首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Projections from the nucleus tractus solitarii (NTS) to autonomic control regions of the ventrolateral medulla, particularly the nucleus reticularis rostroventrolateralis (RVL), which serves as a tonic vasomotor center, were analyzed in rat by anterograde, retrograde, and combined axonal transport techniques. Autonomic portions of the NTS, including its commissural, dorsal, intermediate, interstitial, ventral, and ventrolateral subnuclei directly project to RVL as well as to other regions of the ventrolateral medulla. The projections are organized topographically. Rostrally, a small cluster of neurons in the intermediate third of NTS, the subnucleus centralis, and neurons in proximity to the solitary tract selectively innervate neurons in the retrofacial nucleus and nucleus ambiguus. Neurons generally located in more caudal and lateral sites in the NTS innervate the caudal ventrolateral medulla (CVL). The RVL, CVL, and nucleus retroambiguus are interconnected. A combined retrograde and anterograde transport technique was developed so as to prove that projections from the NTS to the ventrolateral medulla specifically innervate the region of RVL containing neurons projecting to the thoracic spinal cord or the region of the nucleus containing vagal preganglionic neurons. When the retrograde tracer, fast blue, was injected into the thoracic spinal cord, and wheat germ agglutinin-conjugate horseradish peroxidase (HRP) was injected into the NTS, anterogradely labeled terminals from the NTS surrounded the retrogradely labeled neurons in the RVL and in the nucleus retroambiguus in the caudal medulla. Among the bulbospinal neurons in the RVL innervated by the NTS were adrenaline-synthesizing neurons of the C1 group. When fast blue was applied to the cervical vagus, and HRP was injected into the NTS, anterogradely labeled terminals from the NTS surrounded retrogradely labeled neurons in the rostral dorsal motor nucleus of the vagus, the region of the nucleus ambiguus, the retrofacial nucleus, and the dorsal portion of the RVL, a region previously shown to contain cardiac vagal preganglionic neurons. This combined anterograde and retrograde transport technique provides a useful method for tracing disynaptic connections in the brain. These data suggest that the RVL is part of a complex of visceral output regions in the ventrolateral medulla, all of which receive afferent projections from autonomic portions of the NTS. Bulbospinal neurons in the RVL, in particular the C1 adrenaline neurons, may provide a portion of the anatomic substrate of the baroreceptor and other visceral reflexes.  相似文献   

2.
Specific neurotensin (NT) binding sites were recently shown to be highly concentrated in the nucleus of the solitary tract (NTS), which receives primary vagal afferents, and in the dorsal motor nucleus of the vagus (DMN), which contains the cell bodies of origin of vagal preganglionic neurons. To investigate the relationship of these binding sites with sensory and visceromotor components of the vagus nerve, they were labeled here in vitro, using monoiodo[Tyr3]neurotensin (125I-NT) and visualized by light microscopic radioautography in the dorsomedial medulla of both intact and unilaterally vagotomized rats, in the nodose ganglia of intact animals, and in ligated vagus nerves. Unilateral vagotomy performed above the nodose ganglion resulted in a significant ipsilateral decrease in 125I-NT binding within both the NTS and the DMN, suggesting that NT binding sites were associated with both primary afferent fibers and preganglionic nerve cell bodies. The selective radioautographic labeling of a subpopulation (approximately 15%) of neuronal perikarya in the nodose ganglion confirmed that a proportion of vagal afferent neurons contained NT binding sites. Following vagus nerve ligation, a pile up of radiolabeled NT binding sites was observed on both sides of the nerve crush, indicating that NT receptor components were transported both anterogradely and retrogradely along fibers of the vagus nerve. We conclude that NT receptors are synthesized and transported within a subpopulation of afferent and efferent components of the vagus nerve and that NT may therefore act presynaptically upon vagal axon terminals in both central and peripheral nervous systems.  相似文献   

3.
The central organization of the vagus nerve innervating the stomach of the rat   总被引:14,自引:0,他引:14  
We employed the neural tracers cholera toxin-horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase to examine the organization of the afferent and efferent connections of the stomach within the medulla oblongata of the rat. The major finding of this study is that gastric motoneurons of the dorsal motor nucleus (DMN) possess numerous dendrites penetrating discrete regions of the overlying nucleus of the solitary tract (NTS). In particular, dendritic labelling was present in areas of NTS which also received terminals of gastric vagal afferent fibers such as the subnucleus gelatinosus, nucleus commissuralis, and medial nucleus of NTS. This codistribution of afferent and efferent elements of the gastric vagus may provide loci for monosynaptic vagovagal interactions. A small number of dendrites of DMN neurons penetrated the ependyma of the fourth ventricle and a few others entered the ventral aspect of the area postrema, thus making possible the direct contact of preganglionic neurons with humoral input from the cerebrospinal fluid and/or the peripheral plasma. Nucleus ambiguus neurons projecting to the stomach predominantly innervate the forestomach. The dendrites of these cells, when labelled, were generally short, and extended beyond the compact cluster of ambiguus neurons in a ventrolateral direction, parallel to the fascicles of vagal efferent fibers traversing the medulla.  相似文献   

4.
It is apparent from the literature that a controversy exists concerning the site of origin of cardiac vagal preganglionic axons. Physiological studies have suggested that the location of these neurons may be different in different species and there has been disagreement between physiological and anatomical findings in the same species. We now present anatomical and neurophysiological studies suggesting that in the cat cardiac vagal preganglionic neurons are located in two medullary regions: the areas of the dorsal motor nucleus of the vagus (DMV) and of the nucleus ambiguus (AMB). This suggestion is based on the following observations. Firstly, after application of horseradish peroxidase to the right cardiac branches of the vagus nerve, labeled neurons were found primarily in the regions of te DMV and AMB. Additional scattered neurons were found in the reticular formation between these two nuclei. Secondly, following injections of tritiated amino acids into either the DMV or AMB, labeled vagal fibers were found in the atrial myocardium. Finally, electrical stimulation of the right cardiac branches of the vagus nerve antidromically activated DMV or AMB, labeled vagal fibers were found in the atrial myocardium. Finally, neurons in the DMV and AMB regions with latencies corresponding to conduction velocities of B-fibers. In addition, these neurons were orthodromically excited by electrical stimulation of the carotid sinus and aortic depressor nerves.  相似文献   

5.
Baroreceptor activation has been found to produce different types of discharge patterns in neurons in the nucleus tractus solitarius (NTS). The contribution of different glutamate receptor subtypes, neuropeptide modulators and input from different baroreceptor subtypes to the generation of firing patterns in NTS barosensitive neurons was examined in a series of studies. Results from these studies indicate that both subtypes of ionotropic glutamate receptors contribute to discharge in barosensitive neurons, and the role of each subtype can vary for different neurons. The neuropeptide neurotensin was found to modulate baroreceptor control of BP and discharge of central barosensitive neurons, both through modulation of baroreceptor afferent input and possibly through release of neurotensin by baroreceptor afferent fibers in the NTS. Finally, selective modulation of input from baroreceptor subtypes indicates that there is some degree of divergent baroreceptor innervation of NTS neurons that could contribute to initiation of their different discharge patterns in response to baroreceptor input.  相似文献   

6.
The medullary distribution of afferent fibers and cells of origin of the cervical vagal trunk and of the vagal innervation of the stomach have been studied using the anterograde and retrograde transport of horseradish peroxidase (HRP). Injections of HRP were made into the cervical vagus nerve, the stomach wall, the proximal small intestine, or the peritoneal cavity. Two to four days following the injections, the rats were perfused and the medullae oblongatae and nodose ganglia were processed using the tetramethyl benzidine method. Cervical vagus nerve injections of HRP resulted in heavy anterograde labeling in the ipsilateral nucleus of the tractus solitarius (NTS) and the commissural nucleus. Lighter labeling was seen in these regions on the contralateral side, but did not extend as far rostrally in the NTS. Labeling was also seen in the area postrema. Retrogade labeling of somata was present in the ipsilateral side in the nodose ganglion, throughout the whole extent of the dorsal motor nucleus of the vagus, much of the nucleus ambiguus and in rostral levels of the cervical spinal cord. After stomach injections, labeling indicative of afferent fibers was observed bilaterally in the dorsomedial and medial portions of the NTS and in the commissural nucleus. Labeled efferent fibres arose from neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus and the cervical spinal cord. Retrogradely labeled somata were found bilaterally, throughout the rostrocaudal length of the dorsal motor nucleus in all cases with stomach injections. In some, but not all cases, labeled somata were seen bilaterally in compact areas within the nucleus ambiguus, particularly rostrally. Control injections of HRP into the intestinal wall and peritoneal cavity indicated that the stomach was the primary source of afferent and efferent labeling in the medulla following subdiaphragmatic injections.  相似文献   

7.
Electrophysiologic and anterograde tract tracing studies have demonstrated that the vagus nerve innervates the duodenum. These studies, however, have provided little information regarding the finer anatomic topography within the vagal complex. In this study, the retrograde neuronal tracers WGA-HRP or DiI, applied to the duodenum, were used to characterize the vagal afferent and efferent innervation of this portion of the gastrointestinal tract. This approach labeled a substantial number of motor neurons in both the medial and lateral columns of the dorsal motor nucleus of the vagus (DMNV). Vagal motor neurons innervating the duodenum were seen across the medial-lateral extent of the DMNV and between 600 microm rostral to obex and 1600 microm caudal to obex. The three branches of the vagus nerve contained efferent fibers to the duodenum. The gastric branch of the vagus nerve was the pathway that connected the majority of DMNV neurons with the duodenum. These neurons were located in the medial and middle thirds of the DMNV. The celiac branch to the duodenum was composed of axons from the majority of lateral column neurons but also contained axons from neurons in the medial column. The hepatic branch of the vagus nerve contained only a small number of cell axons. Some neurons were located medially whereas others were in the lateral third of the duodenum. Although central terminations of vagal primary afferents from the duodenum were not found in previous tract tracing studies, we observed a large number of terminals in the subpostremal/commissural region of the nucleus of the solitary tract. Similar to the motor fibers, most afferent fibers from the duodenum were located in the gastric branch of the vagus nerve, although the hepatic and celiac branches also contained afferent neurons. These results demonstrate that the vagal innervation of the duodenum is unique, being an amalgam of what would be expected following labeling of more proximal and distal portions of the GI tract. The uniqueness of the sensory and motor innervation to the duodenum has implications for hypotheses regarding the organization of vagovagal reflexes controlling gastrointestinal function.  相似文献   

8.
Our previous work (Katz and Karten, '83a J. Comp. Neurol. 217:31-46 demonstrated that the dorsal motor nucleus of the vagus nerve (DMN complex) in the pigeon is composed of cytoarchitecturally distinct subnuclei that are distinguished by the size, shape, position, and cytochemical characteristics of their constituent neurons. In view of the diversity of target organs innervated by the vagus nerve, we sought to determine whether the subnuclear heterogeneity of the DMN complex is related to the pattern of target innervation. To test this possibility, retrograde tracing techniques were used to define the subnuclear localization of vagal motoneurons that innervate individual vagal target organs. The distribution of horseradish peroxidase (HRP)-labeled motoneurons within the DMN complex was studied following application of HRP to the cut central end of individual vagal nerve branches and after injection of the tracer into vagal target tissues. In addition, we examined the distribution of acetylcholinesterase depletion within the DMN complex following transection of individual vagal branches. Our data demonstrate that individual vagal target organs have discrete and topographic representations within cytoarchitecturally distinct subnuclei of the DMN complex. Therefore, in the pigeon, the subnuclear distribution of vagal motoneurons plays a critical role in the organization of descending vagal motor pathways. Segregation of visceral representations within the DMN complex may provide a mechanism for organizing functionally diverse afferent inputs to target-specific populations of vagal motoneurons.  相似文献   

9.
10.
F J Gordon  C Leone 《Brain research》1991,568(1-2):319-322
The purpose of these studies was to determine the relative role of N-methyl-D-aspartic acid (NMDA) receptors and non-NMDA receptors in the nucleus of the tractus solitarius (NTS) in mediating arterial baroreceptor reflexes evoked by electrical stimulation of the aortic nerve. Selective blockade of NMDA receptors in the NTS had little effect on aortic baroreflexes except at high frequencies of aortic nerve stimulation. In contrast, blockade of non-NMDA receptors in the NTS abolished aortic baroreceptor reflexes. These results suggest that although NMDA receptors may modulate baroreflex responses, synaptic activation of non-NMDA receptors in the NTS plays the predominant role in mediating aortic baroreceptor reflexes.  相似文献   

11.
The aim of the present study was to examine the neuroanatomical relationship between the brainstem and the stomach. For this purpose, by means of a horseradish peroxidase retrograde method, we identified the distribution of individual parasympathetic preganglionic neurons projecting to three specific gastric regions that have structural and functional differences in the rat stomach. Preganglionic neurons innervating the ventral forestomach were mainly distributed in the lateral part of the left dorsal motor nucleus of the vagus nerve, while those innervating both ventral corpus and antrum were chiefly located in the medial part of the left dorsal motor nucleus. On the other hand, preganglionic neurons projecting to the dorsal forestomach and the dorsal corpus and antrum were predominantly observed in the lateral and the medial part of the right dorsal motor nucleus, respectively. These results suggest that parasympathetic preganglionic neurons innervating the stomach are site-specifically organized in the dorsal motor nuclei.  相似文献   

12.
The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components—axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve.  相似文献   

13.
Motor fibers of the accessory celiac and celiac vagal branches are derived from the lateral columns of the dorsal motor nucleus of the vagus nerve. These branches also contain sensory fibers that terminate within the nucleus of the tractus solitarii. This study traces the innervation of the intestines by using the tracer cholera toxin-horseradish peroxidase. In 53 rats, the tracer was injected into either the stomach, duodenum, jejunum, terminal ileum, cecum, or ascending colon. With all cecal injections, prominent retrograde labeling of cell bodies occurred bilaterally in the lateral columns of the dorsal motor nucleus of the vagus nerve above, at, and below the level of the area postrema. Dendrites of laterally positioned neurons projected medially and rostrocaudally within the dorsal motor nucleus of the vagus nerve and dorsomedially into both the medial subnucleus and parts of the commissural subnucleus of the nucleus of the tractus solitarii. Sensory terminal labeling occurred in the dorsolateral commissural subnucleus at the level of the rostral area postrema and the medial commissural subnucleus caudal to the area postrema. Additionally, there was sensory terminal labeling within a small confined area of the dorsomedial zone of the nucleus of the tractus solitarii immediately adjacent to the fourth ventricle at a level just anterior to the area postrema. Stomach injections labeled motoneurons of the medial column of the entire rostrocaudal extent of the dorsal motor nucleus of the vagus nerve and a sensory terminal field primarily in the subnucleus gelatinosus, with less intense labeling extending caudally into the medial and ventral commissural subnuclei. Dendrites of gastric motoneurons project rostrocaudally and mediolaterally within the dorsal motor nucleus of the vagus nerve and dorsolaterally within the nucleus of the tractus solitarii. They are most pronounced at the level of the rostral area postrema where many dendrites course dorsolaterally terminating primarily within the subnucleus gelatinosus. Injections of the duodenum labeled a small number of the cells within the medial aspects of the dorsal motor nucleus of the vagus nerve. Jejunal, ileal, and ascending colon injections labeled cells sparsely within the lateral aspects of the dorsal motor nucleus of the vagus nerve bilaterally. No afferent terminal labeling was evident after injection of these areas of the bowel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Q A Wang  X Q Guo  P Li 《Brain research》1988,439(1-2):350-353
Experiments were done in 41 rabbits anaesthetized with urethane and chloralose, paralyzed with Flaxedil and ventilated artificially. Extracellular recordings of 142 units were made in the dorsal vagal nucleus (DVN) and the nucleus ambiguus (NA), identified by antidromic response to stimulation of the cervical vagus nerve. In total 63.5% of them exhibited spontaneous activity and 22 units (17 in DVN and 5 in NA) showed a cardiac rhythm; their antidromic conduction velocity was 3.7-12.5 m/s, which suggests their having axons in the range of B fibres. These neurones were classified as vagal cardiomotor neurones. A total of 16 DVN and 4 NA vagal cardiomotor neurones were excited orthodromically by electrical stimulation of the contralateral nucleus tractus solitarius (NTS). Electrical stimulation of the superficial peroneal nerve (SP) with low intensity or the deep peroneal nerve (DP) with high intensity which activated C fibres inhibited excitatory responses of 16 neurones (14 in DVN and 2 in NA). The other 4 neurones were unaffected by SP inputs. These results provide electrophysiological evidence for the inhibitory effect of somatic inputs on the evoked discharges of vagal cardiomotor neurones in the DVN and the NA.  相似文献   

15.
Peripheral or central interruption of the baroreflex or the parasympathetic innervation of cerebral vessels leads to similar changes in regulation of cerebral blood flow. Therefore, we sought to test the hypothesis that the cardiovascular nucleus tractus solitarii, the site of termination of arterial baroreceptor nerves, projects to pontine preganglionic neurons whose stimulation elicits cerebral vasodilatation. The current study utilized both light and electron microscopic techniques to analyze anterograde tracing from the cardiovascular nucleus tractus solitarii to preganglionic parasympathetic neurons in the pons. We further used retrograde tracing from that same pontine region to the cardiovascular nucleus tractus solitarii and evaluated the confluence of tracing from the cardiovascular nucleus tractus solitarii to pontine preganglionic neurons labeled retrogradely from the pterygopalatine ganglia. The cardiovascular nucleus tractus solitarii projected to pontine preganglionic parasympathetic neurons, but more rostral and caudal regions of nucleus tractus solitarii did not. In contrast, all three regions of nucleus tractus solitarii projected to the nucleus ambiguus and dorsal motor nucleus of the vagus. Although not projecting to pontine preganglionic parasympathetic neurons, regions lateral, rostral, and caudal to cardiovascular nucleus tractus solitarii sent projections through the pons medial to the preganglionics. The study establishes the presence of a direct monosynaptic pathway from neurons in the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons that project to the pterygopalatine ganglia, the source of nitroxidergic vasodilatory innervation of cerebral blood vessels. It provides evidence that activation of those preganglionic neurons can cause cerebral vasodilatation and increased cerebral blood flow. Finally, it demonstrates differential innervation of medullary and pontine preganglionic parasympathetic neurons by different regions of the nucleus tractus solitarii.  相似文献   

16.
The anterograde fluorescent tracer DiA was used to visualize baroreceptor fibers and synaptic terminals both in living and fixed tissue. Baroreceptor fibers labeled with DiA terminated as a dense synaptic field in the medial nucleus tractus solitarius (NTS), making synaptic contact on the soma, as well as processes of neurons that they innervated. A similar distribution and morphology was observed in baroreceptor fibers and terminals labeled with horseradish peroxidase. DiA also identified baroreceptor terminals and the neurons receiving these synaptic contacts in vitro. NTS neurons were dissociated from their surrounding tissue and identified by attached baroreceptor terminals that retained the fluorescent dye. These results will enable us to study the electrophysiological properties of dispersed neurons that receive identified baroreceptor synaptic terminals.  相似文献   

17.
The distribution of calcitonin gene-related peptide (CGRP) in the cat nucleus ambiguus was examined by means of a combination of horseradish peroxidase (HRP) tracing and immunohistochemical techniques. Vagal motoneurones in the nucleus ambiguus were identified by applying HRP to either the thoracic vagus or the superior laryngeal nerve or the cervical vagus. Motoneurones in the nucleus ambiguus labelled with HRP from the thoracic vagus did not contain CGRP-like immunoreactivity although CGRP-like immunoreactive cells were present in this nucleus on the same sections. In contrast, a large proportion of the motoneurones labelled from the superior laryngeal nerve and a smaller proportion of cells labelled from the cervical vagus did contain CGRP-like immunoreactivity. It is concluded that CGRP-like immunoreactivity is absent from vagal preganglionic motoneurones projecting to structures in the thorax and abdomen but is present in vagal motoneurones projecting to striated muscle of the larynx and pharynx.  相似文献   

18.
The ultrastructural relationships between gamma-aminobutyric acid-immunoreactive (GABA-ir) neurons and other neurons of the nucleus tractus solitarius (NTS) and motoneurons of the nucleus ambiguus (NA) and dorsal motor vagal nucleus (DMVN), were examined by electron microscopic (EM) immunogold labelling with an anti-GABA antiserum on brain stem sections in which vagal motoneurons and vagal afferent fibres were labelled with horseradish peroxidase (HRP). HRP was applied to the cervical vagus or the cardiac vagal branch of anaesthetized cats. After 24 - 48 h survival, brains were glutaraldehyde-fixed and a stable HRP-tetramethylbenzidine reaction product compatible with EM processing was revealed on 250 microm vibratome sections. Following osmium postfixation, dehydration and resin embedding, GABA-ir was localized on ultrathin sections by an immunogold technique. GABA-ir axon terminals, heavily and specifically labelled with gold particles, were very numerous within NTS, DMVN and NA. All terminals contained small, clear, pleomorphic vesicles and a few also contained larger dense cored vesicles. The density of gold particles over clear vesicles, dense cored vesicles and mitochondria was significantly greater than over the cytoplasm of these terminals. GABA-ir synapses were found on the soma and dendrites of neurons, but rarely on other axon terminals within NTS, where GABA-ir cell bodies and dendrites were also seen. These received synaptic contacts from both GABA-ir terminals and from HRP-labelled vagal afferents. In both the DMVN and NA, similar GABA-ir synapses were present on both the soma and dendrites of HRP-labelled motoneurons. GABA synapses were also present on other cell types in DMVN. These observations provide an anatomical basis for a GABAergic inhibition of neurons forming the central pathways of cardiovascular and other autonomic reflexes.  相似文献   

19.
TRH-immunoreactive nerve terminals innervate the ambiguous nucleus in the rabbit. Vagal preganglionic motoneurons that innervate the trachea, were revealed by HRP histochemistry in the rostral part of the ambiguous nucleus and the dorsal motor nucleus of the vagus. HRP histochemistry plus TRH immunocytochemistry revealed that TRH-immunoreactive axon terminals synapsed on ambiguous nucleus neurons retrogradely labeled by HRP injection into tracheal smooth muscle and the superior laryngeal nerve. Microinjection of 50 ng TRH into the rostral ambiguous nucleus caused slight dilation followed by constriction, which was inhibited by atropine and vagotomy. Results show that central TRH-containing neurons regulate tracheal tension through synapses on vagal preganglionic motoneurons that innervate tracheal smooth muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号