首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previously we demonstrated that arginine vasopressin (AVP) directly inhibits bicarbonate absorption (JHCO3, pmol/min per mm) in the medullary thick ascending limb (MTAL) of the rat. To determine whether changes in osmolality also may affect bicarbonate absorption, MTAL were studied in vitro with 25 mM HCO3- solutions. Control osmolality was 290 mosmol/kg H2O. In the absence of AVP, increasing osmolality to 560 in perfusate and bath by addition of 150 mM NaCl reduced JHCO3 from 13.7 to 4.5. With 2 x 10(-10) M AVP in the bath, adding 150 mM NaCl to perfusate and bath reduced JHCO3 from 6.9 to 0.6, while adding NaCl to the bath alone reduced JHCO3 from 7.1 to 0.5. Adding 150 mM NaCl to perfusate and bath caused a similar inhibition of JHCO3 in MTAL perfused with furosemide to inhibit net NaCl absorption. In the presence of AVP, adding 600 mM urea to perfusate and bath inhibited JHCO3 by 55%; adding 300 or 600 mM mannitol to perfusate and bath inhibited JHCO3 by 75%. The effects on JHCO3 were reversible and dissociable from changes in transepithelial voltage. Conclusions: (1) osmolality is a factor capable of regulating renal tubule bicarbonate absorption; (2) hypertonicity produced with NaCl, urea, or mannitol markedly inhibits bicarbonate absorption in the MTAL; (3) this inhibition occurs independent of, and is additive to, inhibition by vasopressin. Hypertonicity may shift TAL HCO3- absorption from medulla to cortex, thereby limiting delivery of bicarbonate to the medullary interstitium during antidiuresis.  相似文献   

2.
Our previous studies in cortical collecting ducts isolated from rat kidneys have shown that vasopressin increases both sodium absorption and potassium secretion, while bradykinin inhibits sodium absorption without affecting potassium transport. To determine which anions are affected by these agents, we perfused cortical collecting ducts from rats treated with deoxycorticosterone and measured net chloride flux, net bicarbonate flux (measured as total CO2), transepithelial voltage, and the rate of fluid absorption. Arginine vasopressin (10(-10) M in the peritubular bath) caused a sustained sixfold increase in net chloride absorption and a two- to threefold increase in the magnitude of the lumen negative transepithelial voltage. Before addition of vasopressin, the tubules secreted bicarbonate. Vasopressin abolished the bicarbonate secretion, resulting in net bicarbonate absorption (presumably due to proton secretion) in many tubules. Bradykinin (10(-9) M added to the peritubular bath) caused a reversible 40% inhibition of net chloride absorption, but did not affect the transepithelial voltage or the bicarbonate flux. We concluded: (a) that arginine vasopressin stimulates absorption of chloride and inhibits bicarbonate secretion (or stimulates proton secretion) in the rat cortical collecting duct; and (b) that bradykinin inhibits net chloride absorption in the rat cortical collecting duct without affecting transepithelial voltage or bicarbonate flux. Combining these results with the previous observations on cation fluxes described above, we conclude that bradykinin inhibits electroneutral NaCl absorption (or stimulates electroneutral NaCl secretion) in the rat cortical collecting duct.  相似文献   

3.
Several factors interact to maintain precise control of electrolyte transport in the mammalian cortical collecting duct. We have studied the effects of deoxycorticosterone, arginine vasopressin, and bradykinin on net transepithelial sodium and potassium transport in isolated, perfused rat cortical collecting ducts. Chronic administration of deoxycorticosterone to rats increased both sodium absorption and potassium secretion above very low basal levels. Consequently, deoxycorticosterone-treated rats were used for all remaining studies. Arginine vasopressin (10(-10) M in the bath) caused a sustained fourfold increase in net sodium absorption and a sustained threefold increase in net potassium secretion. Bradykinin (10(-9) M in the bath) caused a reversible 40-50% inhibition of net sodium absorption without affecting net potassium transport or the transepithelial potential difference. In the perfusate, up to 10(-6) M bradykinin had no effect. We conclude: As in rabbits, chronic deoxycorticosterone administration to rats increases sodium absorption and potassium secretion in cortical collecting ducts perfused in vitro. Arginine vasopressin causes a reversible increase in net potassium secretion and net sodium absorption. Bradykinin in the peritubular bathing solution reversibly inhibits net sodium absorption, possibly by affecting an electroneutral sodium transport pathway.  相似文献   

4.
The effects of acetazolamide (Diamox), parathyroid hormone (PTH) and dibutyrylcyclic-adenosine 3':5'-monophosphate (db-cAMP) on fluid and 5,5-dimethyl-2,4-oxazolidinedione (DMO) absorption in the rat proximal convoluted tubule were studied by using microperfusion methods. The rate of tubular absorption of DMO was used to estimate the rate of hydrogen ion secretion. When the tubular and the peritubular capillaries were perfused simultaneously with bicarbonate-free Ringer's solution containing DMO, the rate of DMO absorption (JDMO) was 140 +/- 15.7 pmol/min . mm, a value comparable to the rate of absorption of bicarbonate and glycodiazine, and net fluid absorption (JV) was 2.20 +/- 0.19 nl/min . mm. Administration of PTH (10(-6) M) to the capillary perfusate caused a decrease of JDMO by 23% and a decrease of JV by 28%. Similar results were observed when db-cAMP (10(-4) M) was administered to the luminal perfusate. Addition of acetazolamide (10(-4) M) to the luminal perfusate caused a decrease of JDMO by 66% and a decrease of JV by 45%. The effect of either PTH or db-cAMP was additive to the maximal effect of acetazolamide. However, the effect of PTH was not additive to the effect of db-cAMP. Thus, the results suggest that PTH and acetazolamide have different mechanisms of action on fluid and DMO absorption by proximal tubule and that cAMP mediates the effect of PTH.  相似文献   

5.
Activation of protein kinase C (PKC) and elevation of intracellular calcium ion concentration ([Ca++]i) result from phosphatidylinositol biphosphate (PIP2) breakdown. We previously demonstrated that PKC activation inhibits arginine vasopressin (AVP)-induced osmotic water flow in rabbit cortical collecting tubule (CCT) perfused in vitro at 37 degrees C. To estimate the potential significance of PIP2 turnover as a modulator of water transport in this nephron segment, we examined the effect of Ca on AVP action and explored the mechanisms of action of PKC and increased [Ca++]i. In rabbit CCTs perfused at 37 degrees C, pretreatment with bath A23187 (2 x 10(-8) M, 2 x 10(-6) M), a Ca ionophore, almost totally suppressed AVP (10 microU/ml)-induced peak hydraulic conductivity (Lp). The suppression by 2 x 10(-8) M A23187 was as potent as that by 2 x 10(-6) M A23187, and significant even when it was administered 10 min after AVP. When phorbol myristate acetate (PMA, 10(-9) M), a PKC activator, and A23187 (2 x 10(-8) M) were placed in the bath simultaneously, the combined suppressive effect on peak Lp was greater than that of either inhibitor alone. However, the mechanisms of inhibition by PMA and A23187 were different. While both 10(-7) and 10(-9) M PMA suppression are primarily post-cAMP, A23187 predominantly suppressed a pre-cAMP step: 10(-4) M chlorophenylthio-cAMP-induced peak Lp was not affected by 2 x 10(-8) M A23187, and only partially inhibited by 2 x 10(-6) M A23187. The PMA (10(-7) M) suppression of AVP-induced peak Lp was totally reversed by bath staurosporine (10(-7) M), a PKC inhibitor, but not attenuated by either bath indomethacin (5 x 10(-6) M) or low Ca (1-2 x 10(-6) M) bath medium. In contrast, the A23187 (2 x 10(-8) M) suppression of the peak Lp was not affected by staurosporine, but was significantly reversed by indomethacin or low Ca bath medium. We conclude: (a) Elevation of [Ca++]i, as well as activation of PKC, suppresses the hydroosmotic effect of AVP on CCT at 37 degrees C. (b) When stimulated simultaneously these two intracellular mediators are additive in their antagonism of AVP action. These results suggest that stimulated PIP2 breakdown may be an important modulator of water transport in CCT. (c) Different mechanisms underlie PKC and Ca-mediated suppression of the AVP-induced water transport. The inhibition of AVP action by increased [Ca++]i is primarily pre-cAMP, and involves a cyclooxygenase metabolite(s) of arachidonic acid, while the inhibition by PKC is post-cAMP, and independent of cyclooxygenase products of arachidonic acid.  相似文献   

6.
The effect of arginine vasopressin (AVP) on ureagenesis was measured in isolated rat hepatocytes with ammonium chloride and L(+)-lactate as substrates. AVP was found to stimulate urea synthesis and the dose-response curve suggests that such an effect is present at concentrations of the hormone as low as 25-50 pmol/l. Both the dose-response curve and the concentrations of NH+4 employed suggest that the effect observed could be of physiological significance.  相似文献   

7.
Glucocorticoids have an important role in renal acidification; however, a direct effect of glucocorticoids on proximal convoluted tubule (PCT) acidification has not been directly demonstrated. In the present in vitro microperfusion study PCT from animals receiving dexamethasone (600 micrograms/kg twice daily for 2 d and 2 h before killing) had a significantly higher rate of bicarbonate absorption than did controls (92.0 +/- 13.3 vs 59.9 +/- 3.2 pmol/mm.min, P < 0.01). To examine if glucocorticoids had a direct epithelial action, dexamethasone was added to the bath of PCT perfused in vitro. After 3 h of incubation in paired experiments 10(-6) M and 10(-5) M dexamethasone resulted in an approximately 30% stimulation in the rate of bicarbonate absorption. 10(-7) M dexamethasone and 10(-6) M aldosterone had no effect on bicarbonate absorption. The stimulation of acidification by 10(-5) M dexamethasone was blocked by actinomycin D and cycloheximide. These data are consistent with a direct effect of glucocorticoids on PCT acidification, and this effect is dependent upon protein synthesis.  相似文献   

8.
Recent studies have suggested a selective effect of atrial natriuretic peptide (ANP) in regulating NaCl reabsorption in juxtamedullary nephrons. We examined (a) functional differences between medullary thick ascending limbs from long and short loops of Henle (lMAL and sMAL, respectively) and (b) the interaction of ANP and arginine vasopressin (AVP) on Cl- transport (JCl) in these two segments. AVP-, glucagon-, and calcitonin-stimulated cAMP accumulation was higher in lMAL than in sMAL. 10(-10) M AVP increased JCl in lMAL but not in sMAL. ANP-stimulated cGMP production was higher in lMAL than in sMAL. 10(-10) and 10(-8) M ANP inhibited AVP-stimulated JCl in lMAL by 26-30% (from 70.3 +/- 11.4 to 51.7 +/- 13.6 pmol/mm per min and from 88.1 +/- 10.1 to 61.8 +/- 11.7 pmol/mm per min, respectively), and this effect was mimicked by 10(-5) to 10(-4) M cGMP. This effect of ANP in lMAL could account for a large part of the ANP-induced natriuresis and diuresis in vivo, in that the rate of NaCl reabsorption in MAL is the largest among distal nephron segments, providing the chemical potential energy for the renal countercurrent multiplication system.  相似文献   

9.
Isolated cortical thick ascending limbs of Henle's loop were perfused in order to directly evaluate magnesium transport in this segment. Transepithelial potential difference was altered by varying the NaCl concentration in perfusate and bath and adding 50 microM furosemide to the perfusate. Perfusion under standard conditions with isotonic solutions resulted in a mean transepithelial potential difference of +8.8 +/- 0.7 mV and net magnesium absorption at a rate of 0.32 +/- 0.06 pmol/mm per min. Perfusion with a hypotonic solution significantly increased potential difference and the net absorptive rate of magnesium, calcium, and potassium. Conversely, reversal of the polarity of the potential difference with low NaCl bath and luminal furosemide produced net secretion of magnesium, calcium, and potassium. Parathyroid hormone in a bath concentration of 1.0 U/ml increased magnesium absorption from 0.32 +/- 0.06 to 0.63 +/- 0.06 pmol/mm per min (P less than 0.001) and calcium from 0.52 +/- 0.08 to 0.97 +/- 0.08 pmol/mm per min (P less than 0.001). Dibutyryl cyclic AMP produced similar effects on both calcium and magnesium absorption. Increasing bath calcium concentration twofold significantly inhibited net calcium absorption from 0.79 +/- 0.27 to 0.16 +/- 0.02 pmol/mm per min but magnesium transport was unaffected. Increasing bath magnesium concentration twofold significantly inhibited net magnesium absorption from 0.56 +/- 0.14 to -0.09 +/- 0.13 pmol/mm per min but had no effect upon net calcium transport. Net absorption of magnesium was significantly increased with increased concentration in the perfusate but calcium transport was unchanged. Similarly, increasing perfusate calcium concentration produced an increase in net calcium transport but did not alter magnesium transport. These data indicate that this segment of the loop of Henle is an important site for magnesium transport. Transport is influenced by luminal and bath concentration and is stimulated by parathyroid hormone and cyclic AMP. The data do not provide support for the concept of an interactive process between calcium and magnesium, and suggest that the positive transepithelial voltage is an important driving force for net reabsorption of magnesium, as well as calcium and potassium in this segment.  相似文献   

10.
NH4Cl acidosis--a common experimental model of hyperchloremic metabolic acidosis--elicits complex intrarenal responses whereby the fall in plasma bicarbonate concentration can be restored to normal after the initial acid load. Using the technique of in vivo micropuncture of surface distal tubules of the rat kidney, we attempted to further define controlling mechanisms underlying the enhanced bicarbonate reabsorption in this setting. Specifically, we wished to determine the dependence of distal tubule bicarbonate reabsorption (JtCO2) on sodium transport, water reabsorption, and carbonic anhydrase activity. Surface distal tubules of Sprague-Dawley rats made acidotic by ammonium chloride gavage (arterial blood pH: 7.15 +/- 0.01, [HCO3]: 14.8 +/- 0.5 mM) were perfused in vivo at 8 and 24 nL/min with 4 different isoosmotic, 25 mM bicarbonate solutions: Group 1 was perfused with 60 mM Na, Group 2 with 60 mM choline, Group 3 with 60 mM choline + 3 x 10(-4) M amiloride, and Group 4 with 60 mM Na + 10(-3) M acetazolamide. At 8 nL/min, significant bicarbonate reabsorption occurred with all perfusates. JtCO2 was 65 +/- 4, 59 +/- 5, 58 +/- 6, and 40 +/- 4 pmol.min-1.mm-1, in Groups 1, 2, 3, and 4, respectively. However, JtCO2 in Group 4 was significantly less than that in Groups 1 and 2 (p less than 0.01 and p less than 0.05, respectively). Amiloride added to the low sodium perfusate did not reduce bicarbonate reabsorption. We conclude that bicarbonate reabsorption in distal tubules of acidotic rats is acetazolamide-sensitive and is not significantly sustained by sodium or water movements.  相似文献   

11.
Renal ammonium excretion is increased by potassium depletion and reduced by potassium loading. To determine whether changes in potassium concentration would alter ammonia transport in the medullary thick ascending limb (MAL), tubules from rats were perfused in vitro and effects of changes in K concentration within the physiological range (4-24 mM) were evaluated. Increasing K concentration from 4 to 24 mM in perfusate and bath inhibited total ammonia absorption by 50% and reduced the steady-state transepithelial NH+4 concentration gradient. The inhibition of total ammonia absorption was reversible and occurred when K replaced either Na or N-methyl-D-glucamine. Increasing K concentration in the luminal perfusate alone gave similar inhibition of total ammonia absorption. At 1-2 nl/min per mm perfusion rate, increasing K concentration in perfusion and bathing solutions had no significant effect on transepithelial voltage. With either 4 or 24 mM K in perfusate and bath, an increase in luminal perfusion rate markedly increased total ammonia absorption. Thus, both potassium concentration and luminal flow rate are important factors capable of regulating total ammonia transport by the MAL. Changes in systemic potassium balance may influence renal ammonium excretion by affecting NH+4 absorption in the MAL and altering the transfer of ammonia from loops of Henle to medullary collecting ducts.  相似文献   

12.
We investigated the effects of V1 IOPC-21268, 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone) and V2 (OPC-31260, 5-dimethylamino-1[4-(2-methylbensoylamino)benzoyl]-2,3,4,5-tetrahy dro-1H- benzazepine) vasopressin receptor antagonists on the negative inotropic response to arginine vasopressin (AVP) in the isolated perfused heart preparations of the dog. AVP (7.5-750 pmol) decreased the atrial and ventricular contractile force when the preparation was perfused with constant pressure or constant flow. AVP induced a small increase in sinus rate. Desmopressin, a selective vasopressin V2 agonist, did not change the sinus rate and atrial or ventricular contractile force. OPC-21268 (0.01-3 mumol) and OPC-31260 (0.01-1 mumol) induced a small negative inotropic effect. Both OPC-21268 and OPC-31260 inhibited the negative inotropic response to AVP in a dose-dependent manner. The doses of 50% inhibition (ID50) for OPC-21268 and OPC-31260 on the inotropic effect were 0.30 +/- 0.16 mumol and 0.084 +/- 0.034 mumol, respectively. Neither OPC-21268 nor OPC-31260 affected the acetylcholine-, adenosine- or norepinephrine-induced inotropic and chronotropic effects. It has been reported that the concentration of OPC-21268 that displaced 50% of specific AVP binding is 0.4 microM for V1 receptors and > 100 microM for V2 receptors and the concentration of OPC-31260 is 0.01 microM for V2 receptors and 1 microM for V1 receptors. We, therefore, suggest that AVP directly causes negative inotropic effects mediated at least in part by V1 receptors in the dog heart.  相似文献   

13.
The regulation of epithelial Na(+)/H(+) exchangers (NHEs) by hyposmolality is poorly understood. In the renal medullary thick ascending limb (MTAL), transepithelial bicarbonate (HCO(3)(-)) absorption is mediated by apical membrane Na(+)/H(+) exchange, attributable to NHE3. In the present study we examined the effects of hyposmolality on apical Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL of the rat. In MTAL perfused in vitro with 25 mM HCO(3)(-) solutions, decreasing osmolality in the lumen and bath by removal of either mannitol or sodium chloride significantly increased HCO(3)(-) absorption. The responses to lumen addition of the inhibitors ethylisopropyl amiloride, amiloride, or HOE 694 are consistent with hyposmotic stimulation of apical NHE3 activity and provide no evidence for a role for apical NHE2 in HCO(3)(-) absorption. Hyposmolality increased apical Na(+)/H(+) exchange activity over the pH(i) range 6.5-7.5 due to an increase in V(max). Pretreatment with either tyrosine kinase inhibitors or with the tyrosine phosphatase inhibitor molybdate completely blocked stimulation of HCO(3)(-) absorption by hyposmolality. These results demonstrate that hyposmolality increases HCO(3)(-) absorption in the MTAL through a novel stimulation of apical membrane Na(+)/H(+) exchange and provide the first evidence that NHE3 is regulated by hyposmotic stress. Stimulation of apical Na(+)/H(+) exchange activity in renal cells by a decrease in osmolality may contribute to such pathophysiological processes as urine acidification by diuretics, diuretic resistance, and renal sodium retention in edematous states.  相似文献   

14.
We explored the role for protein kinase C (PKC) in modulating vasopressin (AVP)-stimulated hydraulic conductivity (Lp) in rabbit cortical collecting tubule (CCT) perfused in vitro at 37 degrees C. In control studies, 10 microU/ml AVP increased Lp (mean +/- SE, X 10(-7) centimeters/atmosphere per second) from 4.4 +/- 0.9 to 166.0 +/- 10.4. Pretreatment with dioctanoylglycerol (DiC8) suppressed AVP stimulated peak Lp (peak Lp, 21.9 +/- 3.1). Pretreatment with 10(-9) and 10(-7) M 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) also blocked the increase in Lp in a dose-dependent fashion (peak Lp, 59.3 +/- 7.5 and 18.6 +/- 4.8, respectively). Inactive phorbol ester, 4 alpha-phorbol 12 beta,13 alpha-didecanoate (10(-7) M), had no effect. PMA also suppressed the increase in Lp induced by 10(-4) M 8-p-chlorophenylthio-cyclic AMP (CcAMP): peak Lp was 169.4 +/- 14.9 in control, 79.2 +/- 5.5 with 10(-9) M PMA, and 25.7 +/- 2.9 with 10(-7) M PMA. Furthermore, when 10(-7) M PMA was added to the bath 10 min after exposure to AVP, the Lp response to AVP was blocked. Peak Lp was 52.4 +/- 9.6 with PMA vs. 165.1 +/- 10.0 in control. Phosphatidic acid (PA), which is thought to stimulate phosphatidylinositol (PI) turnover, produced similar inhibitory effects on AVP as well as CcAMP-stimulated Lp: PA suppressed 10-microU/ml AVP-induced peak Lp from a control value of 159.6 +/- 7.9 to 88.9 +/- 15.8, and 10(-4) M CcAMP induced peak Lp from 169.4 +/- 14.9 to 95.5 +/- 7.7. We conclude that PMA, at concentrations known to specifically activate PKC, suppresses the hydroosmotic effect of AVP on CCT; This suppression is primarily a post-cAMP event; Inhibition of AVP-stimulated Lp by DiC8 and PA also suggests an inhibitory role for the PKC system; The ability of pre- and post-AVP administration of PMA to blunt the AVP response suggests that agents that act through modulation of PI turnover in CCT may regulate the hydroosmotic effect of AVP.  相似文献   

15.
In the present study, deoxycorticosterone (DOC) and salt was administered to Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) by using silicone-rubber implants (DOC acetate, 100 mg/kg) and 0.9% NaCl as drinking water. SHR treated with DOC-salt for 4 weeks showed the characteristics of malignant hypertension including marked increases in blood pressure and left ventricular weight with typical histological changes in the kidney. DOC-salt treatment increased plasma vasopressin levels in WKY (from 6.1 +/- 0.5 to 8.9 +/- 0.8 pmol/l) but significantly more in SHR (from 5.0 +/- 0.6 to 15.8 +/- 1.2 pmol/l). Intravenous administration of the specific antagonist to the pressor effect of vasopressin, d(CH2)5Tyr(Me)AVP (10 micrograms/kg), decreased mean arterial pressure of DOC-salt treated WKY and SHR by 6.6 +/- 0.9 mmHg (P less than 0.05) and 9.7 +/- 1.7 mmHg (P less than 0.05) respectively. DOC-water treatment also increased plasma AVP levels in SHR to 10.5 +/- 0.8 pmol/l, but the vasopressin antagonist had little effect on blood pressure in these rats. Plasma levels of vasopressin were significantly correlated with both mean arterial pressure (r = 0.64) and left ventricular weight (r = 0.74). This suggests a close relationship between plasma AVP and severity of hypertension. The results of the present experiment demonstrate that vasopressin is part of the overall pressor mechanism which contributes to the maintenance of blood pressure in DOC-salt induced malignant hypertension in SHR, but the small fall in pressure produced by the AVP antagonists suggests that the contribution is of only minor importance.  相似文献   

16.
We microperfused the loop of Henle (LOH) to assess its contribution to urine acidification in vivo. Under control conditions (Na HCO3- = 13 mM, perfusion rate approximately 17 nl/min-1) net bicarbonate transport (JHCO3-) was unsaturated, flow- and concentration-dependent, and increased linearly until a bicarbonate load of 1,400 pmol.min-1 was reached. Methazolamide (2 x 10(-4) M) reduced JHCO3 by 70%; the amiloride analogue ethylisopropylamiloride (EIPA) (2 x 10(-4) M) reduced JHCO3 by 40%; neither methazolamide nor EIPA affected net water flux (Jv). The H(+)-ATPase inhibitor bafilomycin A1 (10(-5) M) reduced JHCO3 by 20%; the Cl- channel inhibitor 5-nitro-2'-(3-phenylpropylamino)-benzoate (2 x 10(-4) M) and the Cl(-)-base exchange inhibitor diisothiocyanato-2,2'-stilbenedisulfonate (5 x 10(-5) M), had no effect on fractional bicarbonate reabsorption. Bumetanide (10(-6) M) stimulated bicarbonate transport (net and fractional JHCO3-) by 20%, whereas furosemide (10(-4) M) had no effect on bicarbonate reabsorption; both diuretics reduced Jv. In summary: (a) the LOH contributes significantly to urine acidification. It normally reabsorbs an amount equivalent to 15% of filtered bicarbonate; (b) bicarbonate reabsorption is not saturated; (c) Na(+)-H+ exchange and an ATP-dependent proton pump are largely responsible for the bulk of LOH bicarbonate transport.  相似文献   

17.
Interactions among the transport systems involved with sodium, bicarbonate, glucose, phosphate, and alanine absorption in isolated segments of the rabbit proximal convoluted tubule were examined with radioisotopic techniques to measure glucose, phosphate, and fluid absorption rates. The composition of the perfusate and bath varied from normal, physiological fluids to fluids deficient in a single solute. The deletion of glucose from the perfusate increased the lumen-to-bath flux of phosphate from 5.51 +/- 1.15 to 8.32 +/- 1.34 pmol/mm-min (P less than 0.01). Similar changes occurred when glucose transport was inhibited by phlorizin 10 micron in the perfusate, The deletion of alanine from the perfusate increased the lumen-to-bath flux of phosphate from 6.55 +/- 1.08 to 9.00 +/- 1.30 pmol/mm-min (P less than 0.01) but did not affect glucose transport significantly, 80.1 +/- 10.1 vs. 72.5 +/- 5.4 pmol/mm-min. Replacement of intraluminal sodium with choline, elimination of potassium from the bath, and removal of bicarbonate from the lumen and bath each reduced glucose, phosphate, and fluid absorption. These data indicate that the proximal absorptive processes for glucose and for phosphate include elements that are dependent upon some function of sodium transport. Additionally, the effects on phosphate transport of deleting glucose or alanine occur independent of any changes in net sodium transport and are opposite the effects of deleting bicarbonate. These differences may relate to the observations that the transport of glucose and alanine is electrogenic while that of bicarbonate is not. Regardless of possible mechanisms, the data demonstrate that important changes in the absorption rates of different solutes handled significantly by the proximal convoluted tubule may occur in response to changes in specific components of proximal sodium transport.  相似文献   

18.
We have shown that urea transport across the terminal inner medullary collecting duct (terminal IMCD) is mediated by a vasopressin-stimulated, facilitated diffusion process exhibiting properties consistent with a transporter. To investigate whether hypertonic NaCl, as exists in vivo in the inner medulla, affects urea permeability, we studied isolated perfused rat terminal IMCD segments. Perfusate and bath osmolality were varied symmetrically by adding or removing NaCl or mannitol. Urea permeability rose progressively when osmolality was increased with NaCl or mannitol from 290 to 690 mOsm/kg H2O in the absence of vasopressin; there was no further increase at 890 mOsm/kg H2O. In the presence of 10(-8) M arginine vasopressin, urea permeability increased when NaCl was added to raise osmolality from 290 to 490 mOsm/kg H2O but there was no further increase at 690 mOsm/kg H2O. When 1 mM 8-bromo cyclic AMP was added to the bath, raising NaCl still increased urea permeability. These results suggest that urea transport across the rat terminal IMCD is regulated both by vasopressin and by osmolality at values present in the renal inner medulla. Osmolality seems to activate urea transport across the rat terminal IMCD by mechanisms distinct from those of vasopressin or cyclic AMP.  相似文献   

19.
To investigate factors regulating ammonia (NH3) production by isolated defined proximal tubule segments, we examined the rates of total NH3 (NH3 + NH+4) production by individual proximal tubule segments perfused in vitro under a variety of perfusion conditions. Segments consisting of late convoluted and early straight portions of superficial proximal tubules were incubated at 37 degrees C in Krebs-Ringer bicarbonate (KRB) buffer containing 0.5 mM L-glutamine and 1.0 mM sodium acetate, pH 7.4. The rate of total ammonia production was calculated from the rate of accumulation of total NH3 in the bath. The total ammonia production rate by unperfused proximal segments was 6.0 +/- 0.2 (+/- SE) pmol/mm per minute, which was significantly lower than segments perfused at a flow rate of 22.7 +/- 3.4 nl/min with KRB buffer (21.5 +/- 1.4 pmol/mm per minute; P less than 0.001) or with KRB buffer containing 0.5 mM L-glutamine (31.9 +/- 2.5; P less than 0.001). The rate of NH3 production was higher in segments perfused with glutamine than in segments perfused without glutamine (P less than 0.01). The perfusion-associated stimulation of NH3 production was characterized further. Analysis of collected luminal fluid samples revealed that the luminal fluid total NH3 leaving the distal end of the perfused proximal segment accounted for 91% of the increment in NH3 production observed with perfusion. Increasing the perfusion flow rate from 3.7 +/- 0.1 to 22.7 +/- 3.4 nl/min by raising the perfusion pressure resulted in an increased rate of total NH3 production in the presence or absence of perfusate glutamine (mean rise in rate of total NH3 production was 14.9 +/- 3.7 pmol/mm per minute in segments perfused with glutamine and 7.8 +/- 0.9 in those perfused without glutamine). In addition, increasing the perfusion flow rate at a constant perfusion pressure increased the rate of luminal output of NH3. Total NH3 production was not affected by reducing perfusate sodium concentration to 25 mM and adding 1.0 mM amiloride to the perfusate, a condition that was shown to inhibit proximal tubule fluid reabsorption. These observations demonstrate that the rate of total NH3 production by the mouse proximal tubule is accelerated by perfusion of the lumen of the segment, by the presence of glutamine in the perfusate, and by increased perfusion flow rates. The increased rate of NH3 production with perfusion seems not to depend upon normal rates of sodium reabsorption. The mechanism underlying the stimulation of NH3 production by luminal flow is unknown and requires further study.  相似文献   

20.
Using continuous microperfusion techniques, we studied the load dependence of bicarbonate reabsorption along cortical distal tubules of the rat kidney and their bicarbonate permeability. Net bicarbonate transport was evaluated from changes in tracer inulin concentrations and total CO2 measurements by microcalorimetry. Bicarbonate permeability was estimated from the flux of total CO2 along known electrochemical gradients into bicarbonate-and chloride-free perfusion solution containing 10(-4) M acetazolamide. Transepithelial potential differences were measured with conventional glass microelectrodes. Significant net bicarbonate reabsorption occurred at luminal bicarbonate levels from 5 to 25 mM, and at perfusion rates from 5 to 30 nl/min. Bicarbonate reabsorption increased in a load-dependent manner, both during increments in luminal bicarbonate concentration or perfusion rate, reaching saturation at a load of 250 pmol/min with a maximal reabsorption rate of approximately 75 pmol/min.mm. Rate of bicarbonate reabsorption was flow dependent at luminal concentrations of 10 but not at 25 mM. During chronic metabolic alkalosis, maximal rates of reabsorption were significantly reduced to 33 pmol/min.mm. The bicarbonate permeability was 2.32 +/- 0.13 x 10(-5) cm/s in control rats, and 2.65 +/- 0.26 x 10(-5) cm/s in volume-expanded rats. Our data indicate that at physiological bicarbonate concentrations in the distal tubule passive bicarbonate fluxes account for only 16-21% of net fluxes. At high luminal bicarbonate concentrations, passive bicarbonate reabsorption contributes moderately to net reabsorption of this anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号