首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid peroxidase (TPO) deficiency is frequently involved in total iodide organification defects (TIOD). According to the recessive mode of inheritance, mutations are found in homozygous or in compound heterozygous states. However, a single heterozygous TPO mutation is reported in a high percentage (approximately 20%) of patients with typical TIOD phenotype. In the present study, the genetic and clinical evaluation of a TIOD family is reported. The propositus is an Italian girl with congenital hypothyroidism and positive perchlorate discharge test. Two TPO frameshift mutations were documented: a C deletion at 477 in exon 5, and a GGCC duplication at 1277 in exon 8. Unaffected family members, heterozygous for one of the two TPO mutations, were also studied in order to evaluate in vivo the functional activity of a single TPO allele. They have been found to have normal thyroid morphology and function with normal perchlorate test. In conclusion, the present study reports the clinical and molecular investigations in an Italian TIOD family. The results show that the TIOD phenotype in the propositus is associated to a compound heterozygous pattern, while a single TPO mutation does not significantly affect in vivo the efficiency of iodide organification. Therefore, extensive analyses of TPO gene and 2p25 locus are needed in the frequent TIOD cases in whom conventional investigations disclosed only one mutant allele.  相似文献   

2.
Presented is a cohort study to assess the nature and frequency of thyroid peroxidase (TPO) mutations in 45 patients (35 families) with congenital hypothyroidism due to a total iodide organification defect; incidence is 1:66,000 in The Netherlands. The presentation is consistently similar with a severe form of congenital hypothyroidism and also characterized by a complete and immediate release of accumulated radioiodide from the thyroid after sodium perchlorate administration. Sixteen different mutations were found, including eight novel mutations; the majority occurs in exons 8, 9, or 10. The GGCC insertion in exon 8 at nucleotide 1277, leading to an early termination signal in exon 9, is the most frequently occurring mutation. These mutations were detected in 29 families in both TPO alleles (13 homozygous and 16 compound heterozygous). In one family, partial maternal isodisomy of 2p was detected, in four families only one mutated TPO allele could be detected, and in one family no inactivating TPO mutation could be found. Because all patients clearly had the clinicopathologic features of a total iodide organification defect, we conclude that in these five families the mutations in the (other) alleles could be either located in the intronic sequences or in the promoter region. Mutations in the TPO gene result in total iodide organification defects.  相似文献   

3.
OBJECTIVE: To screen and subsequently sequence the TPO gene for mutations in patients with congenital goitre, hypothyroidism and evidence for an organification defect (positive perchlorate discharge test). PATIENTS: We have studied seven hypothyroid and congenitally goitrous patients from three unrelated families. DESIGN AND MEASUREMENTS: We have measured serum thyroid hormone levels, 131I uptake, serum TSH and serum Tg concentrations. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified genomic DNA was used to screen for mutations in the TPO gene. RESULTS: DGGE identified the presence of two frameshift mutations: a GGCC duplication in exon 8 (homozygous in one family and heterozygous in the other family) and a heterozygous insertion of a single nucleotide (C) at position 2505-2511 in exon 14. In addition, we have detected an alteration in exon 11, not yet described in the literature, derived from a single nucleotide substitution of a C to G at position 2008, altering the well-conserved amino acid domain among the peroxidases superfamily. This mutation in exon 11 was present in two families that showed heterozygous mutation for exon 8 or for exon 14. CONCLUSIONS: These results could support the hypothesis for a putative compound heterozygosity pattern in the affected patients. The altered phenotype (goitre and hypothyroidism since birth) seems justifiable in view of the possible inactivating character of this novel mutation in exon 11.  相似文献   

4.
The aim of this study was to identify the genetic defect of a patient with dyshormonogenetic congenital hypothyroidisms (CH) with total iodide organification defect (TIOD). A male child diagnosed with CH during neonatal screening. Laboratory tests confirmed the permanent and severe CH with TIOD (99% perchlorate release). The coding sequence of TPO, DUOX2, and DUOXA2 genes and 2957 base pairs (bp) of the TPO promoter were sequenced. Molecular analysis of patient's DNA identified the heterozygous duplication GGCC (c.1186_1187insGGCC) in exon 8 of the TPO gene. No additional mutation was detected either in the TPO gene, TPO promoter, DUOX2 or DUOXA2 genes. We have described a patient with a clear TIOD causing severe goitrous CH due to a monoallelic TPO mutation. A plausible explanation for the association between an autosomal recessive disorder with a single TPO-mutated allele is the presence of monoallelic TPO expression.  相似文献   

5.
Mutations in the thyroid peroxidase (TPO) gene lead to severe congenital hypothyroidism due to total iodide organification defect (TIOD). According to the recessive mode of inheritance, patients are homozygous or compound heterozygous for gene mutations. However, about 17% of cases with typical phenotype harbor a single TPO-mutated allele. We present a TIOD family in which the three affected siblings had a single genomic TPO mutation (R693W) inherited from the unaffected father. Other mutations were not found, although all TPO coding exons and exon/intron boundaries were sequenced. Eleven different polymorphisms were found in hetero- or homozygosity in all family members. On the contrary, using retrotranscribed thyroid tissue RNA, all heterozygous polymorphisms and the mutation were homozygous. The distribution of the polymorphisms indicated that only the mutant paternal allele is transcribed at the thyroid tissue level. We excluded the presence of major deletions involving the maternal chromosome at 2p25 and of maternal imprinting or mutations in part of the regulatory regions of the gene. In summary, we report one family with TIOD due to monoallelic expression of a mutant TPO allele in the thyroid. This mechanism might be generally involved in TIOD cases with a single TPO-mutated allele.  相似文献   

6.
Total iodide organification defect (TIOD), where the iodide in the thyroid gland cannot be oxidized and/or bound to the protein, is caused by a defect in the thyroid peroxidase (TPO) gene. Single strand conformation polymorphism analysis was used to screen for mutations in the TPO gene from five unrelated TIOD patients in Taiwan, and five novel mutations were detected. Three of these were frameshift mutations: a single T insertion between nucleotide position 2268 and 2269 (c.2268-2269 insT) in exon 13 and two single C deletions at nucleotide positions 843 (c.843 delC) and 2413 (c.2413 delC) in exon 8 and 14 respectively. The other two were single nucleotide substitutions (c.G1477>A and c.G2386>T) located in exons 9 and 13 respectively. While the former would result in amino acid substitution (Gly493Ser) in the highly conserved region of the TPO polypeptide, the latter would result in either amino acid substitution (Asp796Tyr) or alternative splicing. Of those identified TPO mutations, c.2268-2269 insT was most prevalent and was detected as heterozygous in all but one TIOD patients. All five TIOD patients investigated in this study were compound heterozygous. The method presented in this study could be used for carrier assessment and mutation analysis of newly identified TIOD patients.  相似文献   

7.
The mutation of the thyroid peroxidase (TPO) gene that causes the total iodide organification defect (TIOD) is a common and severe condition leading to dyshormonogenesis of the thyroid gland in Caucasians. However, the role of TIOD in Chinese patients with thyroid dyshormonogenesis is unknown. In this study we followed 16 patients from 16 unrelated families in Taiwan and performed perchlorate discharge examination. Seven patients had TIOD and 2 had the partial iodine organification defect (PIOD) among the 16 families. These 9 patients underwent screening in search of TPO gene mutations. Three new mutations (2268 insT, 2243 delT, and G157C) were detected in the 7 patients with TIOD, whereas no mutation in the TPO gene was found in the 2 patients with PIOD. The 2268 insT mutation was noted to be the most common among these TIOD patients (12 of 14 studied alleles, 86%). With 3 intragenic polymorphic markers, we found that the alleles carrying the 2268 insT mutation in Taiwan Chinese TIOD patients were tightly linked to a specific haplotype. The allele frequencies of this haplotype in the 8 patients with homozygous 2268 insT (5 unrelated families, 10 studied alleles) and in 49 normal individuals (98 studied alleles) were 1.00 and 0.02, respectively (P < 0.0001). This indicates that this common novel mutation among Taiwanese patients with TIOD is due to a founder effect.  相似文献   

8.
We encountered a Japanese patient with goitrous hypothyroidism due to iodide organification defect in the thyroid gland. Sequence analysis identified two novel mutations (E378K in exon 8 and a heterozygous 10 base deletion of the intron 15-exon 16 boundary) in the thyroid peroxidase (TPO) gene. As individuals with goitrous hypothyroidism caused by TPO gene mutation develop thyroid cancer, regular and careful follow-up for such patients must be done.  相似文献   

9.
Background Iodide organification defect (IOD) is characterized by a reduced ability of the thyroid gland to retain iodide resulting in hypothyroidism. Mutations in thyroid peroxidase (TPO) gene appear to be the most common cause of IOD and are commonly inherited in an autosomal recessive fashion. The TPO gene is located on the chromosome 2p25. It comprises 17 exons, covers approximately 150 kb of genomic DNA and codes 933 amino acids. Objetives In this study, we characterize the clinical and molecular basis of seven patients from four unrelated families with congenital hypothyroidism (CH) because of IOD. Design and Methods All patients underwent clinical, biochemical and imaging evaluation. The promoter and the complete coding regions of the human TPO along with the flanking intronic regions were analysed by single‐strand conformation polymorphism analysis and direct DNA sequencing. Segregation analysis of mutations was carried out, and the effect of the novel missense identified mutations was investigated by ‘in silico’ studies. Results All subjects had congenital and persistent primary hypothyroidism. Three novel mutations: c.796C>T [p.Q266X], c.1784G>A [p.R595K] and c.2000G>A [p.G667D] and a previously reported mutation: c.1186_1187insGGCC [p.R396fsX472] have been identified. Four patients were compound heterozygous for p.R396fsX472/p.R595K mutations, two patients were homozygous for p.R595K, and the remaining patient was a compound heterozygous for p.Q266X/p.G667D. Conclusions Our findings confirm the genetic heterogeneity of TPO defects and the importance of the implementation of molecular studies to determinate the aetiology of the CH with dyshormonogenesis.  相似文献   

10.
CONTEXT AND OBJECTIVE: Most cases of goitrous congenital hypothyroidism (CH) from thyroid dyshormonogenesis 1) follow a recessive mode of inheritance and 2) are due to mutations in the thyroid peroxidase gene (TPO). We report the genetic mechanism underlying the apparently dominant inheritance of goitrous CH in a nonconsanguineous family of French Canadian origin. DESIGN, SETTING, AND PARTICIPANTS: Two brothers identified by newborn TSH screening had severe hypothyroidism and a goiter with increased (99m)Tc uptake. The mother was euthyroid, but the father and two paternal uncles had also been diagnosed with goitrous CH. After having excluded PAX8 gene mutations, we hypothesized that the underlying defect could be TPO mutations. RESULTS: Both compound heterozygous siblings had inherited a mutant TPO allele carried by their mother (c.1496delC; p.Pro499Argfs2X), and from their father, one brother had inherited a missense mutation (c.1978C-->G; p.Gln660Glu) and the other an insertion (c.1955insT; p.Phe653Valfs15X). The thyroid gland of one uncle who is a compound heterozygote for TPO mutations (p.Phe653Valfs15X/p.Gln660Glu) was removed because of concurrent multiple endocrine neoplasia type 2A. Immunohistochemistry revealed normal TPO staining, implying that Gln660Glu TPO is expressed properly. Modeling of this mutant in silico suggests that its three-dimensional structure is conserved, whereas the electrostatic binding energy between the Gln660Glu TPO and its heme group becomes repulsive. CONCLUSION: We report a pedigree presenting with pseudodominant goitrous CH due to segregation of three different TPO mutations. Although goitrous CH generally follows a recessive mode of inheritance, the high frequency of TPO mutations carriers may lead to pseudodominant inheritance.  相似文献   

11.
12.
Severe congenital hypothyroidism (CH) due to a total iodide organification defect (TIOD) is usually due to mutations in the thyroid peroxidase (TPO) gene located at chromosome 2p25. A homozygous deletion [DeltaT2512 (codon 808)] in exon 14 was identified in a patient with classical TIOD. The transmission pattern of the TPO gene in this family was anomalous; the mother was heterozygous for the deletion; and the mutation was absent in the father. Polymorphic short tandem repeat (STR) markers confirmed paternity and demonstrated on chromosome 2 that the propositus was homozygous for most markers on chromosome 2p and that these were identical to one of the maternal 2p homologs. A normal karyotype was found in the propositus, his parents and sister. We conclude that the homozygosity in the patient is due to partial maternal isodisomy of the short arm of chromosome 2, carrying a defective TPO gene. The patient, born small for gestational age, develops and grows well and appears healthy (while being treated with thyroxine) and has a normal phenotype except for a unilateral preauricular skin tag. This shows that partial maternal isodisomy for chromosome 2p (2pter - 2p12) is compatible with a minimal influence on normal development.  相似文献   

13.
OBJECTIVE: It is suggested that iodide organification defects account for 10% of all cases with congenital hypothyroidism (CH). One candidate gene for these defects is the thyroid peroxidase (TPO) gene. DESIGN: Exons 2, 8-10 and 14 of the TPO gene were examined in 30 patients with permanent CH without a family history of CH. This group was characterized by the presence of an orthotopic thyroid gland and elevated TSH levels. METHODS: The mutational screening was performed by single-strand conformational polymorphism followed by sequence analysis of fragments with abnormal migration patterns and by restriction enzyme analysis. RESULTS: In four patients we were able to identify mutations on both alleles which have not been described so far. One patient was a carrier of a new homozygous point mutation in exon 9 resulting in an exchange from Leu to Pro at codon 458. Another patient was found to be compound heterozygous for two mutations, a 20 bp duplication in exon 2 and a new mutation in exon 9 (Arg491His). Two brothers of consanguineous parents showed a homozygous T deletion in exon 14 at position 2512. CONCLUSIONS: Our findings confirm the genetic heterogeneity of TPO defects and support the suggested prevalence of organification defects.  相似文献   

14.
BACKGROUND: Iodide organification defects are frequently but not always associated with mutations in the thyroid peroxidase (TPO) gene and characterized by a positive perchlorate discharge test. These mutations phenotypically produce a congenital goitrous hypothyroidism, with an autosomal recessive mode of inheritance. OBJECTIVES: In the present study we extended our initial molecular studies in six unrelated patients heterozygous for the TPO mutations, in order to identify the second mutation in this autosomal recessive disease. METHODS: The promoter and the complete coding regions of the human TPO and DUOXA2 genes, along with the flanking regions of each intron were analysed by direct DNA sequencing. RESULTS: Four different inactivating TPO mutations were identified in two patients: two novel mutations (c.215delA [p.Q72fsX86] and c.1159G-->A [p.G387R]) and two previously reported (c.387delC [p.N129fsX208] and c.2422T-->C [p.C808R]), confirming the inheritance of two different compound heterozygous mutations, c.215delA/c.2422T-->C and c.387delC/c.1159G-->A. The remaining four patients did not show additional inactivating mutations in the TPO gene and all had only the wild type sequencing in the DUOXA2 gene. CONCLUSIONS: We have reported two patients with iodide organification defect caused by two compound heterozygous mutations, c.215delA/c.2422T-->C [p.Q72fsX86/p.C808R] and c.387delC/c.1159G-->A [p.N129fsX208/p.G387R], in the TPO gene and four patients with monoallelic TPO defect. Identification of the molecular basis of this disorder might be helpful for understanding the pathophysiology of congenital hypothyroidism.  相似文献   

15.
CONTEXT: Thyroid dyshormonogenesis is associated with mutations in the thyroglobulin (TG) gene and characterized by normal organification of iodide and low serum TG. These mutations give rise to congenital goitrous hypothyroidism, transmitted in an autosomal recessive mode. OBJECTIVES: The aim of this study was to identify new mutations in the TG gene in an attempt to increase the understanding of the molecular basis of this disorder. Three unrelated patients with marked impairment of TG synthesis were studied. METHODS: The promoter and the complete coding regions of the TG gene, along with the flanking intronic regions, were analysed by direct DNA sequencing. RESULTS: Four different inactivating TG mutations, three novel mutations (c.548G>A, p.C164Y; c.759-760insA, p.L234fsX237; c.6701C>A, p.A2215D) and one previously identified mutation (c.886C>T, p.R277X) were identified. Multiple sequence alignment study revealed that the wild-type cysteine residue at position 164 is strictly conserved in the TG of all the species analysed, whereas the wild-type alanine residue at position 2215 is well conserved in the TG and acetylcholinesterase (AChE) of all the species analysed except in rabbit AChE, in which it is substituted by glutamic acid. CONCLUSIONS: We report three patients with congenital hypothyroidism with goitre caused by two compound heterozygous mutations, p.C164Y/p.L234fsX237 and p.R277X/p.A2215D, and one homozygous mutation, p.R277X, in the TG gene. To our knowledge this is the first report of the presence of a nucleotide insertion mutation in the TG gene.  相似文献   

16.
Pendred syndrome (PS) is an autosomal recessive disease that is characterized by congenital sensorineural hearing loss, goiter, and a partial iodine organification defect. In this study, we characterized the thyroid status and identified mutations in the SLC26A4 gene in Chinese subjects with PS. We evaluated 7 unrelated Chinese subjects who had PS. Biochemical analysis, formal audiogram, ultrasonography of the thyroid gland, perchlorate discharge test, computerized tomography scan of the vestibular aqueducts, and DNA sequence analysis of SLC26A4 were performed. Levels of thyroid hormones were essentially normal in all patients: 2 patients had goiters and/or elevated serum thyroglobulin levels, whereas 2 other patients had positive thyroid antibodies and a positive perchlorate discharge test. We identified SLC26A4 gene mutations in 6 of 7 probands and their affected relatives. The affected subjects in family I was compound heterozygous for 2 missense mutations: a mutation in exon 9 (1079C>T) that resulted in the replacement of alanine by valine at codon 360 (A360V) and a mutation in exon 19 (2168A>G) that resulted in the replacement of histidine by arginine at codon 723 (H723R). The affected subjects in families II and III all were homozygous for a mutation in intron 7. The probands IV and V were compound heterozygotes for the mutation in intron 7 and in exon 19, and the proband VI was compound heterozygous for the intron 7 mutation and a missense mutation in exon 12 (1343C>T) that resulted in the replacement of serine by leucine at codon 448 (S448L). One novel mutation was identified (A360V). We identified biallelic mutations in the SLC26A4 gene in 6 of 7 probands with PS in Taiwan, including a novel missense mutation. The mild thyroid dysfunction in these patients suggests that PS should be considered in all patients with congenital or early-onset hearing impairment.  相似文献   

17.
BACKGROUND: The autosomal recessive Pendred's syndrome is defined by congenital sensorineural deafness, goiter, and impaired iodide organification. It is caused by mutations in the Pendred's syndrome (PDS) gene that encodes pendrin, a chloride/iodide transporter expressed in the thyroid, the inner ear, and the kidney. OBJECTIVE: To perform a detailed clinical and molecular analysis of patients with Pendred's syndrome from four patients from three unrelated Mexican families. METHODS: Thyroid function tests, perchlorate test, thyroid scintigraphy, audiometry, computer tomography and magnetic resonance imaging were performed in all affected individuals. Haplotype analyses were performed using microsatellite markers flanking the PDS locus, and the PDS gene was submitted to direct sequence analysis. RESULTS: All patients presented with sensorineural deafness, Mondini malformations of the cochlea, an enlarged vestibular aqueduct, goiter, and a positive perchlorate test. Two patients were hypothyroid, two individuals were euthyroid. Sequence analysis revealed a complex homozygous deletion/insertion mutation at the end of exon 4 in the index patient of family 1 resulting in a premature stop codon at position 138. In family 2, the affected individuals were compound heterozygous for a splice acceptor mutation (IVS2 -1G>A) and a 1231G>C transversion substituting alanine 411 by proline (A411P). In family 3, the index patient was found to be homozygous for a transversion 412G>T in exon 4 replacing valine 138 by phenylalanine (V138F). CONCLUSIONS: All patients included in this study presented with the classic Pendred syndrome triad and molecular analysis revealed pendrin mutations as the underlying cause. The identification of three novel mutations, one of them of complex structure, expands the spectrum of mutations in the PDS gene and emphasizes that they display marked allelic heterogeneity.  相似文献   

18.
OBJECTIVE: Thyroid peroxidase (TPO) deficiency is one of the causes of thyroid dyshormonogenesis, because TPO plays a key role in thyroid hormone biosynthesis. To determine the frequency and pattern of TPO abnormalities, we have been screening TPO genes of patients with congenital goitrous hypothyroidism. SUBJECTS AND METHODS: TPO genes of a patient with congenital goitrous hypothyroidism and her parents were directly sequenced, and two novel missense mutations (R665W and G771R) were found. The former was derived from her father and the latter from her mother. R665 and G771 were well conserved in the peroxidase superfamily. When mRNAs containing each of the mutations were transfected into CHO-K1 cells, each cell showed faint TPO enzyme activity. However, immunofluorescence and immunoelectron microscopic analyses revealed that neither of the mutated TPOs reached the plasma membrane. CONCLUSIONS: Two novel missense mutations in the TPO gene were found. TPO proteins encoded by these mutated alleles showed abnormal cellular localization; namely, localization on the plasma membrane was disturbed. The loss of plasma membrane localization in mutated TPOs brought about the iodide organification defect, which was diagnosed as congenital hypothyroidism.  相似文献   

19.
Approximately 10% of newborns with congenital hypothyroidism are unable to convert iodide into organic iodine. This iodide organification defect has a prevalence of 1 in 40,000 newborns and may be caused by defects in the thyroid peroxidase enzyme (TPO), the hydrogen peroxide-generating system, the TPO substrate thyroglobulin, or inhibitors of TPO. We identified a high incidence of severe hypothyroidism due to a complete iodide organification defect in the youngest generation of five nuclear families belonging to an inbred Amish kindred. Genealogical records permitted us to trace their origin to an ancestral couple 7-8 generations back and to identify an autosomal recessive pattern of inheritance. Initial studies of homozygosity by descent using two polymorphic markers within the TPO gene showed no linkage to the phenotype. In fact, 4 of 15 affected siblings from 2 of the nuclear families were heterozygous, resulting in homozygosity values of 73% and 53% in affected and unaffected family members, respectively. A genome-wide homozygosity screen using DNA pools from affected and unaffected family members localized the defect to a locus close to the TPO gene. Linkage analysis using 4 additional polymorphic markers within the TPO gene reduced the number of homozygous unaffected siblings to zero without altering the percent homozygosity initially found in the affected. Sequencing of the TPO gene revealed 2 missense mutations, E799K and R648Q. TPO 779K was found in both alleles of the 11 affected homozygotes, both mutations were present in each of the 3 affected compound heterozygotes, and there were no TPO mutations in 1 subject with hypothyroidism of different etiology. These results demonstrate the power of the DNA pooling strategy in the localization of a defective gene and the pitfalls of linkage analysis when 2 relatively rare mutations coexist in an inbred population.  相似文献   

20.
One of the rarest forms of chronic granulomatous disease (CGD) is caused by mutations in CYBA, which encodes the p22-phox subunit of the phagocyte NADPH oxidase, leading to defective intracellular killing. This study investigated eight patients (six males and two females) from seven consanguineous, unrelated families with clinical CGD, positive family history and p22-phox deficiency. Mutation analysis of CYBA showed six different novel mutations: deletion of exons 3, 4 and 5; a missense mutation in exon 6 (c.373G>A); a splice site mutation in intron 5 (c.369+1G>A); a frameshift in exon 6 (c.385delGAGC); a frameshift in exon 3 (c.174delG); and a frameshift in exon 4 (c.223delC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号