首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schizophrenia is marked by pronounced cognitive impairments in addition to the hallmark psychotic symptoms like hallucinations. Antipsychotic drugs can effectively reduce these hallucinations; however, the drugs have not resolved the cognitive impairment. Interestingly, nicotine, a drug commonly self-administered by people with schizophrenia, has been shown to significantly improve cognitive function of people with schizophrenia. The current study was conducted to determine the effect of typical (haloperidol) and atypical (clozapine and risperidone) antipsychotic drug treatment on sustained attention in rats performing a visual signal detection task. In addition, the interaction of haloperidol with chronic nicotine administration was assessed. Female Sprague-Dawley rats were injected subcutaneously with clozapine (0, 0.6, 1.25 and 2.5 mg/kg), risperidone (0, 0.025, 0.05 and 0.1 mg/kg) or haloperidol (0, 0.01, 0.02 and 0.04 mg/kg). In the second part of the study, the interaction of acute haloperidol (0, 0.005, 0.01 and 0.02 mg/kg) and chronic nicotine (5 mg/kg/day, for 4 weeks via osmotic minipump) was characterized. Clozapine, risperidone and haloperidol all caused dose-related impairments in percent hit performance. There was a significant linear dose-related impairment in percent hit caused by risperidone. All the doses of clozapine caused a significant impairment in percent hit at the higher luminance intensities in the visual signal detection task. The 0.01 and 0.02 mg/kg haloperidol doses caused significant decreases in percent hit. The 0.04 mg/kg haloperidol dose impaired performance of the task to the point that reliable choice accuracy measurements could not be made. Chronic nicotine infusion significantly diminished the impairing effects of haloperidol on performance during weeks 1-2. In summary, both typical and atypical antipsychotic drugs significantly impaired sustained attention in rats. Haloperidol was more detrimental than clozapine and risperidone. Chronic nicotine diminished the adverse effects of haloperidol on performance. This study establishes a paradigm to reliably determine the attentional impairment caused by antipsychotic drugs.  相似文献   

2.
Aripiprazole,7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-carbostycil (OPC-14597), a novel atypical antipsychotic drug, is a dopamine D2 receptor partial agonist with functional 5-HT2A receptor antagonist, and 5-HT1A receptor partial agonist properties as well. Other atypical antipsychotic drugs, e.g. clozapine, but not typical antipsychotic drugs, e.g. haloperidol, produce significant increases in dopamine and acetylcholine release in the medial prefrontal cortex in rats, effects believed to be related to the ability to improve cognitive function. The increase in the medial prefrontal cortex dopamine release by the atypical antipsychotic drugs has been shown to be partially inhibited by N-[2[4-)2-methoxyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635), a selective 5-HT1A receptor antagonist. Aripiprazole, 0.1 and 0.3 mg/kg, significantly increased dopamine release in the hippocampus. Moreover, aripiprazole, 0.3 mg/kg, slightly but significantly increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. These increases were significantly inhibited by WAY100635. By contrast, aripiprazole, 3.0 mg/kg and 10 mg/kg, significantly decreased dopamine release in the nucleus accumbens but not the medical prefrontal cortex. However, aripiprazole 10 mg/kg significantly decreased dopamine release in the both regions. Aripiprazole had no effect on acetylcholine release in the medial prefrontal cortex, hippocampus, or nucleus accumbens at any dose, except for 3.0 mg/kg, which decreased acetylcholine release in the nucleus accumbens only. Aripiprazole, 0.3 mg/kg, transiently potentiated haloperidol (0.1 mg/kg)-induced dopamine release in the medial prefrontal cortex but inhibited that in the nucleus accumbens. The present study demonstrated that aripiprazole, at low doses of 0.1 and 0.3 mg/kg, increases dopamine release in the medial prefrontal cortex and hippocampus. It also suggests that the function of both the medial prefrontal cortex and hippocampus may contribute to the ability of aripiprazole to improve negative symptom and cognition.  相似文献   

3.
Phosphodiesterase-10A (PDE10A), -1B (PDE1B), -4B (PDE4B), and -4A (PDE4A) are important regulators of signal transduction in striatum due to their catalysis of cyclic AMP and cyclic GMP. The typical antipsychotic drug haloperidol and the atypical antipsychotic drug clozapine are thought to regulate cyclic nucleotide signaling in striatum. Since this brain region is essential in mediation of both therapeutic and extrapyramidal side effects, it was of interest to determine whether chronic treatment for 21 days with haloperidol (1 mg/kg) or clozapine (20 mg/kg) affected PDE expression in rat striatum. This was accomplished using SDS-PAGE/immunoblotting and real-time RT-PCR. Both antipsychotic drugs increased PDE10A and did not change PDE4A. By contrast, PDE1B was increased by haloperidol treatment, but not clozapine treatment, while PDE4B was increased by clozapine, but not haloperidol. In all cases, changes in protein expression were accompanied by corresponding changes in mRNA, and only were observed with chronic treatment. Up-regulation of PDEs may represent compensatory responses to haloperidol and clozapine treatments, due to altered cyclic nucleotide signaling, and that different patterns of effects produced by these drugs may be associated with their mechanisms of action.  相似文献   

4.
The discriminative stimulus properties of the typical antipsychotic chlorpromazine were examined in a two‐lever drug discrimination procedure for food reward. Six of nine rats readily acquired the discrimination between 1.0 mg/kg chlorpromazine (i.p.) and vehicle in a mean of 29.7 training sessions. The chlorpromazine generalization curve was dose‐dependent and yielded an ED50 of 0.305 mg/kg (95% confidence interval (CI) = 0.201–0.463 mg/kg). The chlorpromazine cue generalized to the atypical antipsychotics clozapine (ED50 for the clozapine curve was 0.258 mg/kg [95% CI = 0.047–1.420 mg/kg]) and olanzapine (ED50 for the olanzapine curve was 0.199 mg/kg [95% CI = 0.076–0.522 mg/kg]) and to the typical antipsychotic thioridazine (ED50 for the thioridazine curve was 3.103 mg/kg [95% CI = 1.993–4.832 mg/kg]). Haloperidol (a typical antipsychotic) and raclopride (an atypical antipsychotic) did not substitute for chlorpromazine. It is clear from the present results that the discriminative stimulus properties of chlorpromazine share similarities both with the atypical antipsychotics clozapine and olanzapine and with the typical antipsychotic thioridazine. The extent to which the discriminative stimulus properties of antipsychotic drugs reflect or are predictive of their therapeutic effects in schizophrenic patients remains unclear. Drug Dev. Res. 48:38–44, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Clozapine, the prototype for atypical antipsychotic drugs, is used in the drug discrimination paradigm as a model for screening atypical from typical antipsychotic drugs. Previous drug discrimination studies in rats have shown that a 1.25 mg/kg clozapine training dose provides full stimulus generalization (i.e.) >or=80% condition-appropriate responding) to most atypical antipsychotic drugs, although a 5.0 mg/kg clozapine training dose appears necessary to provide stimulus generalization to other atypical antipsychotic drugs. The present study sought to characterize the pharmacological mechanisms that mediate these clozapine training doses. In rats trained to discriminate 1.25 vs. 5.0 mg/kg clozapine vs. vehicle in a three-choice drug discrimination task, various receptor-selective compounds were tested for stimulus generalization. The antidepressant mianserin was also tested. Full stimulus generalization from the 1.25 mg/kg clozapine training dose occurred only to mianserin (98.8%). Partial substitution (i.e. >or=60% and <80% condition-appropriate responding) to the 5.0 mg/kg clozapine training dose occurred for the muscarinic receptor antagonist scopolamine. The combined total percentage of responding on the 1.25 and 5.0 mg/kg clozapine levers, however, was well above the full substitution criteria at the 0.25, 0.5, and 1.0 mg/kg scopolamine doses. The M1 agonist N-desmethylclozapine, the nicotinic antagonist mecamylamine, the D1 antagonist SCH 23390, the D4 antagonist LU 38-012, the 5-HT1A agonist (+)-8-OH-DPAT, the 5-HT1A antagonist WAY 100 635, the 5-HT2A/2B/2C antagonist ritanserin, the 5-HT6 antagonist RO4368554, the alpha1 antagonist prazosin, the alpha2 antagonist yohimbine, and the histamine H1 antagonist pyrilamine all failed to substitute for either the 1.25 or the 5.0 mg/kg clozapine training doses. These results are consistent with previous evidence that antidepressant drugs have a tendency to substitute for clozapine and that muscarinic receptor antagonism may mediate the discriminative stimulus properties of 5.0 mg/kg clozapine. The lack of stimulus generalization from either clozapine training dose to other receptor-selective compounds, however, fails to explain how this model screens atypical from typical antipsychotic drugs and suggests that the discriminative stimulus properties of clozapine consist of a compound cue.  相似文献   

6.
The effects of olanzapine [LY 170053; 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2, 3b][1,5]benzodiazepine), a potential atypical antipsychotic, were determined in pigeons whose keypeck responding was punished. These effects were compared to the anxiolytic agents chlordiazepoxide and pentobarbital, and to other antipsychotic agents. Keypeck behavior was maintained under a multiple FR30 FR30 schedule, signalled by white and red stimulus lights, respectively. Each component of the schedule alternated every 3 min with a 30-s timeout. During the white keylight component, responding was maintained by food presentation. During the red keylight component, responding was maintained by food and simultaneously suppressed by electric shock presentation, with response rates being only about 5% of those during the white stimulus light. Olanzapine (0.01–1.0 mg/kg) increased punished responding at doses below those which had an effect on unpunished responding. Clozapine (0.01–1.0 mg/kg), ritanserin (0.1–3.0 mg/kg), and, to a lesser extent, risperidone (0.1–1.0 mg/kg) were also effective at increasing punished responding. Generally, the maximum effect seen with olanzapine was equal to that seen with ritanserin, and it exceeded that seen with clozapine. However, these effects were generally less than those seen with chlordiazepoxide and pentobarbital. Haloperidol (0.01–0.1 mg/kg) was completely without effect on punished responding, while it caused decreases in unpunished behavior. These results provide further evidence that olanzapine has a profile in behavioral tests unlike the typical antipsychotic haloperidol. Moreover, this profile is similar to clozapine, a clinically effective antipsychotic with an atypical profile.  相似文献   

7.
Typical and atypical antipsychotic drugs have been shown to have different clinical, biochemical, and behavioral profiles. It is well described that impairment of metabolism, especially in the mitochondria, leads to oxidative stress and neuronal death and has been implicated in the pathogenesis of a number of diseases in the brain. Considering that some effects of chronic use of antipsychotic drugs are still not well known and that succinate dehydrogenase (SDH) and cytochrome oxidase (COX) are crucial enzymes of mitochondria, in this work, we evaluated the activities of these enzymes in rat brain after haloperidol, clozapine, olanzapine, or aripiprazole chronic administration. Adult male Wistar rats received daily injections of haloperidol (1.5 mg/kg), clozapine (25 mg/kg), olanzapine (2.5, 5, or 10 mg/kg), or aripiprazole (2, 10 or 20 mg/kg) for 28 days. We verified that COX was not altered by any drug tested. Moreover, our results demonstrated that the atypical antipsychotic olanzapine inhibited SDH in the cerebellum and aripiprazole increased the enzyme in the prefrontal cortex. We also observed that haloperidol inhibited SDH in the striatum and hippocampus, whereas clozapine inhibited the enzyme only in the striatum. These results showed that antipsychotic drugs altered SDH activity but not COX. In this context, haloperidol, olanzapine, and clozapine may impair energy metabolism in some brain areas.  相似文献   

8.
To assess the involvement of substance P (SP) and cholecystokinin (CCK) in the effects of antipsychotic drugs, preprotachykinin-A (PPT-A) and CCK mRNA expression was studied in the hippocampal formation using in situ hybridisation following 21 daily i.p. injections with the typical antipsychotic drug haloperidol (1 mg/kg) and the atypical drug clozapine (15 mg/kg). PPT-A mRNA levels were increased in the hippocampal CA3 subregion and in the entorhinal cortex after haloperidol, whereas a decrease was observed in the CA1 after clozapine. CCK mRNA levels increased in the CA1, the entorhinal cortex and in hilus, following both haloperidol and clozapine. It is suggested that earlier findings of increased SP levels in the hippocampal formation of schizophrenics may be a consequence of haloperidol treatment and that reduced hippocampal CCK and CCK mRNA levels found earlier in schizophrenics do not result from antipsychotic drug treatment. These results are consonant to the hypothesis that increased cortical CCK transmission may be beneficial in the treatment of psychosis.  相似文献   

9.
KKHA-761, 1-{4-[3-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-butyl}-4-(2-methoxy-phenyl)-piperazine, has a high affinity (Ki=3.85 nM) for human dopamine D3 receptor with about 70-fold selectivity over the human dopamine D(2L) receptor (Ki=270 nM). KKHA-761 also showed high affinity for cloned human 5-HT1A receptor (Ki=6.4 nM). KKHA-761 exhibited D3 and 5-HT1A receptor antagonist activities in vitro, reversing dopamine- or 5-HT-mediated stimulation of [35S]GTPrS binding. The in vivo pharmacological profile of KKHA-761 was compared with both typical and atypical antipsychotics including clozapine and haloperidol. Apomorphine-induced dopaminergic behavior, cage climbing, in mice was potently blocked by a single administration (i.p.) of KKHA-761 (ID50=4.06 mg/kg) or clozapine (ID50=4.0 mg/kg). Cocaine- or MK-801-induced hyperactivity in animals was markedly inhibited by KKHA-761 or clozapine. In addition, KKHA-761 significantly reversed the disruption of prepulse inhibition (PPI) produced by apomorphine in mice, indicating the antidopaminergic or antipsychotic activity of KKHA-761 in mice. However, KKHA-761 was inactive in the forced swimming behavioral despair model in mice, suggesting lack of antidepressant properties. KKHA-761 attenuated the hypothermia induced by a selective dopamine D3 agonist, 7-OH-DPAT, in mice, whereas clozapine enhanced it. Moderate doses of both KKHA-761 and clozapine did not increase serum prolactin levels in rats. Lower doses of, however, haloperidol significantly increased prolactin secretion. KKHA-761 did not induce cataleptic response up to 20 mg/kg, but significant catalepsy was shown at lower doses of clozapine and haloperidol. Furthermore, KKHA-761 showed a low incidence of rotarod ataxia (TD50=34.4 mg/kg, i.p.) in mice. The present results, therefore, suggest that KKHA-761 is a potent antipsychotic agent with combined dopamine D3 and serotonin 5-HT1A receptors modulation activity, which may further enhance its therapeutic potential for anxiety, psychotic depression, and other related disorders.  相似文献   

10.
N-desmethylclozapine (NDMC) is the major active metabolite of the atypical antipsychotic drug clozapine and may contribute to the therapeutic efficacy of clozapine. Although they share many pharmacological features, it is noteworthy that NDMC is a partial dopamine D2 and cholinergic muscarinic M1/M4 agonist, whereas clozapine is a weak dopamine D2 receptor inverse agonist/antagonist and a nonselective muscarinic antagonist. To better understand the in-vivo pharmacological mechanisms of these drugs, male C57BL/6NHsd-wild-type mice were trained to discriminate 10.0 mg/kg NDMC from vehicle in a two-lever drug discrimination procedure for food reward. It was found that the parent drug clozapine fully substituted for NDMC, whereas the typical antipsychotic drug haloperidol (dopamine D2 antagonist) and the atypical antipsychotic drug aripiprazole (D2 partial agonist) did not substitute for NDMC. These results demonstrated that clozapine and its major metabolite NDMC share in-vivo behavioral properties (i.e. discriminative stimulus properties) that are likely due to shared pharmacological mechanisms that differ from other antipsychotic drugs. The discriminative stimulus properties of NDMC probably reflect a compound cue similar to that of its parent drug clozapine due to its diverse binding profile.  相似文献   

11.
We have previously shown that chronic treatment with clozapine induces tolerance to the clozapine discriminative stimulus in rats. The studies reported here extended this work to assess whether chronic treatment with the clozapine-like antipsychotics olanzapine and 5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5] benzoxazepine fumarate (JL13) induced cross-tolerance to clozapine. Two groups of rats were trained to discriminate clozapine (5 mg/kg, intraperitoneal). Training was suspended and the rats were treated with either olanzapine or JL13 at high doses (5 and 20 mg/kg, respectively). These doses were administered twice daily. The clozapine generalization curve was computed three times - before chronic drug treatment, after 10 days of chronic treatment, and after 16 drug-free days. Both olanzapine and JL13 induced cross-tolerance to the clozapine stimulus, shown by significant 3.4 and 3.9 fold parallel shifts to the right in the clozapine generalization curves. Cross-tolerance was lost spontaneously during the drug-free days after treatment as clozapine sensitivity returned to baseline. We interpret these findings as indicative of the development of pharmacodynamic cross-tolerance to clozapine. Possible neuroadaptive mechanisms involved in such cross-tolerance are discussed. The paradigm outlined here allows refinement of antipsychotic drug discrimination assays to identify common chronic effects of such drugs.  相似文献   

12.
The amplitude of the acoustic startle response in rats is decreased if the startle stimulus is preceded by a nonstartle-eliciting auditory stimulus. This sensory gating phenomenon, known as prepulse inhibition, is diminished in schizophrenic individuals. In rats, the noncompetitive glutamate antagonist MK-801 disrupts prepulse inhibition. The present study examined whether the disruption by MK-801 is reversible in rats pretreated with the classical antipsychotic haloperidol or the atypical antipsychotic clozapine. Male Sprague-Dawley rats were placed into a startle chamber and presented with auditory stimuli consisting of either 95 or 105 dB tones presented alone or preceded by a 70 dB tone. Rats treated with 0.1 mg/kg MK-801 demonstrated a significant disruption of prepulse inhibition. Haloperidol (0.1 and 0.5 mg/kg) and clozapine (1.0 and 5.0 mg/kg) each consistently failed to antagonize the MK-801-induced blockade of prepulse inhibition. The effects of haloperidol and clozapine on prepulse inhibition were also examined in saline-treated rats. Clozapine and, to some extent, haloperidol produced a dose-related facilitation of prepulse inhibition. Although preliminary, this finding raises the possibility that the enhancement of prepulse inhibition by antipsychotics might provide a useful rodent model for screening potential antipsychotic drugs.  相似文献   

13.
Clozapine (CLZ), an atypical antipsychotic drug (APD), produces minimal extrapyramidal side effects (EPS) and has significant advantages for treating both positive and negative symptoms in schizophrenic patients. CLZ has been established as a discriminative cue in the drug discrimination paradigm and in generalization tests the CLZ cue is more selective for atypical, rather than typical, APDs. However, greater selectivity for atypical antipsychotics has been demonstrated with a lower (1.25 mg/kg) CLZ training dose in rats [Psychopharmacology, 149 (2000) 189], rather than the traditional, higher training dose (5.0 mg/kg). It is therefore of interest to evaluate the properties mediating the 1.25 mg/kg CLZ discriminative cue. In the present study, rats were trained to discriminate either 1.25 mg/kg (N=7) or 5.0 mg/kg (N=7) CLZ from vehicle in a two-lever drug discrimination task. The typical antipsychotic haloperidol (0.1-0.4 mg/kg) did not substitute for either CLZ cue, whereas the atypical antipsychotic melperone (0.37-3.0 mg/kg) provided full substitution in both groups (>80% CLZ-appropriate responding). The 5-HT(1A) receptor agonist (+)-8-OH-DPAT (0.04-0.16 mg/kg), and the selective 5-HT(2A) receptor antagonist M100907 (0.03-1.0 mg/kg) did not produce substitution in either group. (+)-8-OH-DPAT combined with haloperidol (0.05 mg/kg) engendered only partial substitution (>60% CLZ-appropriate responding) for both CLZ cues, and M100907 combined with haloperidol (0.05 and 0.1 mg/kg doses) failed to provide substitution in either group. Trihexyphenidyl (0.18-6.0 mg/kg), a muscarinic M(1)-preferring receptor antagonist, engendered full substitution for the 1.25 mg/kg CLZ cue, but only partial substitution for the 5.0 mg/kg CLZ cue. These results provide evidence that antagonism at the muscarinic M(1) receptor is sufficient to provide 1.25 mg/kg CLZ-like discriminative stimulus effects.  相似文献   

14.
Many antipsychotics (APDs) have a high affinity for muscarinic receptors, which is thought to contribute to their therapeutic efficacy, or side effect profile. In order to define how muscarinic receptor gene expression is affected by atypical or typical APDs, rats were treated with chronic (2.58 mg/kg) PCP (a psychotomimetic) or vehicle, plus clozapine (20 mg/kg/day) or haloperidol (1 mg/kg/day), and M1, M2 and M3 receptor mRNA levels were determined in brain sections. Negligible changes in M2 or M3 muscarinic mRNA were detected in any region after clozapine or haloperidol. Chronic PCP administration increased M1 mRNA expression in the prefrontal cortex, which was not reversed by either chronic clozapine or haloperidol treatment. Chronic clozapine treatment in combination with PCP treatment decreased M1 receptor mRNA levels in the nucleus accumbens core, whereas chronic haloperidol in combination with PCP treatment increased M1 receptor mRNA levels in the ventromedial hypothalamus and medial amygdala. Thus M1 receptor gene expression is targeted by APDs, although the regions affected differ according to the APD treatment and whether PCP has been administered. The different brain circuitry modulated, may reflect the differing modes of action of typical and atypical APDs. These data provide support for the dysregulation of M1 receptors in schizophrenia, and furthermore, modulation by antipsychotic agents in the treatment of schizophrenia.  相似文献   

15.
Selective dopamine D(2) antogonists increase meal size and decrease the rate of feeding within a meal. Three experiments investigated the extent to which the atypical antipsychotics, clozapine and olanzapine, and the prototypical antipsychotic, haloperidol, affected meal size and feeding rate. Microstructural analyses of meal patterning were made over a range of drug doses administered to free feeding male Lister hooded rats. Haloperidol and clozapine produced a short-term increase in food intake. Haloperidol (0.05-0.2 mg/kg) enhanced meal size (maximal at 0.1 mg/kg) and reduced feeding rate (monotonic decrease with increasing dose). Neither clozapine (1-10 mg/kg) nor olanzapine (0.3-3 mg/kg) enhanced meal size, although both drugs produced similar reductions in feeding rate to haloperidol. These data suggest that enhancement of meal size may be correlated with a high level of extrapyramidal side effects in an antipsychotic drug. The absence of an increase in meal size by two atypical compounds suggests that the increase in body weight associated with clinical treatment with these drugs cannot be modelled by acute stimulation of meal size in the rat.  相似文献   

16.
Comparison has been made of the effects on brain dopamine function of chronic administration of haloperidol or clozapine to rats for up to 12 months. In rats treated for 1-12 months with haloperidol (1.4-1.6 mg/kg/day), purposeless chewing jaw movements emerged. These movements were only observed after 12 months' treatment with clozapine (24-27 mg/kg/day). Apomorphine-induced (0.125-0.25 mg/kg) stereotyped behaviour was inhibited during 12 months treatment with haloperidol. Clozapine treatment was without effect. After 12 months, stereotypy induced by higher doses of apomorphine (0.5-1.0 mg/kg) was enhanced in haloperidol, but not clozapine, treated rats. Bmax for striatal 3H-spiperone binding was elevated throughout 12 months of haloperidol administration, but was not altered by clozapine treatment. Bmax for striatal 3H-NPA binding was only elevated after 12 months of haloperidol treatment; clozapine treatment was without effect. Bmax for 3H-piflutixol binding was not altered by haloperidol treatment, but was increased after 9 and 12 months of clozapine treatment. Dopamine (50 microM)-stimulated adenylate cyclase activity was inhibited after 1 month's haloperidol treatment but normal thereafter. Adenylate cyclase activity was not altered by chronic clozapine treatment. Striatal acetylcholine content was increased after 3 and 12 months of haloperidol or clozapine intake. These findings indicate that the chronic administration of the atypical neuroleptic clozapine does not produce changes in brain dopamine function which mirror those of the typical neuroleptic haloperidol. In particular, chronic administration of clozapine, unlike haloperidol, does not appear to induce striatal D-2 receptor supersensitivity. Unexpectedly, clozapine treatment, unlike haloperidol, altered D-1 receptor function.  相似文献   

17.
Rationale: Analysis of the preclinical behavioral effects of atypical antipsychotic agents will provide a better understanding of how they differ from typical antipsychotics and aid in the development of future atypical antipsychotic drugs. Objectives: The present study was designed to provide information about the discriminative stimulus properties of the atypical antipsychotic olanzapine. Methods: Rats were trained to discriminate the atypical antipsychotic olanzapine (either 0.5 mg/kg OLZ or 0.25 mg/kg OLZ, i.p.) from vehicle in a two- lever drug discrimination procedure. The atypical antipsychotic clozapine fully substituted for olanzapine in both the 0.5-mg/kg OLZ group (99.3% drug lever responding [DLR]) and the 0.25-mg/kg OLZ group (99.9% DLR). The typical antipsychotic chlorpromazine also substituted for olanzapine in both the 0.5-mg/kg OLZ group (87.5% DLR) and in the 0.25-mg/kg OLZ group (98.9% DLR); whereas, haloperidol displayed partial substitution for olanzapine in the 0.5-mg/kg OLZ group (56.1% DLR) and in the 0.25-mg/kg OLZ group (76.4% DLR). The 5.0-mg/kg dose of thioridazine produced olanzapine-appropriate responding in the 0.5-mg/kg OLZ group (99.6% DLR), but only partial substitution was seen with the 0.25-mg/kg OLZ training dose (64.0% DLR). The atypical antipsychotics raclopride (53.9% DLR) and risperidone (60.1% DLR) displayed only partial substitution in the 0.5-mg/kg OLZ group. Both the muscarinic cholinergic antagonist scopolamine (90.0% DLR) and the 5-HT2A/2C serotonergic antagonist ritanserin (86.0% DLR) fully substituted for olanzapine in the 0.5-mg/kg OLZ group. Conclusions: In contrast to previous discrimination studies with clozapine-trained rats, the typical antipsychotic agents chlorpromazine and thioridazine and the serotonin antagonist ritanserin substituted for olanzapine. These results demonstrate that there are differences in the mechanisms underlying the discriminative stimulus properties of clozapine and olanzapine. Specifically, olanzapine’s discriminative stimulus properties appear to be meditated in part by both cholinergic and serotonergic mechanisms. Received: 1 March 1999 / Final version: 6 September 1999  相似文献   

18.
Current animal models of antipsychotic activity that have the capacity to dissociate between typical and atypical antipsychotic drugs (APDs) have two drawbacks: they require previous administration of a psychotomimetic drug, and they achieve the dissociation by demonstrating effectiveness of atypical but not typical APDs, thus losing specificity and selectivity for APDs. The present experiments were designed to solve these problems by using two non-pharmacological tests: latent inhibition (LI), in which potentiation of the deleterious effects of non-reinforced stimulus pre-exposure on its subsequent conditioning served as a behavioral index for a common action of typical and atypical APDs (antipsychotic), and the forced swim test (FST), in which reduction of immobility served as a behavioral index for a dissimilar action of these drugs (antidepressant). The typical APD haloperidol (0.1 mg/kg), the atypical APDs clozapine (2.5 mg/kg) and olanzapine (0.6 mg/kg), and the antidepressants imipramine (10 mg/kg) and paroxetine (7.0 mg/kg), produced distinct patterns of action in the two tests: haloperidol potentiated LI and increased immobility in the FST, clozapine and olanzapine potentiated LI and decreased immobility in the FST, and imipramine and paroxetine decreased immobility in the FST and did not potentiate LI. Thus, the comparison of drug effects in LI and FST enabled a discrimination between typical and atypical APDs without losing selectivity for APDs.  相似文献   

19.
An atypical antipsychotic drug clozapine and a selective sigma antagonist BMY 14802 were significantly less effective in the behavioural experiments (against apomorphine, d-amphetamine and MK-801), as well in the radioligand binding studies against 3H-spiperone (dopamine2-receptors) and 3H-haloperidol (sigma receptors) in the rat brain, as compared to a typical antipsychotic compound haloperidol. Contrary to haloperidol and BMY 14802, clozapine was a relatively selective antagonist of MK-801-induced motor excitation in the mouse. A nearly 3-fold lower dose of clozapine was needed to block the effect of MK-801 (6.4 mumol/kg) as compared to the action of amphetamine (17 mumol/kg). Haloperidol and clozapine, but not BMY 14802, antagonized apomorphine-induced aggressiveness in the rat. After long-term treatment (for 15 days) with BMY 14802 (10 mg/kg daily), haloperidol (0.5 mg/kg daily) and clozapine (10 mg/kg daily) the motor depressant effect of apomorphine (0.15 mg/kg) was reversed. Chronic haloperidol treatment, but not administration of BMY 14802 and clozapine, increased the number of dopamine2-receptors in the rat brain. BMY 14802 caused upregulation of sigma receptors in frontal cortex, whereas haloperidol induced the opposite change in cerebellum. Repeated treatment with clozapine significantly augmented the motor stimulating effect of MK-801 in rats. Simultaneously with a behavioural change the density of 3H-TCP binding sites in the rat forebrain was elevated after long-term treatment with clozapine, probably indicating the involvement of PCP binding sites at NMDA channel in the action of clozapine.  相似文献   

20.
Fast cyclic voltammetry at carbon-fibre microelectrodes was used to investigate the effects of chronic clozapine or haloperidol administration on electrically evoked dopamine efflux in the nucleus accumbens and caudate putamen of the anaesthetized rat. Stimulation trains were delivered to the median forebrain bundle (60 pulses, 350 s duration) every 5 min, and the evoked dopamine efflux measured as a function of a) the applied stimulus intensity (range 0.2 mA-1.0 mA), and b) the applied stimulus frequency (range 10 Hz-250 Hz). Chronic administration of either clozapine (20 mg/kg × 21 days, p.o.) or haloperidol (1 mg/kg × 21 days, p.o.) significantly reduced electrically evoked dopamine efflux in the nucleus accumbens over the range of stimulus intensities and frequencies tested. The reduction in evoked dopamine efflux observed in the nucleus accumbens of clozapine- and haloperidol-treated rats showed no statistically significant difference. In contrast, only chronic haloperidol treatment significantly reduced evoked dopamine efflux in the caudate putamen. These findings demonstrate that chronic treatment with either the atypical neuroleptic, clozapine, or the typical neuroleptic, haloperidol, produce long-term changes in mesolimbic dopamine function; actions which may underlie their antipsychotic efficacy. They also provide further evidence that the sparing action of clozapine on nigrostriatal dopamine activity may underlie the lower incidence of extrapyramidal side effects associated with its long-term administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号