首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.  相似文献   

2.
Ge YX  Xin WJ  Hu NW  Zhang T  Xu JT  Liu XG 《Brain research》2006,1118(1):58-65
Clonidine, a specific alpha2-adrenergic receptor agonist, has been found to be effective for the treatment of neuropathic pain, the mechanism underlying the effect is, however, not well understood. Here, the effect of clonidine on long-term potentiation (LTP) of C-fiber evoked field potentials in spinal dorsal horn, which is a synaptic model of injury-induced hyperalgesia, was investigated. LTP of C-fiber evoked field potentials was recorded in the superficial layers of spinal dorsal horn in anesthetized adult Sprague-Dawley rats. Clonidine and other substances were applied locally at the recording spinal segments before or after LTP induction by tetanic stimulation. We found that (1) Clonidine completely blocked LTP induction, when applied 30 min before tetanic stimulation and depressed spinal LTP, when applied 30 min and 3 h after LTP induction. (2) The inhibitory effect of clonidine on spinal LTP had two phases: a fast phase lasting for about 3.5 h and a slow phase persisting for the rest time of experiments (up to 8 h after drug). (3) Spinal clonidine at low dose (10.7 micro g/100 micro l) depressed spinal LTP but not C-fiber baseline response and at higher dose (107 micro g/100 micro l) depressed both of them. (4) Pretreatment with alpha2-adrenergic receptor antagonist yohimbine completely blocked the inhibitory effect of clonidine. (5) Pretreatment with muscarinic receptor antagonist atropine, nitric oxide synthesis inhibitor l-NNA or cGMP inhibitor ODQ depressed the fast phase inhibition significantly and abolished the slow phase inhibition completely. These results suggest that clonidine may exert analgesic effect by depressing the synaptic plasticity in spinal dorsal horn, via activation of muscarinic receptor-NO-cGMP pathway.  相似文献   

3.
C-fiber-evoked field potentials in response to electrical stimulation of the sciatic nerve were recorded in the dorsal horn of the rat lumbar spinal cord, and their long-term potentiation (LTP) was induced by high-frequency stimulation applied on the sciatic nerve as a synaptic model of hypersensitivity underlying an increased efficacy of nociceptive transmission. We evaluated the effect of gabapentin on the basal C-fiber-evoked field potentials and their established LTP. Intravenously administered gabapentin (10 and 30 mg/kg, i.v.) reduced the LTP of C-fiber-evoked field potentials in a dose-dependent manner when applied 60 min after establishment of the LTP. However, gabapentin did not affect the basal C-fiber-evoked field potentials or induction of the LTP. Thus, gabapentin was effective only in sensitized conditions. By contrast, morphine HCl (1 and 3 or 10 mg/kg, i.v.) reduced both the basal responses and their established LTP. The combination of gabapentin and morphine at lower doses of each drug appeared to result in a stronger reduction on the established LTP than that of each drug alone, suggesting that combination therapy can generate better analgesia in the treatment of chronic pain.  相似文献   

4.
Glial fibrillary acidic protein (GFAP) is a specific astrocytic marker in the central nervous system. Few studies on the effects of glial cell line-derived neurotrophic factor (GDNF) intrathecal injection on GFAP expression exist in the literature. The present study determined GFAP expression in rat spinal dorsal horn following a spinal nerve ligation (SNL). The effects of GDNF intrathecal injection on GFAP expression were examined to gather experimental evidence on the mechanisms underlying neuropathic pain. Following L5-6 SNL, male Sprague-Dawley rats were randomly divided into four groups: normal control, sham-operated, SNL, and GDNF. Each group was further divided into three subgroups (n = 10) according to the times of sacrifice: 3, 7, and 14 days after surgery. Compared with the normal control and the sham-operated groups, GFAP expression in the SNL group increased at day 3 after surgery and lasted until 14 days after. GFAP expression was significantly less in the GDNF group compared with the SNL group which lasted until 14 days after surgery, suggesting that rat spinal dorsal horn GFAP expression contributes to SNL-induced neuropathic pain. The mechanisms underlying GDNF alleviation of neuropathic pain were shown to be related to the GDNF inhibition of GFAP expression in the spinal dorsal horn.  相似文献   

5.
Ma JY  Zhao ZQ 《Neuroreport》2002,13(14):1781-1784
We have examined the potential role of spinal glial cells in the induction of C fiber-evoked long-term potentiation (LTP) in the spinal cord. Tetanic stimulation of the sciatic nerve induced longterm potentiation of C-fiber-evoked field potentials in the spinal dorsal horn in all rats. Following intrathecal fluorocitrate (1 nmol), a glial metabolic inhibitor, tetanic stimulation induced longterm depression (LTD) but not LTP. The effects of fluorocitrate were abolished by kynurenic acid or 2-amino-5-phosphonovaleric acid (AP-5), but not by 6,7-dinitroquinoxaline-2,3-dione (DNQX), picrotoxin or strychnine. These data suggest that spinal glial cells may modulate the central sensitization of nociceptive neurons via NMDA receptors.  相似文献   

6.
The NMDA receptor and the brain-derived neurotrophic factor (BDNF) are involved in central sensitization and synaptic plasticity in the spinal cord. To determine whether the spinal cord BDNF contributes to the development and maintenance of neuropathic pain by activation of the dorsal horn NR2B-containing NMDA (NMDA-2B) receptors, this study was designed to investigate if alterations in BDNF and its TrkB receptor in the spinal dorsal horn would parallel the timeline of the development of neuropathic pain in lumbar 5 (L5) spinal nerve ligated (SNL) rats. The enzyme-linked immunosorbent assay (ELISA) showed that the BDNF concentration significantly increased during 24 h post-surgery, and the maximal enhancement lasted for 48 h. It declined as time progressed and returned to the level of pre-operation at 28 days after SNL. In parallel with the alteration of BDNF concentration in the spinal dorsal horn, the 50% paw withdrawal threshold (PWT) of the ipsilateral hind paw in SNL rats also showed a significant decrease during 24–48 h after SNL as compared with those in sham-operated rats. The correlation analysis revealed that the BDNF concentration had a negative correlation with 50% PWT in early stage (0–48 h) (r = -0.974, p = 0.001), but not late stage (3–28 days) (r = 0.3395, p = 0.6605), after SNL. Similarly, the immunohistochemical staining revealed that a significant up-regulation of BDNF expression in the spinal dorsal horn appeared as early as 12 h post-operation in SNL rats, peaked at 24–48 h, declined at 3 days and disappeared at 14 days after SNL. In contrast, an increase in NMDA-2B receptors expression in the spinal dorsal horn was delayed to 48 h after SNL. The increase reached peak at 3 days, lasted for 14 days, and returned to the control level of pre-operation at 28 days after SNL. The maximal enhancement of BDNF expression occurred in early stage (24–48 h) after nerve injury, while the peak of NMDA-2B receptors expression appeared in late stage (3–14 days) post-nerve ligation. As compared with the dynamic changes of 50% PWT in the timeline after nerve injury, the maximal enhancement of BDNF expression closely paralleled the maximal decline in the slope of 50% PWT, while the peak of NMDA-2B receptors expression corresponded with the plateau of the decreased 50% PWT. Therefore, the increased BDNF in the spinal dorsal horn was likely to be associated with the initiation of neuropathic pain in early stage (0–48 h), while the activation of NMDA-2B receptors was involved in the maintenance of persistent pain states in late stage (2–14 days) after nerve injury. Moreover, the present study also demonstrated that the BDNF/TrkB-mediated signaling pathway within the spinal cord might be involved in the induction of neuropathic pain in early stage after nerve injury, and the selective NMDA-2B receptors antagonist (Ro 25-6981) almost completely blocked the BDNF-induced mechanical allodynia in all of the tested rats. These data suggested that the BDNF/TrkB-mediated signaling pathway in the spinal cord was involved in the development of nerve injury-induced neuropathic pain through the activation of dorsal horn NMDA-2B receptors.  相似文献   

7.
Long‐term potentiation (LTP) of spinal C‐fibre‐evoked field potentials can be induced by brief electrical stimulation of afferent C‐fibres, by natural noxious stimulation of skin or by acute nerve injury. Here, we report that in urethane anaesthetized, adult rats prolonged high frequency burst stimulation of the sciatic nerve at Aδ‐fibre strength produced long‐term depression (LTD) of C‐fibre‐evoked field potentials, and also depressed the increased amplitudes of C‐fibre‐evoked field potentials recorded after LTP had been established (depotentiation). Electrical stimulation of Aβ‐fibres failed to induce LTD or depotentiation. In spinalized rats, prolonged Aδ‐fibre conditioning stimulation induced LTP rather than LTD of C‐fibre‐evoked field potentials. Thus, tonic descending inhibition may determine the direction of plastic changes in C‐fibre‐mediated synaptic transmission. Spinal application of the N ‐methyl‐ d ‐aspartic acid receptor antagonist D‐APV blocked induction of LTD in intact rats and LTP in spinalized rats. The presently described LTD and the depotentiation of established LTP of C‐fibre‐evoked field potentials in spinal dorsal horn may underlie some forms of prolonged analgesia induced by peripheral nerve stimulation procedures.  相似文献   

8.
Previous studies have shown that Src-family kinases (SFKs) are selectively activated in spinal microglia following peripheral nerve injury and the activated SFKs play a key role for the development of neuropathic pain. To investigate the underlying mechanism, in the present study the effect of SFKs on long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, which is believed as central mechanism of neuropathic pain, was investigated in adult rats. Electrophysiological data revealed that pretreatment with either microglia inhibitor (minocycline, 200 μM) or SFKs inhibitors (PP2, 100 μM and SU6656, 200 μM) reversed the effect of high frequency stimulation (HFS), that is, HFS, which induces long-term potentiation (LTP) normally, induced long-term depression (LTD) after inhibition of either microglia or SFKs. Western blotting analysis showed that the level of phosphorylated SFKs (p-SFKs) in ipsilateral spinal dorsal horn was transiently increased after LTP induced by HFS, starting at 15 min and returning to control level at 60 min after HFS. Double-labeled immunofluorescence staining demonstrated that p-SFKs were highly restricted to microglia. Furthermore, we found that the inhibitory effects of minocycline or SU6656 on spinal LTP were reversed by spinal application of rat recombinant tumor necrosis factor-α (TNF-α 0.5 ng/ml, 200 μl). HFS failed to induce LTP of C-fiber evoked field potentials in TNF receptor-1 knockout mice and in rats pretreated with TNF-α neutralization antibody (0.6 μg/ml, 200 μl). The results suggested that in spinal dorsal horn activation of SFKs in microglia might control the direction of plastic changes at C-fiber synapses and TNF-α might be involved in the process.  相似文献   

9.
目的探讨腰5脊神经结扎(spinal nerve ligation, SNL)后,大鼠脊髓背角的广动力范围(wide dynamic range,WDR)神经元电生理学特性的改变。方法将健康雄性 Sprague-Dawley 大鼠分为正常组和 SNL 组,利用细胞外电生理学方法记录脊髓背角的 WDR 神经元放电。结果与正常大鼠相比,SNL 组大鼠 WDR 神经元兴奋性增加,表现为感受野扩大、有自发放电的神经元比例增加,以及 C 纤维诱发放电的阈值降低、潜伏期缩短、发放时程增加。此外,SNL组大鼠WDR神经元A和C纤维诱发放电数目较正常大鼠降低。结论大鼠腰5脊神经结扎后主要引起WDR神经元的兴奋性增加。WDR神经元的兴奋性增加可能参与神经病理痛的发生。  相似文献   

10.
Alteration of glutamatergic (GLU) neurotransmission within the spinal cord contributes to hyperalgesic and allodynic responses following nerve injury. In particular, changes in expression and efficacy of glutamate transporters have been reported. Excitatory, pain transmitting primary afferent neurons utilizing glutamate as an excitatory neurotransmitter project to both superficial (I-II) and deep (III-V) laminae of the dorsal horn. These experiments were designed to examine changes in glutamate uptake occurring concomitantly within the spinal deep dorsal and ventral horn in situ after experimentally induced neuropathic pain. In vivo voltammetry, using microelectrode arrays configured for enzyme-based detection of GLU were employed. Sprague-Dawley rats had either sham surgery or tight ligation of L5 and L6 spinal nerves (SNL). Four to six weeks later, the L4-L6 spinal cord of chloral hydrate-anesthetized animals was exposed, and ceramic-based glutamate microelectrodes equipped with glass micropipettes 50 microm from the recording surfaces were placed stereotaxically at sites within the spinal cord. Pressure ejection of GLU into the ipsilateral L5-L6 spinal cord resulted in a 72% reduction of GLU uptake in SNL rats compared to sham controls in the ipsilateral L5-L6 deep dorsal horn and a 96% reduction in the ventral horn. In contrast, in the same animals, the contralateral L5-L6 or the ipsilateral L4 spinal cord showed no change in glutamate uptake. The data suggest that spinal nerve ligation produced attenuated glutamate uptake activity extending into the deep dorsal and ventral horn. The study suggests that plasticity related to spinal nerve injury produces widespread alteration in glutamate transporter function that may contribute to the pathophysiology of neuropathic pain.  相似文献   

11.
J H Lee  A J Beitz 《Brain research》1992,577(1):80-91
The present study was designed to investigate the effect of 4 Hz vs. 100 Hz electroacupuncture (EA) on c-fos expression in the spinal cord induced by noxious stimulation (NS). A second objective was to evaluate the sensitivity of these two different frequencies of EA stimulation to the opiate antagonist, naloxone. Mechanical NS was applied to the right hindpaw following 30 min of either 4 Hz or 100 Hz EA treatment and the resulting c-fos expression in the spinal cord dorsal horn was compared to that obtained in rats exposed only to the noxious stimulation. The involvement of endogenous opioids in the EA response to 4 Hz or 100 Hz stimulation frequencies was evaluated by pretreating rats with naloxone (5 mg/kg, i.p.) 10 min prior to EA. Both 4 Hz and 100 Hz EA reduced the number of c-fos-immunoreactive neurons in the spinal dorsal horn induced by noxious stimulation by 58% and 50%, respectively. The suppression of c-fos expression induced by 4 Hz EA was completely reversed by prior treatment with naloxone. On the other hand, the suppression of c-fos induced by 100 Hz EA was only partially blocked by this opiate antagonist. These data indicate that both high- and low-frequency EA are capable of inhibiting the expression of c-fos in the dorsal horn induced by NS. Low-frequency EA appears to be mediated primarily by endogenous opioid systems, while non-opioid mechanisms may be involved in mediating the analgesic effect of high frequency EA. These results support the hypothesis that EA has a direct inhibitory effect on spinal cord dorsal horn neurons and extend the results of previous studies which indicate low frequency EA is mediated by opiate sensitive circuitry, while high frequency EA is predominantly mediated by non-opioid neurotransmitters.  相似文献   

12.
It has been shown that following peripheral nerve injury brain-derived neurotrophic factor (BDNF) released by activated microglia contributes to neuropathic pain, but whether BDNF affects the function of microglia is still unknown. In the present work we found that spinal application of BDNF, which induced long-term potentiation (LTP) of C-fiber evoked field potentials, activated spinal microglia in naïve animals, while pretreatment with microglia inhibitor minocycline blocked BDNF-induced LTP. In addition, following LTP induction by BDNF, both phosphorylated Src-family kinases (p-SFKs) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were up-regulated only in spinal microglia but not in neurons and astrocytes, whilst spinal application of SFKs inhibitor (PP2 or SU6656) or p38 MAPK inhibitor (SB203580) blocked BDNF-induced LTP and suppressed microglial activation. As spinal LTP at C-fiber synapses is considered to underlie neuropathic pain, we subsequently examined whether BDNF may contribute to mechanical hypersensitivity by activation of spinal microglia using spared nerve injury (SNI) model. Following SNI BDNF and TrkB receptor were up-regulated mainly in dorsal horn neurons and in activated microglia, and p-SFKs and p-p38 MAPK were increased exclusively in microglia. Intrathecal injection of BDNF scavenger TrkB-Fc starting before SNI, which prevented the behavioral sign of neuropathic pain, suppressed both microglial activation and the up-regulation of p-SFKs and p-p38 MAPK produced by SNI. Thus, the increased BDNF/TrkB signaling in spinal dorsal horn may contribute to neuropathic pain by activation of microglia following peripheral nerve injury and inhibition of SFKs or p38 MAPK may selectively inhibit microglia in spinal dorsal horn.  相似文献   

13.
Objective. Pulsed radiofrequency (PRF) procedure has been used in clinical practice for the treatment of chronic neuropathic pain conditions without neuronal damage. The purpose of this study was to investigate the changes in pain response and glial expression after the application of PRF on a dorsal root ganglion (DRG) in a neuropathic pain model. Design. A neuropathic pain model (14 female Sprague-Dawley [SD] rats; 200-250?g) was made by a unilateral L5 spinal nerve ligation (SNL) and transection on the distal side of the ligation. The development of mechanical and cold hypersensitivity on the hindpaw was established postoperative day 9 (POD 9). The rats were then randomly assigned to the PRF (+) and the PRF (-) groups. Furthermore, PRF (2 bursts/s, duration?=?20?milliseconds, output voltage?=?45?V) was applied on the ipsilateral DRG for 180 seconds, with a maximum temperature of 42°C, at POD 10. Pain behaviors were tested throughout the 12 days after PRF. We also examined the changes of the spinal glial expression by immunohistochemistry. Results. Significant reduction of mechanical hypersensitivity in the PRF (+) group was observed from day 1 after a single PRF procedure and was maintained throughout the following 12 days. Immunoreactivity for OX42 in the ipsilateral dorsal horn also decreased compared with that of the PRF (-) group. However, cold hypersensitivity and glial fibrillary acidic protein (GFAP) immunoreactivity in the dorsal horn was not affected by a PRF procedure. Conclusions. Our result demonstrated that the mechanical hypersensitivity, induced by L5 SNL, was attenuated by a PRF procedure on the ipsilateral DRG. This analgesic effect may be associated with an attenuation of the microglial activation in the dorsal horn.  相似文献   

14.
Accumulation of amyloid-beta peptide (Abeta) is widely believed to play a critical role in the pathogenesis of Alzheimer's disease. Although amyloid-containing plaques are a key neuropathological feature of AD, soluble forms of Abeta can interfere with synaptic plasticity in the brain, suggesting that this form of the peptide may be responsible for much of the memory deficit seen early in the disease. Here, we investigate the mechanism underlying the effects of Abeta on long-term potentiation (LTP) in area CA1 of rat hippocampus. Extracellular field recordings were made in area CA1 of hippocampal slices taken from young, adult male rats. A non-toxic concentration of Abeta (200 nM) produced a rapid inhibition of LTP induced by 100 Hz stimulation while having no long-term effect on normal synaptic transmission. The same dose of Abeta had no effect on long-term depression (LTD) induced by 1200 pulses at 1 or 3 Hz. Picrotoxin had no effect on the inhibition of LTP, suggesting Abeta does not act by enhancing GABAergic transmission. Since the LTP induction in this study was dependent on N-methyl-D-aspartate (NMDA) receptor activation, we looked at the effect of Abeta on isolated NMDA receptor-mediated field potentials. Abeta produced a small but significant inhibition of NMDA receptor-mediated synaptic potentials ( approximately 25%). However, a low dose of MK-801 (0.5 microM) that produced a similar inhibition of NMDA potentials had no effect on LTP induction but completely blocked LTD induction. These results suggest that Abeta does not inhibit LTP via effects on NMDA receptors, but rather interferes with a downstream pathway.  相似文献   

15.
Interleukin-6 (IL-6) is a neuropoietic cytokine which is dramatically upregulated following peripheral nerve injury at the site of injury, in the dorsal root ganglion (DRG) and in the spinal cord. The functional effects of IL-6 in nociception in normal conditions and following nerve injury are unclear. Thus the aim of this study was to assess the effect of spinal IL-6 administration on nociceptive transmission in naive, sham-operated and neuropathic (spinal nerve ligation, SNL) rats using in vivo electrophysiology to elucidate the possible role of IL-6 in neuropathic pain. In anaesthetised rats, extracellular recordings were made from individual convergent dorsal horn neurones following electrical and natural (mechanical and thermal) stimulation of peripheral receptive fields. Exogenous spinal IL-6 (100-500 ng) had no significant effect on electrically evoked neuronal responses in naive rats. In contrast, following neuropathy, spinal IL-6 produced a dose-related inhibition of the electrically evoked C-fibre, initial C-fibre and measures of neuronal hyperexcitability (post discharge and wind-up). In addition, spinal IL-6 markedly inhibited mechanical neuronal responses in neuropathic rats. Higher doses of spinal IL-6 also inhibited, to a lesser degree, the initial C-fibre, post discharge and wind-up responses in sham-operated rats. These studies show that following nerve injury the actions of the cytokine alter so that spinal administration of IL-6 elicits anti-nociceptive effects not observed under normal conditions. Moreover, the inhibitory effects of IL-6 on C-fibre activity and neuronal hyperexcitability, suggest IL-6 to be a potential modulator of neuropathic pain.  相似文献   

16.
High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat neuropathic pain was induced by spinal nerve ligation. Two days after modeling, the rats were subjected to 4 hours of HF-SCS(motor threshold 50%, frequency 10,000 Hz, and pulse width 0.024 ms) in the dorsal horn of the spinal cord. The results revealed that the tactile allodynia of spinal nerve-injured rats was markedly alleviated by HFSCS, and the effects were sustained for 3 hours after the stimulation had ceased. HF-SCS restored lysosomal function, increased the levels of lysosome-associated membrane protein 2(LAMP2) and the mature form of cathepsin D(matu-CTSD), and alleviated the abnormally elevated levels of microtubule-associated protein 1 A/B-light chain 3(LC3)-II and sequestosome 1(P62) in spinal nerve-injured rats. HF-SCS also mostly restored the immunoreactivity of LAMP2, which was localized in neurons in the superficial layers of the spinal dorsal horn in spinal nerve-injured rats. In addition, intraperitoneal administration of 15 mg/kg chloroquine for 60 minutes reversed the expression of the aforementioned proteins and shortened the timing of the analgesic effects of HF-SCS. These findings suggest that HF-SCS may exhibit longlasting analgesic effects on neuropathic pain in rats through improving lysosomal dysfunction and alleviating autophagic flux. This study was approved by the Laboratory Animal Ethics Committee of China Medical University, Shenyang, China(approval No. 2017 PS196 K) on March 1, 2017.  相似文献   

17.
Gong QJ  Li YY  Xin WJ  Zang Y  Ren WJ  Wei XH  Li YY  Zhang T  Liu XG 《Glia》2009,57(6):583-591
Many studies have shown that adenosine triphosphate (ATP), as a neurotransmitter, is involved in plastic changes of synaptic transmission in central nervous system. In the present study, we tested whether extracellular ATP can induce long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn. The results showed the following: (1) ATP at a concentration of 0.3 mM induced spinal LTP of C-fiber-evoked field potentials, lasting for at least 5 h; (2) spinal application of 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5-triphosphate (TNP-ATP; an antagonist of P2X(1-4) receptors), but not pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; an antagonist of P2X(1,2,3,5,7) receptors), 30 min before ATP blocked ATP-induced LTP, indicating that ATP may induce spinal LTP by activation of P2X(4) receptors; (3) at 60 min after LTP induction the level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) was significantly elevated and at 180 min after LTP the number of P2X(4) receptors increased significantly; both p-p38 and P2X(4) receptors were exclusively co-located with the microglia marker, but not with neuronal or astrocyte marker; (4) spinal application of TNP-ATP but not PPADS prevented p38 activation; (5) spinal application of SB203580, a p38 MAPK inhibitor, prevented both spinal LTP and the upregulation of P2X(4) receptors. The results suggested that ATP may activate p38 MAPK by binding to intrinsic P2X(4) receptors in microglia, and subsequently enhance the expression of P2X(4) receptors, contributing to spinal LTP.  相似文献   

18.
We used stimulation of corpus callosum (CAL) and the subiculo-cingulate tract (SCT), in an in vitro brain slice preparation, to study activity-dependent changes in synaptic efficacy in posterior cingulate cortex (PCC). SCT stimulation monosynaptically excites the apical dendrites of deep laminae (V–VI) pyramidal neurons, while CAL afferents drive these same cells via synapses on their basal dendrites. In contrast, most superficial laminae (II/III–IV) pyramids appear to be driven polysynaptically via ascending axonal collaterals of deep pyramids. In slices retaining these connectivities, we contrasted characteristics of synaptic plasticity in superficial vs deep laminae field and intracellular potentials evoked by conditioning stimuli given at frequencies of 100, 20, 8, 5 and 1 Hz. Tetanic stimulation (100 Hz) of SCT or CAL yielded homosynaptic long-term potentiation (LTP) of each pathway, while stimulus trains of 8–20 Hz did not. 1–5 Hz stimulation of SCT and CAL elicited homosynaptic long-term depression (LTD) of synaptic strength in each pathway. Associative LTD was induced by interleaving 5 Hz pulses to the SCT pathway with 100 Hz θ-burst stimulation of CAL, but was not induced when these stimulus loci were switched. Heterosynaptic non-associative LTD was also observed in the alternate pathway following tetanization of either SCT or CAL. In all cases, LTP and LTD were observed only in deep laminae recordings. In contrast, superficial records showed only paired-pulse facilitation and short-term post-tetanic potentiation. In in vivo experiments in anaesthetized rats, PCC responses to SCT stimulation were contrasted with responses to stimulation of anteroventral and anterodorsal thalamic nuclei (AV/AD). SCT-elicited field potentials closely resembled those evoked in the slice, with maximal amplitude tuned to the 4–8 Hz frequency band. AV/VD stimulation elicited field potentials which were not frequency tuned. Overall, these data suggest that the acute circuit properties of PCC superficial laminae, modulated by thalamic input and synaptic plasticity in deep laminae, can transform hippocampal synaptic inflow before relaying it to extracingulate targets.  相似文献   

19.
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.  相似文献   

20.
Tetanic stimulation of the sciatic nerve induces long‐term potentiation (LTP) of C‐fiber‐evoked field potentials in the spinal dorsal horn and persistent pain, suggesting that spinal LTP may be a substrate for central sensitization of the pain pathway. However, its cellular mechanism remains unclear. The present study provides electrophysiological and behavioral evidence for the involvement of ryanodine receptor (RyR) in the induction of spinal LTP and persistent pain in rats. The specific inhibitor of ryanodine receptor, ryanodine and dantrolene, dose dependently blocked the induction, but not maintenance, of spinal LTP and reduced persistent pain behaviors induced by tetanic sciatic stimulation. Both cyclic ADP ribose (cADPR), an endogenous agonist of RyR, and (±)‐1,4‐dihydro‐2,6‐dimethyl‐5‐nitro‐4‐[2‐(trifluromethyl)‐phenyl]‐3‐pyridine carboxylic acid methyl ester (Bay K 8644), an agonist of L‐type calcium channel, attenuated ryanodine‐induced inhibition. Immunohistochemistry and electron microscopic observation showed that RyR subtypes RyR1 and RyR3 were located in the spinal dorsal horn. The results suggest that RyRs are involved in synaptic plasticity of the spinal pain pathway and may be a novel target for treating pain. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号