal processes in the left auditory association cortex that occur earlier and more automatically than the processes for RP, which involve broader areas of the cortex over longer periods of time.  相似文献   

10.
Neural sources of focused attention in visual search   总被引:2,自引:2,他引:0  
Previous studies of visual search in humans using event-related potentials (ERPs) have revealed an ERP component called 'N2pc' (180-280 ms) that reflects the focusing of attention onto potential target items in the search array. The present study was designed to localize the neuroanatomical sources of this component by means of magnetoencephalographic (MEG) recordings, which provide greater spatial precision than ERP recordings. MEG recordings were obtained with an array of 148 magnetometers from six normal adult subjects, one of whom was tested in multiple sessions so that both single-subject and group analyses could be performed. Source localization procedures revealed that the N2pc is composed of two distinct neural responses, an early parietal source (180-200 ms) and a later occipito-temporal source (220-240 ms). These findings are consistent with the proposal that parietal areas are used to initiate a shift of attention within a visual search array and that the focusing of attention is implemented by extrastriate areas of the occipital and inferior temporal cortex.  相似文献   

11.
We studied the existence, localization and attentional modulation of gamma-band oscillatory activity (30-130 Hz) in the human intracranial region. Two areas known to play a key role in visual object processing: the lateral occipital (LO) cortex and the fusiform gyrus. These areas consistently displayed large gamma oscillations during visual stimulus encoding, while other extrastriate areas remained systematically silent, across 14 patients and 291 recording sites scattered throughout extrastriate visual cortex. The lateral extent of the responsive regions was small, in the range of 5 mm. Induced gamma oscillations and evoked potentials were not systematically co-localized. LO and the fusiform gyrus displayed markedly different patterns of attentional modulation. In the fusiform gyrus, attention enhanced stimulus-driven gamma oscillations. In LO, attention increased the baseline level of gamma oscillations during the expectation period preceding the stimulus. Subsequent gamma oscillations produced by attended stimuli were smaller than those produced by unattended, irrelevant stimuli. Attentional modulations of gamma oscillations in LO and the fusiform gyrus were thus very different, both in their time-course (preparatory period and/or stimulus processing) and direction of modulation (increase or decrease). Our results thus suggest that the functional role of gamma oscillations depends on the area in which they occur.  相似文献   

12.
Large-scale gamma-band phase synchronization and selective attention   总被引:1,自引:0,他引:1  
Explaining the emergence of a coherent conscious percept and an intentional agent from the activity of distributed neurons is key to understanding how the brain produces higher cognitive processes. Gamma-band synchronization has been proposed to be a mechanism for the functional integration of neural populations that together form a transitory, large-scale, task- and/or percept-specific network. The operation of this mechanism in the context of attention orienting entails that cortical regions representing attended locations should show more gamma-band synchronization with other cortical areas than would those representing unattended locations. This increased synchronization should be apparent in the same time frame as that of the deployment of attention to a particular location. In order to observe this effect, we made electroencephalogram recordings while subjects attended to one side or the other of the visual field (which we confirmed by event-related potential analysis) and calculated phase-locking statistics between the signals recorded at relevant electrode pairs. We observed increased gamma-band phase synchronization between visual cortex contralateral to the attended location and other, widespread, cortical areas approximately 240-380 ms after the directional cue was presented, confirming the prediction of a large-scale gamma synchronous network oriented to the cued location.  相似文献   

13.
This and the following two papers describe event-related potentials (ERPs) evoked by visual stimuli in 98 patients in whom electrodes were placed directly upon the cortical surface to monitor medically intractable seizures. Patients viewed pictures of faces, scrambled faces, letter-strings, number-strings, and animate and inanimate objects. This paper describes ERPs generated in striate and peristriate cortex, evoked by faces, and evoked by sinusoidal gratings, objects and letter-strings. Short-latency ERPs generated in striate and peristriate cortex were sensitive to elementary stimulus features such as luminance. Three types of face-specific ERPs were found: (i) a surface-negative potential with a peak latency of approximately 200 ms (N200) recorded from ventral occipitotemporal cortex, (ii) a lateral surface N200 recorded primarily from the middle temporal gyrus, and (iii) a late positive potential (P350) recorded from posterior ventral occipitotemporal, posterior lateral temporal and anterior ventral temporal cortex. Face-specific N200s were preceded by P150 and followed by P290 and N700 ERPs. N200 reflects initial face-specific processing, while P290, N700 and P350 reflect later face processing at or near N200 sites and in anterior ventral temporal cortex. Face-specific N200 amplitude was not significantly different in males and females, in the normal and abnormal hemisphere, or in the right and left hemisphere. However, cortical patches generating ventral face-specific N200s were larger in the right hemisphere. Other cortical patches in the same region of extrastriate cortex generated grating-sensitive N180s and object-specific or letter-string-specific N200s, suggesting that the human ventral object recognition system is segregated into functionally discrete regions.  相似文献   

14.
We investigated the relation between electrophysiological and hemodynamic measures of brain activity through comparison of intracranially recorded event-related local field potentials (ERPs) and blood-oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI). We manipulated the duration of visual checkerboard stimuli across trials and measured stimulus-duration-related changes in ERP and BOLD activity in three brain regions: peri-calcarine cortex, the fusiform gyrus and lateral temporal-occipital (LTO) cortex. ERPs were recorded from patients who had indwelling subdural electrodes as part of presurgical testing, while BOLD responses were measured in similar brain regions in a second set of subjects. Similar BOLD responses were measured in peri-calcarine and fusiform regions, with both showing monotonic but non-linear increases in hemodynamic amplitude with stimulus duration. In sharp contrast, very different ERP responses were observed in these same regions, such that calcarine electrodes exhibited onset potentials, sustained activity over the course of stimulus duration and prominent offset potentials, while fusiform electrodes only exhibited onset potentials that did not vary with stimulus duration. No duration-related ERP or BOLD changes were observed in LTO. Additional analyses revealed no consistent changes in the EEG spectrum across different brain sites that correlated with duration-related changes in the BOLD response. We conclude that the relation between ERPs and fMRI differs across brain regions.  相似文献   

15.
The current study addressed when in the course of stimulus processing, and in what brain areas, activity occurs that supports the interpretation of cues that signal the appropriateness of different and competing behaviors. Twelve subjects completed interleaved no-go-, pro-, and antitrials, whereas 64-channel electroencephalography was recorded. Principle component and distributed source analyses were used to evaluate the spatial distribution and time course of cortical activity supporting cue evaluation and response selection. By 158 ms poststimulus, visual cortex activity was lower for no-go trials than it was for both pro- and antitrials, consistent with an early sensory filter on the no-go cue. Prefrontal cortex (PFC) activity at 158 ms was highest during antitrials, consistent with this brain region's putative involvement in executive control. At 204 ms poststimulus, however, PFC activity was the same for pro- and antitrials, consistent with an ostensible role in response selection. PFC activity at 204 ms also was robustly inversely correlated (r = -0.75) with visual cortex activity on antitrials, perhaps indicating top-down modulation of early sensory processing that would decrease the probability of an error response. These data highlight how a distributed neural architecture supports the evaluation of stimuli and response choices.  相似文献   

16.
It is well established that spatially directed attention enhances visual perceptual processing. However, the earliest level at which processing can be affected remains unknown. To date, there has been no report of modulation of the earliest visual event-related potential component "C1" in humans, which indexes initial afference in primary visual cortex (V1). Thus it has been suggested that initial V1 activity is impenetrable, and that the earliest modulations occur in extrastriate cortex. However, the C1 is highly variable across individuals, to the extent that uniform measurement across a group may poorly reflect the dynamics of V1 activity. In the present study we employed an individualized mapping procedure to control for such variability. Parameters for optimal C1 measurement were determined in an independent, preliminary "probe" session and later applied in a follow-up session involving a spatial cueing task. In the spatial task, subjects were cued on each trial to direct attention toward 1 of 2 locations in anticipation of an imperative Gabor stimulus and were required to detect a region of lower luminance appearing within the Gabor pattern 30% of the time at the cued location only. Our data show robust spatial attentional enhancement of the C1, beginning as early as its point of onset (57 ms). Source analysis of the attentional modulations points to generation in striate cortex. This finding demonstrates that at the very moment that visual information first arrives in cortex, it is already being shaped by the brain's attentional biases.  相似文献   

17.
The role of area V4 in the primate extrastriate cortex has received much attention in recent years. However, the deficit specificity following area V4 ablations has been difficult to determine due to the ablations including area V4 and additional adjacent areas, deficit attenuation and the numerous variations in the results of different research teams. In order to address these issues, we examined the role of area V4 during reversible deactivation of the lower visual field representation within this area while macaque monkeys performed simple pattern discriminations and their eye position was monitored. Specifically, the monkeys were trained to perform a match-to-sample task with the sample stimulus placed within or outside the visual field quadrant represented within the deactivated region of area V4. The sample and match stimuli had the same salience (same size or luminance). Using this approach, we identified significant simple shape discrimination deficits during deactivation of area V4 that did not attenuate with time. Deficits were also identified when the discriminanda were the same figure viewed at different orientations (rotated shapes). In contrast, no deficits were identified during simple hue discriminations. Furthermore, no saccadic eye movement deficits were identified during deactivation of area V4. Therefore, we conclude that deactivation of area V4 yields specific deficits on simple and rotated shape discriminations. These results show that area V4 is an important step in shape and form processing along the ventral visual stream leading to the inferotemporal cortex.  相似文献   

18.
We investigated the spatio-temporal dynamic of attentional bias towards fearful faces. Twelve participants performed a covert spatial orienting task while recording visual event-related brain potentials (VEPs). Each trial consisted of a pair of faces (one emotional and one neutral) briefly presented in the upper visual field, followed by a unilateral bar presented at the location of one of the faces. Participants had to judge the orientation of the bar. Comparing VEPs to bars shown at the location of an emotional (valid) versus neutral (invalid) face revealed an early effect of spatial validity: the lateral occipital P1 component (approximately 130 ms post-stimulus) was selectively increased when a bar replaced a fearful face compared to when the same bar replaced a neutral face. This effect was not found with upright happy faces or inverted fearful faces. A similar amplification of P1 has previously been observed in electrophysiological studies of spatial attention using non-emotional cues. In a behavioural control experiment, participants were also better at discriminating the orientation of the bar when it replaced a fearful rather than a neutral face. In addition, VEPs time-locked to the face-pair onset revealed a C1 component (approximately 90 ms) that was greater for fearful than happy faces. Source localization (LORETA) confirmed an extrastriate origin of the P1 response showing a spatial validity effect, and a striate origin of the C1 response showing an emotional valence effect. These data suggest that activity in primary visual cortex might be enhanced by fear cues as early as 90 ms post-stimulus, and that such effects might result in a subsequent facilitation of sensory processing for a stimulus appearing at the same location. These results provide evidence for neural mechanisms allowing rapid, exogenous spatial orienting of attention towards fear stimuli.  相似文献   

19.
In humans, visual flicker stimuli of graded frequency (2-90 Hz) elicit an electroencephalographic (EEG) steady-state visual-evoked response (SSVER) with the same fundamental frequency as the stimulus and, in addition, a series of harmonic responses. The fundamental component of the SSVER is generated by increased synaptic activity in primary visual cortex (V1). We set out to determine the cortical origin of the harmonic responses in humans. For this purpose, we recorded the SSVERs at 5 different frequencies (5, 10, 15, 25, and 40 Hz) and measured regional cerebral blood flow (rCBF) with positron emission tomography-H(2)(15)O at rest and during visual stimulation at the same frequencies. The rCBF contrast weighted by the amplitude of the SSVERs first harmonics showed activation of a swath of cortex perpendicular to V1, including mostly the inferior half of the parieto-occipital sulcus. This area overlapped minimally with the primary visual cortex activated by the fundamental frequency. A different method, estimating EEG cortical source current density with low-resolution brain electromagnetic tomography, gave the same results. Our finding suggests that the inferior portion of the banks of the parieto-occipital sulci contains association visual cortex involved in the processing of stimuli that can be as simple as a flickering light source.  相似文献   

20.
There is increasing evidence from cellular recordings in primates and behavioral studies in humans that motion can be processed by other than the magnocellular (M) pathway and the cortical dorsal stream. Little is known about cortical processing of moving stimuli when the information is conveyed by the third retinogeniculocortical pathway - the so-called koniocellular (K) pathway. We addressed this issue in humans by studying the spatio-temporal dynamics of the brain electrical fields evoked by tritan (S-cone isolating) and luminance-defined moving stimuli. Tritan and luminance stimuli are presumably carried by the K and M pathways respectively. We found two time intervals where significant stimulus-specific electric fields were evoked: an early period between 40 and 75 ms after stimulus onset, and a later period between 175 and 240 ms. Some of these fields were identical for tritanand luminance-motion, suggesting that the processing of moving stimuli share common cortical substrates when mediated via K and M pathway input. However, tritan-motion stimuli also evoked unique electric fields that appeared earlier in time than the common motion-specific fields, indicating very fast activation of cortical areas specific to input through the K pathway. A distributed source localization procedure revealed simultaneous activation of striate and extrastriate areas even at the early processing stages, strongly suggesting a very fast activation of the visual cerebral network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号