首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of vasoactive intestinal peptide (VIP)-like immunoreactivity was investigated in the brain, olfactory system and retina of the zebrafish, Danio rerio, during development and in juvenile specimens, by using the indirect immunofluorescence and the peroxidase-antiperoxidase methods. In 24 h post fertilization (hpf) embryos, VIP-like immunoreactive cells were present in the olfactory pit, the retina, and several regions of the brain, including the dorsal telencephalon, the diencephalon, the tegmentum of the mesencephalon, the caudal rhombencephalon and the anterior pituitary. In 48 hpf embryos, additional VIP-like immunoreactive cell bodies were found in the ventral telencephalon, whereas in the diencephalon VIP-like immunopositive cells were more concentrated within the ventro-caudal hypothalamus. During the 7 day larval period, a dense plexus of VIP-like immunoreactive fibers first appeared in the olfactory bulbs. In 15-day-old larvae, two new groups of positive cells were observed in the periventricular preoptic nucleus and in the dorsal rhombencephalon. In 1 month/2 months old animals, VIP-like immunoreactive elements were confined to the olfactory organ, the olfactory bulbs, the periventricular preoptic nucleus and the pituitary, pars distalis. At 3 months stage, a large number of cells was observed in the periventricular preoptic nucleus. Western immunoblot analysis confirmed that VIP-like peptides, with molecular weight similar to that of synthetic VIP, are present early during the development of zebrafish. These results show that VIP-like immunoreactive structures appear early during ontogeny both in the olfactory pit, retina and brain. Transient expression of positive cells was found in the retina, telencephalon, diencephalon and brainstem. The location of VIP-like immunoreactivity indicates that, during development, VIP could be involved in several neuromodulatory functions, including the processing of visual and olfactory informations, as well as growth or survival promotion activities. The presence of VIP-like immunopositive cells in the pituitary, pars distalis, suggest that, during development, VIP may influence the secretion of pituitary hormones.  相似文献   

2.
Two forms of somatostatin are expressed in the frog brain, i.e., somatostatin-14 (SS1) and the [Pro(2), Met(13)]somatostatin-14 variant (SS2). We have previously described the ontogeny of SS1-immunoreactive cells in the brain of Rana esculenta. In the present study, we have investigated the distribution of prepro-SS2 (PSS2)-expressing neurons in the brain of the same species during development by using antibodies directed against the N-flanking region of SS2 (PSS2(54-66)). Immunoreactive perikarya first appeared in the ventral hypothalamus at stages IV-VII. Subsequently, positive neurons were seen in the nucleus of the diagonal band of Broca, the anterior preoptic area, the posterior tuberculum (stages VIII-XII), as well as the dorsal (stages XIII-XV) and medial (stages XIX-XX) periventricular preoptic nucleus. At metamorphic climax and in newly metamorphosed frogs, positive perikarya were found in the striatum and in the interpeduncular nucleus. PSS2(54-66)-immunoreactive fibers were already widely distributed during the first stages of development, indicating that SS2 may act as a neuromodulator and/or neurotransmitter during ontogeny. The presence of PSS2(54-66)-positive nerve fibers in olfactory structures suggests that, in tadpoles, SS2 may be involved in the processing of olfactory information. The occurrence of PSS2(54-66)-like immunoreactivity in taste buds, and in the olfactory and vomeronasal organs indicates that SS2 may mediate the unconditioned and reinforcing properties of natural chemicals. Finally, the intenseexpression of PSS2(54-66)-like immunoreactivity in melanotrope cells of the pituitary suggests that SS2 may diffuse toward the pars distalis to regulate the activity of adenohypophysial cells during tadpole development.  相似文献   

3.
The anatomic distribution and biochemical characteristics of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in the central nervous system of the frog, Rana ridibunda, during development. Three to four days after hatching, at stages IV-VII, PACAP-immunoreactive perikarya were detected in the dorsal thalamus within the anterior ventral area, and a few fibers were found in the medial pallium. Positive cell bodies were first observed in the hypothalamus at stages VIII-IX, at the level of the dorsal and ventral infundibular nuclei. In these regions, the number of positive perikarya increased during ontogeny. In tadpoles, during the mid- and late premetamorphosis, a more complex organization of the PACAP-immunoreactive system was found in the thalamus with the appearance, at stages IX-XII, of two additional groups of positive neurons in the ventrolateral area and posterocentral nucleus. At stages XIII-XVIII of larval development and subsequent larval stages, PACAP-immunoreactive fibers were found in the median eminence. In newly metamorphosed animals, several additional groups of positive perikarya appeared in the medial pallium, the preoptic nucleus, the torus semicircularis, the tegmentum of the mesencephalon, and the cerebellum. The immunoreactive peptide contained in the tadpole brain was characterized by high performance liquid chromatography analysis combined with radioimmunoassay quantification. At all stages investigated, the predominant form of PACAP-immunoreactive material coeluted with synthetic frog PACAP38. The occurrence of PACAP soon after hatching indicates that the peptide may exert neurotrophic activities. The existence of immunoreactive elements in several thalamic regions at mid- and late premetamorphic stages suggests that PACAP may act as a neurotransmitter, neuromodulator, or both, during ontogenesis. Finally, the presence of PACAP-immunoreactive perikarya in hypothalamic nuclei and nerve fibers in the median eminence supports the view that PACAP may play a role in the control of pituitary hormone secretion during larval development.  相似文献   

4.
The distribution ofproneuropeptide Y-containing perikarya and nerve fibers in the brain of Rana esculenta and Xenopus lavis was determined with antisera directed toward neuropeptide Y and the carboxyl terminal flanking peptide. The distribution of proneuropeptide Y-like immunoreactivity was similar in both anurans. In the telencephalon, immunoreactive perikarya were found in the olfactory bulb, all subdivisions of the pallium, the septum, pars lateralis of the amygdala, the nucleus accumbens, and the anterior preoptic area. In the diencephalon, labelled perikarya were detected in the ventromedial, ventrolateral and central thalamic nuclei, the magnocellular preoptic nucleus, the suprachiasmatic nucleus, the posterior tuberculum, and the infundibulum. Amacrine-like cells were stained in the retina. In the pretectal area, posterior thalamic neurons showed intense, Golgi-like immunostaining. In the mesencephalon, immunoreactive cells were found in the reticular nucleus, the anteroventral tegmental nucleus, the optic tectum, the interpeduncular nucleus, and the torus semicircularis. In the rhombencephalon, labelled perikarya were detected in the secondary visceral nucleus, the central gray, the nucleus of the solitary tract, the dorsal column nuclei, and the spinal nucleus of the trigeminal nerve. Immunoreactive nerve fibers were observed in all areas of the brain that contained labelled perikarya. The densest accumulations were found in the accessory olfactory bulb, pars lateralis of the amygdala, the ventral habenula, the posterior pituitary, the optic tectum, the interpeduncular nucleus, and the saccular nucleus. The distribution of proneuropeptide Y-like immunoreactivity in the anuran brain showed many similarities to the distribution described for the amniote brain. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The bed nucleus of the stria terminalis (BSTL), which is known to be involved in the modulation of stress responses, exhibits a dense network of pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) immunoreactive (ir) fibers. The origin of the PACAP-ir fibers is unknown, and the origin of the VIP-ir fibers remains uncertain. The most important brain regions connected to the BSTL are the amygdaloid nuclei, the paraventricular and ventromedial hypothalamic nuclei, mesencephalic periaqueductal grey, the dorsal and linear raphe nuclei, the parabrachial nucleus, and the dorsal vagal complex. After microinjecting cholera toxin B subunit (CTB) in the BSTL as a retrograde tracer, neurons were double labeled for CTB and PACAP or VIP immunohistochemistry and the cells from which the PACAP- and VIP-ir fiber networks in the BSTL originated were identified. Cholera toxin B subunit labeled and VIP-ir cells were found in the mesencephalic periaqueductal grey and the dorsal and linear raphe nuclei, but no double labeled cells were seen in the amygdaloid nuclei or the hypothalamic region. CTB- and PACAP-ir neurons were observed in the paraventricular nucleus and the dorsal vagal complex. No double labeled perikarya were seen in the parabrachial nucleus or in the amygdaloid nuclei.  相似文献   

6.
The immunocytochemical distribution of galanin-containing perikarya and nerve terminals in the brain of Rana esculenta and Xenopus laevis was determined with antisera directed toward either porcine or rat galanin. The pattern of galanin-like immunoreactivity appeared to be identical with antisera directed toward either target antigen. The distribution of galanin-like immunoreactivity was similar in Rana esculenta and Xenopus laevis except for the absence of a distinct laminar distribution of immunoreactivity in the optic tectum of Xenopus laevis. Galanin-containing perikarya were located in all major subdivisions of the brain except the metencephalon. In the telencephalon, immunoreactive perikarya were detected in the pars medialis of the amygdala and the preoptic area. In the diencephalon, immunoreactive perikarya were detected in the caudal half of the suprachiasmatic nucleus, the nucleus of the periventricular organ, the ventral hypothalamus, and the median eminence. In the mesencephalon, immunoreactive perikarya were detected near the midline of the rostroventral tegmentum, in the torus semicircularis and, occasionally, in lamina A and layer 6 of the optic tectum. In the myelencephalon, labelled perikarya were detected only in the caudal half of the nucleus of the solitary tract. Immunoreactive nerve fibers of varying density were observed in all subdivisions of the brain with the densest accumulations of fibers occurring in the pars lateralis of the amygdala and the preoptic area. Dense accumulations of nerve fibers were also found in the lateral septum, the medial forebrain bundle, the periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the mesencephalic central gray, the laminar nucleus of the torus semicircularis, several laminae of the optic tectum, the interpeduncular nucleus, the isthmic nucleus, the central gray of the rhombencephalon, and the dorsolateral caudal medulla. The extensive system of galanin-containing perikarya and nerve fibers in the brain of representatives of two families of anurans showed many similarities to the distribution of galanin-containing perikarya and nerve fibers previously described for the mammalian brain.  相似文献   

7.
Neuroanatomical distribution of FMRFamide-like immunoreactivity was investigated in the brain and olfactory system of the viviparous skink, Chalcides chalcides. In the adult brain FMRFamide immunoreactive (ir) perikarya were observed in the diagonal band of Broca, medial septal nucleus, accumbens nucleus, bed nucleus of the anterior commissure, periventricular hypothalamic nucleus, lateral forebrain bundle, and lateral preoptic, subcommissural, suprachiasmatic and lateral hypothalamic areas. This pattern was seen in both male and female brains. Though all major brain areas showed FMRFamide-ir innervation, the densest ir fiber network was observed in the hypothalamus. During development, ir elements were observed for the first time in embryos at mid-pregnancy. FMRFamide perikarya were located along the ventral surface of the vomeronasal nerve, in the olfactory peduncle mediobasally, as well as in the anterior olfactory nucleus and olfactory tubercle. Furthermore, some ir neurons were observed in the rhombencephalic reticular substance; however, the ir fiber network was poorly developed. Later in development FMRFamide-ir neurons appeared also in the bed nucleus of the anterior commissure as well as the rhombencephalic nucleus of solitary tract and the dorsal motor nucleus of vagus nerve. In juveniles, the distribution profile of FMRFamide immunoreactivity was substantially similar to that of the adults, with a less widespread neuronal distribution and a more developed fiber network. Ontogenetic presence of FMRFamide immunoreactivity in the nasal area has been linked to the presence of a nervus terminalis in this reptile.  相似文献   

8.
The topographical distribution of enkephalin in the central nervous system of the lizard, Anolis carolinensis, has been studied by the immunoperoxidase technique with antiserum to leucine-enkephalin. Immunoreactive enkephalin perikarya, fibers and probably terminals are widely distributed throughout the central nervous system, which agrees well with the distribution of enkephalins in the mammalian brain. Enkephalin-containing perikarya are found in the subpallium (septum, nucleus accumbens, striatum, amydgala), preoptic and hypothalamic region, ventromedial nucleus and ventromedial area of thalamus, pretectal geniculate nucleus and posterodorsal nucleus of pretectum, nucleus of the lateral lemniscus, locus ceruleus, spinal trigeminal nucleus, nucleus of the solitary tract, medial parvocelluar nucleus, and dorsal horn of the spinal cord. Enkephalinergic fibers and terminals are found in the above–mentioned areas as well as in the pallium (medial and dorsal cortex, dorsal ventricular ridge), dorsomedial and anterior dorsolateral nucleus of the thalamus, habenua, nucleus of the stria medullaris, torus semicircularis, mesencephalic tegmental area, interpeducular nucleus, mesencephalic trigeminal nucleus, central gray, reticular formation, raphe nucleus, substantia nigra, isthmus region, and nucleus of the trapezoid body. Enkephalinergic pathways appear to exist between the septum and the medial cortex, nucleus accumbens and nucleus of the lateral olfactory tract, striatum and certain mesencephalic structures, hypothalamus and tegmentum, and between nucleus of the lateral lemniscus and torus semicirculais. In the pituitary, cells of the pars intermedia, and certain cells of the rostral pars distalis also show immunoreactivity to enkephalin antiserum. The distribution of enkephalin immunoreactivity throughout the hypothalamus and in the median eminence suggests involvement in neuroendocrine regulation. Presence of enkephalin in many extrahypothalamic brain areas indicates its important role in various sensory functions and in behavioral and autonomic integration.  相似文献   

9.
The ontogeny of the thyrotropin releasing hormone (TRH) neuronal system was evaluated by immunocytochemistry in Bufo arenarum. The first appearance of TRH immunoreactive fibers was at early premetamorphosis. These fibers were found in small numbers and weakly stained in the median eminence and pars nervosa. With the advance of larval development, TRH-like material stained intensely and tended to aggregate in the median eminence, pars nervosa and pars intermedia. At climax stages immunoreactive fibers and perikarya (weakly stained) were also identified in the preoptic area. In adult specimens TRH perikarya and neuronal fibers were found in the preoptic and infundibular nuclei of the hypothalamus and in the amygdala, septum and diagonal band of Broca of the telencephalon. In addition, TRH neuronal fibers and endings were found in the preoptic-hypophyseal tract, the external zone of the median eminence, the pars nervosa and pars intermedia. Fibers were absent in the pars distalis. This study represents the first immunocytochemical demonstration of TRH in Bufo species, and serves as a basis for clarification of the neuroendocrine regulation of metamorphosis.  相似文献   

10.
Day‐active tree shrews are promising animals as research models for a variety of human disorders. Neuropeptide Y (NPY) modulates many behaviors in vertebrates. Here we examined the distribution of NPY in the brain of tree shrews (Tupaia belangeri chinensis) using immunohistochemical techniques. The differential distribution of NPY‐immunoreactive (‐ir) cells and fibers were observed in the rhinencephalon, telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon of tree shrews. Most NPY‐ir cells were multipolar or bipolar in shape with triangular, fusiform, and/or globular perikarya. The densest cluster of NPY‐ir cells were found in the mitral cell layer of the main olfactory bulb (MOB), arcuate nucleus of the hypothalamus, and pretectal nucleus of the thalamus. The MOB presented a unique pattern of NPY immunoreactivity. Laminar distribution of NPY‐ir cells was observed in the MOB, neocortex, and hippocampus. Compared to rats, the tree shrews exhibited a particularly robust and widespread distribution of NPY‐ir cells in the MOB, bed nucleus of the stria terminalis, and amygdala as well as the ventral lateral geniculate nucleus and pretectal nucleus of the thalamus. By contrast, a low density of neurons were scattered in the striatum, neocortex, polymorph cell layer of the dentate gyrus, superior colliculus, inferior colliculus, and dorsal tegmental nucleus. These findings provide the first detailed mapping of NPY immunoreactivity in the tree shrew brain and demonstrate species differences in the distribution of this neuropeptide, providing an anatomical basis for the participation of the NPY system in the regulation of numerous physiological and behavioral processes. J. Comp. Neurol. 523:495–529, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The distribution of perikarya and nerve fibers containing neuromedin U-like immunoreactivity in the brain of Rana esculenta was determined with an antiserum directed toward the carboxyl terminus of the peptide. In the telencephalon, immunoreactive perikarya were found in the olfactory bulb, the medial septum, and the diagonal band. In the diencephalon, labeled perikarya were detected in the anterior and posterior preoptic areas, the dorsal nucleus of the hypothalamus, the caudal part of the infundibulum, and the posterior tuberculum. In the mesencephalon, immunoreactive cell bodies were found only in the laminar nucleus of the torus semicircularis and the anterodorsal tegmental nucleus. In the rhombencephalon, labeled perikarya were detected in the secondary visceral nucleus, the cerebellar nucleus, the central gray, and the nucleus of the solitary tract. Immunoreactive nerve fibers were observed in all areas of the brain that contained labeled perikarya. The densest accumulations were found in the nucleus accumbens; the dorsal part of the lateral septum; the periventricular region of the ventral thalamus; the lateral part of the infundibulum; the anterodorsal, anteroventral, posterodorsal, and posteroventral tegmental nuclei; and the periaqueductal region of the tegmentum. The distribution of neuromedin U-like immunoreactivity in the frog brain was substantially different from the distribution described for the rodent brain. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The ontogeny of the thyrotropin releasing hormone (TRH) neuronal system was evaluated by immunocytochemistry in Bufo arenarum. The first appearance of TRH immunoreactive fibers was at early premetamorphosis. These fibers were found in small numbers and weakly stained in the median eminence and pars nervosa. With the advance of larval development, TRH-like material stained intensely and tended to aggregate in the median eminence, pars nervosa and pars intermedia. At climax stages immunoreactive fibers and perikarya (weakly stained) were also identified in the preoptic area. In adult specimens TRH perikarya and neuronal fibers were found in the preoptic and infundibular nuclei of the hypothalamus and in the amygdala, septum and diagonal band of Broca of the telencephalon. In addition, TRH neuronal fibers and endings were found in the preoptic-hypophyseal tract, the external zone of the median eminence, the pars nervosa and pars intermedia. Fibers were absent in the pars distalis. This study represents the first immunocytochemical demonstration of TRH in Bufo species, and serves as a basis for clarification of the neuroendocrine regulation of metamorphosis.  相似文献   

13.
The immunocytochemical distribution of proopiomelanocortin (POMC) peptides (beta-endorphin, ACTH, alpha-MSH, 16K fragment) was studied in the brain of the rhesus monkey (Macaca mulatta). Some animals were administered colchicine intracerebroventricularly prior to sacrifice to enhance the visualization of perikaryal immunoreactivity. Immunoreactive perikarya are localized to hypothalamic infundibular nucleus, giving rise to several distinct projections. Rostral projections extend through midline diencephalic and preoptic areas, and enter the telencephalon. Along this course, immunoreactive fibers are seen in midline hypothalamic and preoptic nuclei, nucleus of the diagonal band, olfactory tubercle, nucleus accumbens, bed nucleus of stria terminalis, septum, and other limbic structures in telencephalon. Caudal to the anterior commissure, some fibers ascend dorsally to enter the midline thalamus, which they innervate. Lateral projections of the infundibular perikarya course through the medial-basal hypothalamus, dorsal to the optic tracts, and enter the amygdala region where they innervate more medially situated amygdaloid nuclei. Caudal projections of the POMC neurons also extend through midline diencephalon, some coursing along a periventricular path to innervate midline hypothalamic and thalamic nuclei. This projection extends into the mesencephalic substantia grisea centralis and may also contribute to the innervation of more dorsally situated nuclei in the pons and medulla, such as the parabrachial nuclei and nucleus tractus solitarius. Other caudal projections originating in the hypothalamus course through the ventral tegmentum of mesencephalon and pons and may contribute to the innervation of midline raphe and other ventrally situated nuclei in the pons and medulla. The distribution of immunoreactive perikarya and fibers in the brain of rhesus monkey is strikingly similar to that found in the rat brain. However, subtle differences appear to exist in the innervation patterns of particular brain regions.  相似文献   

14.
Little is known about the immunohistochemistry of the nervous system in bats. This is particularly true of the nervus terminalis, which exerts strong influence on the reproductive system during ontogeny and in the adult. Luteinizing hormone-releasing hormone (LHRH) was visualized immunocytochemically in the nervus terminalis and brain of juvenile and adult big brown bats (Eptesicus fuscus). The peripheral LHRH-immunoreactive (ir) cells and fibers (nervus terminalis) are dispersed along the basal surface of the forebrain from the olfactory bulbs to the prepiriform cortex and the interpeduncular fossa. A concentration of peripheral LHRH-ir perikarya and fibers was found at the caudalmost part of the olfactory bulbs, near the medioventral forebrain sulcus; obviously these cells mediate between the bulbs and the remaining forebrain. Within the central nervous system (CNS), LHRH-ir perikarya and fibers were distributed throughout the olfactory tubercle, diagonal band, preoptic area, suprachiasmatic and supraoptic nuclei, the bed nuclei of stria terminalis and stria medullaris, the anterior lateral and posterior hypothalamus, and the tuber cinereum. The highest concentration of cells was found within the arcuate nucleus. Fibers were most concentrated within the median eminence, infundibular stalk, and the medial habenula. The data obtained suggest that this distribution of LHRH immunoreactivity may be characteristic for microchiropteran (insectivorous) bats. The strong projections of LHRH-containing nuclei in the basal forebrain (including the arcuate nucleus) to the habenula, may indicate close functional contact between these brain areas via feedback loops, which could be important for the processing of thermal and other environmental stimuli correlated with hibernation.  相似文献   

15.
The development of glycine immunoreactivity in the brain of the sea lamprey was studied by use of immunofluorescence techniques at embryonic to larval stages. Glycine distribution was also compared with that of γ‐aminobutyric acid (GABA) by use of double immunofluorescence. The first glycine‐immunoreactive (ir) cells appeared in the caudal rhombencephalon of late embryos, diencephalon of early prolarvae, and mesencephalon of late prolarvae, in which glycine‐ir cells were observed in several prosencephalic regions (preoptic nucleus, hypothalamus, ventral thalamus, dorsal thalamus, pretectum, and nucleus of the medial longitudinal fascicle), mesencephalon (M5), isthmus, and rhombencephalon. In larvae, glycine‐ir populations were observed in the olfactory bulbs, preoptic nucleus and thalamus (prosencephalon), M5 and oculomotor nucleus (mesencephalon), dorsal isthmic gray, isthmic reticular formation, and various alar and basal plate rhombencephalic populations. No glycine‐ir cells were observed in the larval optic tectum or torus semicircularis, which contain glycine‐ir populations in adults. A wide distribution of glycine‐ir fibers was observed, which suggests involvement of glycine in the function of most lamprey brain regions. Colocalization of GABA and glycine in prolarvae was found mainly in cell groups of the diencephalon, in the ventral isthmic group, and in trigeminal populations. In larvae, colocalization of GABA and glycine was principally observed in the M5 nucleus, the reticular formation, and the dorsal column nucleus. The present results reveal for the first time the complex developmental pattern of the glycinergic system in lamprey, including early glycine‐ir populations, populations transiently expressing glycine, and late‐appearing populations, in relation to maturation changes that occur during metamorphosis. J. Comp. Neurol. 512:747–767, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
The bed nucleus of the stria terminalis (BST) is a highly heterogeneous forebrain structure, within which the median and lateral BST play distinct functional roles. The medial BST (BSTM) is thought to be related to sexual behavior, while the lateral BST (BSTL) may have a stress-related function. In the human brain, the BST shows marked sexual dimorphism in the distribution of vasoactive intestinal polypeptide (VIP) immunoreactive fibers and also contains a very high concentration of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity (ir). Using immunohistochemistry (IHC) to examine the rat brain, the present study found that both VIP and PACAP containing afferent fibers are abundant in the BSTLd (dorsolateral division of BST), but not in the BSTM. IHC did not reveal any apparent difference between the sexes in the size of distribution of either immunoreactivity. Double staining IHC showed that axonal terminals of both VIP and PACAP neurons were in close proximity to dendrites or perikarya of corticotropin releasing factor (CRF) neurons. At the electron microscopic level IHC revealed the presence of axodendritic or axosomatic synapses between VIP-ir and PACAP-ir axon terminals and CRF-ir neurons. Although the origin of PACAP-ir fibers in the BSTLd remains to be determined, these morphological findings suggest that PACAP and VIP regulate the activity of CRF neurons in the BSTLd as neurotransmitters or neuromodulators.  相似文献   

17.
The localization of neurons, fibers, and terminals containing tyrosine hydroxylase (TH)-like immunoreactivity was studied in the brain of the crested newt by using an antiserum to rat phaeochromocytoma tyrosine hydroxylase. Immunoreactive cells and fibers were found in the spinal cord, the medulla oblongata (lateral periventricular areas), and the acousticolateral area. In the tegmentum mesencephali, two bilateral clusters of labelled cells were localized in the ventrolateral periventricular gray extending toward the caudal hypothalamus. In the hypothalamic tuberal lobes, the TH-like reactive neurons, frequently of CSF-contacting type, lined the dorsal wall of the lateral infundibular recesses. A thick network of TH-like reactive nerve fibers and terminals was observed in the perivascular zone of the median eminence and in the adenohypophysial pars intermedia. A number of labelled cell bodies were also found in the dorsal thalamus (pars intercalaris diencephali), the paraventricular organ, and the ventral wall of the preoptic recess. In the telencephalon, immunoreactive innervation was identified in the striatum, together with immunopositive cell bodies in the olfactory bulbs. The pattern of organization of TH-immunoreactive systems in the newt showed, except for some peculiarities (e.g., the labelled cell bodies in dorsal thalamus), close similarities to the arrangement typical of mammals.  相似文献   

18.
The distribution of FMRFamide-like immunoreactive (ir) neurons and fibers was investigated in the central nervous system of developing zebrafish and juvenile sturgeon (sterlet). Adult zebrafish was also studied. In zebrafish embryos FMRFamide-ir elements first appeared 30 h post-fertilization (PF). Ir somata were located in the olfactory placode and in the ventral diencephalon. FMRFamide-ir fibers originating from diencephalic neurons were found in the ventral telencephalon and in ventral portions of the brainstem. At 48 h PF, the ir perikarya in the olfactory placode displayed increased immunoreactivity and stained fibers emerged from the somata. At 60 h PF, bilaterally, clusters of FMRFamide-ir neurons were found along the rostro-caudal axis of the brain, from the olfactory placode to rostral regions of the ventro-lateral telencephalon. At 60 h PF, numerous ir fibers appeared in the dorsal telencephalon, optic lobes, optic nerves, and retina. Except for ir fibers in the hypophysis at the age of 72 h PF, and a few ir cells in the nucleus olfacto-retinalis (NOR) at the age of 2 months PF, no major re-organization was noted in subsequent ontogenetic stages. The number of stained NOR neurons increased markedly in sexually mature zebrafish. In adult zebrafish, other ir neurons were located in the dorsal zones of the periventricular hypothalamus and in components of the nervus terminalis. We are inclined to believe that neurons expressing FMRFamide originate in the olfactory placode and in the ventricular ependyma in the hypothalamus. On the same grounds, a dual origin of FMRFamide-ir neurons is inferred in the sturgeon, an ancestral bony fish: prior to the observation of ir cells in the nasal area and in the telencephalon stained neurons were noted in circumventricular hypothalamic regions.  相似文献   

19.
The development of galanin-like immunoreactive (GAL-ir) cells and fibers was investigated in the brain of brown trout embryos, alevins, juveniles, and adults (some spontaneously releasing their gametes). The earliest GAL-ir neurons appeared in the preoptic region and the primordial hypothalamic lobe of 12-mm embryos. After hatching, new GAL-ir neurons appeared in the lateral, anterior, and posterior tuberal nuclei, and in late alevins, GAL-ir neurons appeared in the area postrema. In juveniles, further GAL-ir populations appeared in the nucleus subglomerulosus and magnocellular preoptic nucleus. The GAL-ir neuronal groups present in juveniles were also observed in sexually mature adults, although the area postrema of males lacked immunoreactive neurons. Moreover, spawning males exhibited GAL-ir somata in the olfactory bulb and habenula, which were never observed in adult females or in developing stages. In adults, numerous GAL-ir fibers were observed in the ventral telencephalon, preoptic area, hypothalamus, neurohypophysis, mesencephalic tegmentum, ventral rhombencephalon, and area postrema. Moderate to low GAL-ir innervation was seen in the olfactory bulbs, dorsomedial telencephalon, epithalamus, medial thalamus, optic tectum, cerebellum, and rhombencephalic alar plate. There were large differences among regions in the GAL-ir innervation establishment time. In embryos, GAL-ir fibers appeared in the preoptic area and hypothalamus, indicating early expression of galanin in hypophysiotrophic centers. The presence of galanin immunoreactivity in the olfactory, reproductive, visual, and sensory-motor centers of the brain suggest that galanin is involved in many other brain functions. Furthermore, the distribution of GAL-ir elements observed throughout trout development indicates that galaninergic system maturation continues until sexual maturity.  相似文献   

20.
The immunocytochemical distribution of authentic proenkephalin-containing perikarya and nerve fibers in the brain of Rana esculenta was determined with antisera directed toward different epitopes of preproenkephalin. The pattern of proenkephalinlike immunoreactivity was similar with antisera directed toward [Met5]-enkephalin, [Met5]-enkephalin-Arg6, [Met5]-enkephalin-Arg6-Phe7, [Leu5]-enkephalin, and metorphamide; however, the intensity of the labelling varied depending on the target antigen. Proenkephalin-containing perikarya were located in all major subdivisions of the brain except the metencephalon. In the telencephalon, immunoreactive perikarya were detected in the dorsal, medial, and lateral pallium; the medial septal nucleus; the dorsal and ventral striatum; and the amygdala. In the diencephalon, immunoreactive perikarya were detected in the preoptic nucleus, in the dorsal and ventral caudal hypothalamus, and in an area that appeared to be homologous to the paraventricular nucleus. In the mesencephalon, numerous immunoreactive perikarya were detected in layer 6 of the optic tectum and a few scattered perikarya were detected in layer 4 of the optic tectum. Immunoreactive perikarya also occurred in the laminar nucleus of the torus semicircularis. In the rhombencephalon, immunoreactive perikarya were detected in the obex region and the nucleus of the solitary tract. Immunoreactive fibers of varying density were observed in all major subdivisions of the brain with the densest accumulations of fibers occurring in the dorsal pallium, the lateral and medial forebrain bundles, the amygdala, the periventricular hypothalamus, the superficial region of the caudolateral brainstem, and in a tract that appeared to be homologous to the tractus solitarius. The extensive system of proenkephalin-containing perikarya and nerve fibers in the brain of an amphibian showed many similarities to the distribution of proenkephalin-containing perikarya and nerve fibers previously described for the amniote brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号