首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Chronic traumatic encephalopathy (CTE, previously called punch drunk and dementia pugilistica) has a rich history in the medical literature in association with boxing, but has only recently been recognized with other contact sports, such as football and ice hockey, as well as with military blast injuries. CTE is thought to be a neurodegenerative disease associated with repeated concussive and subconcussive blows to the head. There is characteristic gross and microscopic pathology found in the brain, including frontal and temporal atrophy, axonal degeneration, and hyperphosphorylated tau and TAR DNA-binding protein 43 pathology. Clinically, there are characteristic progressive deficits in cognition (memory, executive dysfunction), behavior (explosivity, aggression), mood (depression, suicidality), and motor function (parkinsonism), which correlate with the anatomic distribution of brain pathology. While CTE shares clinical and neuropathological traits with other neurodegenerative diseases, the clinical syndrome and the neuropathology as a whole are distinct from other neurodegenerative diseases. Here we review the CTE literature to date. We also draw on the literature from mild traumatic brain injury and other neurodegenerative dementias, particularly when these studies provide guidance for future CTE research. We conclude by suggesting seven essential areas for future CTE research.  相似文献   

2.
PURPOSE OF REVIEW: The link between head injury and dementia/Alzheimer's disease is controversial. This review discusses some recent epidemiological, human autopsy and experimental studies on the relationship between traumatic head injury and dementia. RECENT FINDINGS: Recent epidemiological studies have shown that head injury is a risk factor for the development of dementia/Alzheimer's disease, whereas others have not. After experimental brain trauma the long-term accumulation of amyloid beta peptide suggests that neurodegeneration is influenced by apolipoprotein E epsilon 4, and after human brain injury both amyloid beta peptide deposition and tau pathology are seen, even in younger patients. Amyloid beta peptide levels in the cerebrospinal fluid and the overproduction of beta amyloid precursor protein in humans and animals after traumatic brain injury are increased. Repeated mild head trauma in both animals and humans accelerates amyloid beta peptide accumulation and cognitive impairment. Retrospective autopsy data support clinical studies suggesting that severe traumatic brain injury with long-lasting morphological residuals are a risk factor for the development of dementia/Alzheimer's disease. The influence of the apolipoprotein E genotype on the prognosis of traumatic brain injury is under discussion. SUMMARY: Although epidemiological studies and retrospective autopsy data provide evidence that a later cognitive decline may occur after severe traumatic brain injury, the relationship between dementia after head/brain trauma and apolipoprotein E status is still ambiguous. Both human postmortem and experimental studies showing apolipoprotein beta deposition and tau pathology after head injury support the link between traumatic brain injury and dementia, and further studies are warranted to clarify this relationship.  相似文献   

3.
Traumatic axonal injury (TAI) is the most common and important pathology of traumatic brain injury (TBI). However, little is known about potential indirect effects of TAI on dendrites. In this study, we used a well-established in vitro model of axonal stretch injury to investigate TAI-induced changes in dendrite morphology. Axons bridging two separated rat cortical neuron populations plated on a deformable substrate were used to create a zone of isolated stretch injury to axons. Following injury, we observed the formation of dendritic alterations or beading along the dendrite shaft. Dendritic beading formed within minutes after stretch then subsided over time. Pharmacological experiments revealed a sodium-dependent mechanism, while removing extracellular calcium exacerbated TAI's effect on dendrites. In addition, blocking ionotropic glutamate receptors with the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 prevented dendritic beading. These results demonstrate that axon mechanical injury directly affects dendrite morphology, highlighting an important bystander effect of TAI. The data also imply that TAI may alter dendrite structure and plasticity in vivo. An understanding of TAI's effect on dendrites is important since proper dendrite function is crucial for normal brain function and recovery after injury.  相似文献   

4.
Studies in animal models have shown that traumatic brain injury (TBI) induces the rapid accumulation of many of the same key proteins that form pathologic aggregates in neurodegenerative diseases. Here, we examined whether this rapid process also occurs in humans after TBI. Brain tissue from 18 cases who died after TBI and from 6 control cases was examined using immunohistochemistry. Following TBI, widespread axonal injury was persistently identified by the accumulation of neurofilament protein and amyloid precursor protein (APP) in axonal bulbs and varicosities. Axonal APP was found to co-accumulate with its cleavage enzymes, beta-site APP cleaving enzyme (BACE), presenilin-1 (PS1) and their product, amyloid-beta (Abeta). In addition, extensive accumulation of alpha-synuclein (alpha-syn) was found in swollen axons and tau protein was found to accumulate in both axons and neuronal cell bodies. These data show rapid axonal accumulation of proteins implicated in neurodegenerative diseases including Alzheimer's disease and the synucleinopathies. The cause of axonal pathology can be attributed to disruption of axons due to trauma, or as a secondary effect of raised intracranial pressure or hypoxia. Such axonal pathology in humans may provide a unique environment whereby co-accumulation of APP, BACE, and PS1 leads to intra-axonal production of Abeta as well as accumulation of alpha-syn and tau. This process may have important implications for survivors of TBI who have been shown to be at greater risk of developing neurodegenerative diseases.  相似文献   

5.
Previous studies have shown that traumatic brain injury (TBI) produces progressive degradation of cytoskeletal proteins including neurofilaments (e.g., neurofilament 68 [NF68] and neurofilament 200 [NF200]) within the first 24 h after injury. Thus, we employed immunofluorescence (light and confocal microscopy) to study the histopathological correlates of progressive neurofilament protein loss observed at 15 min, 3 h, and 24 h following unilateral cortical injury in rats. TBI produced significant alterations in NF68 and NF200 immunolabeling in dendrites and cell bodies at contusion sites ipsilateral to injury, as well as in the noncontused contralateral cortex. Changes in immunolabeling were associated with, but not exclusively restricted to, regions previously shown to contain dark shrunken neurons labeled by hematoxylin and eosin staining, a morphopathological response to injury suggesting impending cell death. Immunofluorescence microscopic studies of neurofilament proteins in the ipsilateral cerebral cortex detected prominent fragmentation of apical dendrites of pyramidal neurons in layers 3-5 and loss of fine dendritic arborization within layer 1. While modest changes were observed 15 min following injury, more pronounced loss of dendritic neurofilament immunofluorescence was detected 3 and 24 h following injury. Confocal microscopy also revealed progressive alterations in NF68 immunoreactivity in dendrites following TBI. While some evidence of structural alterations was observed 15 min following TBI, dendritic breaks were readily detected in confocal micrographs from 3 to 24 h following injury. However, disturbances in axonal NF68 by immunofluorescence microscopy in the corpus callosum were not detected until 24 h after injury. These studies confirmed that derangements in dendritic neurofilament cytoskeletal proteins are not exclusively restricted to sites of impact contusion. Moreover, changes in dendritic cytoskeletal proteins are progressive and not fully expressed within the first 15 min following impact injury. These progressive dendritic disruptions are characterized by disturbances in the morphology of neurofilament proteins, resulting in fragmentation and focal loss of NF68 immunofluorescence within apical dendrites. In contrast, alterations in axonal cytoskeletal proteins are more restricted and delayed with no pronounced changes until 24 h after injury.  相似文献   

6.
Microglia are implicated in the pathophysiology of several neurodegenerative disorders, including Alzheimer's disease. While the role of microglia and peripheral macrophages in regulating amyloid beta pathology has been well characterized, the impact of these distinct cell subsets on tau pathology remains poorly understood. We and others have recently demonstrated that monocytes can engraft the brain and give rise to long-lived parenchymal macrophages, even under nonpathological conditions. We undertook the current study to investigate the regulation of tau pathology by microglia and peripheral macrophages using hTau transgenic mice, which do not exhibit microglial activation/pathology or macrophage engraftment. To assess the direct impact of microglia on tau pathology we developed a protocol for long-term microglial depletion in Cx3cr1CreERR26DTA mice and crossed them with hTau mice. We then depleted microglia up to 3 months in both young and old mice, but no net change in forebrain soluble oligomeric tau or total or phosphorylated levels of aggregated tau was recorded. To investigate the consequence of peripherally-derived parenchymal macrophages on tau aggregation we partially repopulated the hTau microglial pool with peripheral macrophages, but this also did not affect levels of tau oligomers or insoluble aggregates. Our study questions the direct involvement of microglia or peripheral macrophages in the development of tau pathology in the hTau model.  相似文献   

7.
8.
Insights into mechanisms of familial Alzheimer's disease (AD) caused by genetic mutations have emerged rapidly compared to sporadic AD. Indeed, despite identification of several sporadic AD risk factors, it remains enigmatic how or why they predispose to neurodegenerative disease. For example, traumatic brain injury (TBI) predisposes to AD, and recurrent TBI in career boxers may cause a progressive memory disorder associated with AD-like brain pathology known as dementia pugilistica (DP). Although the reasons for this are unknown, repeated TBI may cause DP by mechanisms similar to those involved in AD. To investigate this possibility, we compared the molecular profile of tau pathologies in DP with those in AD and showed that the same tau epitopes map to filamentous tau inclusions in AD and DP brains, while the abnormal tau proteins isolated from DP brains are indistinguishable from the six abnormally phosphorylated brain tau isoforms in AD brains. Thus, these data suggest that recurrent TBI may cause DP by activating pathological mechanisms similar to those that cause brain degeneration due to accumulations of filamentous tau lesions in AD, and similar, albeit attenuated, activation of these processes by a single TBI may increase susceptibility to sporadic AD decades after the event.  相似文献   

9.
Sports-related head trauma has emerged as an important public health issue, as mild traumatic brain injuries (mTBIs) may result in neurodegenerative disorders such as chronic traumatic encephalopathy (CTE). Research into mTBI and CTE pathophysiology are difficult to undertake in athletes, with observational trials and post-mortem analysis the current mainstays. Thus, animal models play an important role in the study of mTBI, however, traditional animal models have focused on acute, severe injuries rather than the more typical mTBI's seen in sport injuries. Recently, a number of animal models have been developed that are both appropriately scaled and biomechanically relevant to the forces sustained by athletes. This review aimed to examine the literature for variables included in these animal models, and the resulting neurotrauma as evidenced by pathology and behavioral deficits. A systematic search of the literature was performed in multiple electronic databases. The inclusion criteria required mimicry of athlete mTBI conditions: freedom of head movement, lack of surgical alteration of the skull, and application of direct contact force. Studies were analyzed for variables including apparatus design features (impact force, change in animal head velocity, and kinetic energy transfer to the head), demonstrated pathology (phosphorylated tau, TDP-43 aggregation, diffuse axonal injury, gliosis, cytokine inflammation response, and genetic integrity), and behavioral changes. These studies suggested that appropriate animal models can assist in understanding the pathological and functional outcomes of athlete mTBI, and could be used as a platform for future studies of diagnostic/prognostic markers and in the development of treatment interventions.  相似文献   

10.
This article reviews the pathophysiology of mild traumatic brain injury, and the findings from EEG and quantitative EEG (QEEG) testing after such an injury. Research on the clinical presentation and pathophysiology of mild traumatic brain injury is reviewed with an emphasis on details that may pertain to EEG or QEEG and their interpretation. Research reports on EEG and QEEG in mild traumatic brain injury are reviewed in this setting, and conclusions are drawn about general diagnostic results that can be determined using these tests. QEEG strengths and weaknesses are reviewed in the context of factors used to determine the clinical usefulness of proposed diagnostic tests. Clinical signs, symptoms, and the pathophysiologic axonal injury and cytotoxicity tend to clear over weeks or months after a mild head injury. Loss of consciousness might be similar to a non-convulsive seizure and accompanied subsequently by postictal-like symptoms. EEG shows slowing of the posterior dominant rhythm and increased diffuse theta slowing, which may revert to normal within hours or may clear more slowly over many weeks. There are no clear EEG or QEEG features unique to mild traumatic brain injury. Late after head injury, the correspondence is poor between electrophysiologic findings and clinical symptoms. Complicating factors are reviewed for the proposed commercial uses of QEEG as a diagnostic test for brain injury after concussion or mild traumatic brain injury. The pathophysiology, clinical symptoms and electrophysiological features tend to clear over time after mild traumatic brain injury. There are no proven pathognomonic signatures useful for identifying head injury as the cause of signs and symptoms, especially late after the injury.  相似文献   

11.
P R McCrory  S F Berkovic 《Neurology》2001,57(12):2283-2289
Concussion is a well-recognized clinical entity; however, its pathophysiologic basis remains a mystery. One unresolved issue is whether concussion is associated with lesser degrees of diffuse structural change seen in severe traumatic brain injury, or is the mechanism entirely caused by reversible functional changes. This issue is clouded not only by the lack of critical data, but also by confusion in terminology, even in contemporary literature. This confusion began in ancient times when no distinction was made between the transient effects of concussion and severe traumatic brain injury. The first clear separate recognition of concussion was made by the Persian physician, Rhazes, in the 10th century. Lanfrancus subsequently expanded this concept as brain "commotion" in the 13th century, although other Renaissance physicians continued to obscure this concept. By the 18th century, a variety of hypotheses for concussion had emerged. The 19th century discovery of petechial hemorrhagic lesions in severe traumatic brain injury led to these being posited as the basis of concussion, and a similar logic was used later to suggest diffuse axonal injury was responsible. The neuropathology and pathophysiology of concussion has important implications in neurology, sports medicine, medicolegal medicine, and in the understanding of consciousness. Fresh approaches to these questions are needed and modern research tools, including functional imaging and experimental studies of ion-channel function, could help elucidate this puzzle that has evolved over the past 3,000 years.  相似文献   

12.
Traumatic brain injury is an important global public health problem. Traumatic brain injury not only causes neural cell death, but also induces dendritic spine degeneration. Spared neurons from cell death in the injured brain may exhibit dendrite damage, dendritic spine degeneration, mature spine loss, synapse loss, and impairment of activity. Dendritic degeneration and synapse loss may significantly contribute to functional impairments and neurological disorders following traumatic brain injury. Normal function of the nervous system depends on maintenance of the functionally intact synaptic connections between the presynaptic and postsynaptic spines from neurons and their target cells. During synaptic plasticity, the numbers and shapes of dendritic spines undergo dynamic reorganization. Enlargement of spine heads and the formation and stabilization of new spines are associated with long-term potentiation, while spine shrinkage and retraction are associated with long-term depression. Consolidation of memory is associated with remodeling and growth of preexisting synapses and the formation of new synapses. To date,there is no effective treatment to prevent dendritic degeneration and synapse loss. This review outlines the current data related to treatments targeting dendritic spines that propose to enhance spine remodeling and improve functional recovery after traumatic brain injury. The mechanisms underlying proposed beneficial effects of therapy targeting dendritic spines remain elusive, possibly including blocking activation of Cofilin induced by beta amyloid, Ras activation, and inhibition of GSK-3 signaling pathway. Further understanding of the molecular and cellular mechanisms underlying synaptic degeneration/loss following traumatic brain injury will advance the understanding of the pathophysiology induced by traumatic brain injury and may lead to the development of novel treatments for traumatic brain injury.  相似文献   

13.
Hippocampal afferents terminate in well-defined laminae, with a morphological segregation of input which has facilitated the interpretation of structural and functional synaptic reorganization observed after deafferentiation. Historically, most studies have induced hippocampal plasticity using single deafferentiation paradigms, however recent evidence indicates that sequential lesions or models based on combined injuries alter the pattern of dendritic structural reorganization and axonal sprouting. A better understanding of the interaction between deafferentiation-induced structural remodeling and other pathological mechanisms, which commonly coexist in central nervous system trauma, will require the use of combined injury paradigms where such plasticity can be systematically manipulated. In the context of traumatic brain injury, we have developed an injury model that combines the excessive neuroexcitation of concussive brain insult with the targeted hippocampal deafferentation of entorhinal cortical lesion. This review discusses the role of such an approach in defining posttraumatic hippocampal vulnerability, out- lining the effects of combined pathology on hippocampal circuitry, and considers the greater clinical relevance inherent in the combined injury approach. Experimental evidence obtained with the combined concussive plus deafferentation model is presented, detailing the interaction of injury components and highlighting structural, behavioral and electrophysiological evidence for maladaptive hippocampal plasticity. Subsequent studies utilizing pharmacological methods to manipulate this maladaptive plasticity are described, first targeting glutamate, acetylcholine and dopamine receptor pathways, and then applying select drugs to explore how various molecular mechanisms underlying combined neuroexcitation and deafferentation pathology might affect regenerative plasticity. Evidence implicating postinjury neurotransmitter modulation of exeitatory/inhibitory homeostasis, metalloproteinase regulation of extracellular matrix, and mitochondrial metabolic vulnerability is presented. Finally, the effect of age on outcome after combined neuroexcitation plus deafferentation insult is considered, as well as how future studies in such combined injury models will better define the full range of postinjury hippocampal plasticity possible after brain trauma.  相似文献   

14.
Traumatic brain injury (TBI) is a major environmental risk factor for subsequent development of Alzheimer disease (AD). Pathological features that are common to AD and many tauopathies are neurofibrillary tangles (NFTs) and neuropil threads composed of hyperphosphorylated tau. Axonal accumulations of total and phospho-tau have been observed within hours to weeks, and intracytoplasmic NFTs have been documented years after severe TBI in humans. We previously reported that controlled cortical impact TBI accelerated tau pathology in young 3xTg-AD mice. Here, we used this TBI mouse model to investigate mechanisms responsible for increased tau phosphorylation and accumulation after brain trauma. We found that TBI resulted in abnormal axonal accumulation of several kinases that phosphorylate tau. Notably, c-Jun N-terminal kinase (JNK) was markedly activated in injured axons and colocalized with phospho-tau. We found that moderate reduction of JNK activity (40%) by a peptide inhibitor, D-JNKi1, was sufficient to reduce total and phospho-tau accumulations in axons of these mice with TBI. Longer-term studies will be required to determine whether reducing acute tau pathology proves beneficial in brain trauma.  相似文献   

15.
Traumatic axonal injury (TAI), a common feature of traumatic brain injury, is associated with postinjury morbidity and mortality. However, TAI is not uniformly expressed in all axonal populations, with fiber caliber and anatomical location influencing specific TAI pathology. To study differential axonal vulnerability to brain injury, axonal excitability and integrity were assessed in the corpus callosum following fluid percussion injury in the rat. In brain slice electrophysiological recordings, compound action potentials (CAPs) were evoked in the corpus callosum, and injury effects were quantified separately for CAP waveform components generated by myelinated axons (N1 wave) and by unmyelinated axons (N2 wave). Ultrastructural analyses were also conducted of TAI-induced morphological changes in these axonal populations. The two populations of axons differed in response to brain injury, and in their functional recovery, during the first week postinjury. Amplitudes of N1 and N2 were significantly depressed at 3 h, 1 day, and 3 days survival. N1 amplitudes exhibited a recovery to control levels by 7 days postinjury. In contrast, N2 amplitudes were persistently suppressed through 7 days postinjury. Strength-duration properties of evoked CAPs further differentiated the effects of injury in these axonal populations, with N2 exhibiting an elevated strength-duration time constant postinjury. Ultrastructural observations revealed degeneration of myelinated axons consistent with diffuse injury sequelae, as well as previously undocumented pathology within the unmyelinated fiber population. Collectively, these findings demonstrate differential vulnerabilities of axons to brain injury and suggest that damage to unmyelinated fibers may play a significant role in morbidity associated with brain injury.  相似文献   

16.
This review aims to integrate current literature on the pathogenic mechanisms of Chronic Traumatic Encephalopathy (CTE) to create a multifactorial understanding of the disease. CTE is a progressive neurodegenerative disease, classed as a tauopathy, although it appears the pathogenic mechanisms are more complex than this. It affects those with a history of repetitive mild traumatic brain injury. Currently, there are no treatments for CTE and the disease can only be affirmatively diagnosed in post mortem. Understanding the pathogenesis of the disease will provide an avenue to explore possible treatment and diagnostic modalities. The pathological hallmarks of CTE have been well characterised and have been linked to the pathophysiologic mechanisms in this review. Human studies are limited due to ethical implications of exposing subjects to head trauma. Phosphorylation of tau, microglial activation, TAR DNA-binding protein 43 and diffuse axonal injury have all been implicated in the pathogenesis of CTE. The neuronal loss and axonal dysfunction mediated by these pathognomonic mechanisms lead to the broad psycho-cognitive symptoms seen in CTE.  相似文献   

17.
There is growing recognition that executive function, the superordinate, managerial capacity for directing more modular abilities, is frequently impaired by traumatic brain injury in children and mediates the neurobehavioral sequelae exhibited by these patients. This review encompasses the definition of specific executive functions, age-related changes in executive functions in typically developing children, and the effects of traumatic brain injury on executive functions. The neural substrate for executive functions is described, including relevant functional brain imaging studies that have implicated mediation by prefrontal and parietal cortex and their circuitry. The vulnerability of the neural substrate for executive function to the pathophysiology of traumatic brain injury is discussed, including focal lesions and diffuse axonal injury. Domains of executive functions covered in this review include the basic processes of working memory and inhibition and more complex processes such as decision making. Other domains of executive function, including motivation, self-regulation, and social cognition are discussed in terms of research methodology, clinical assessment, and findings in children with traumatic brain injury. Proposed approaches to the rehabilitation of executive functions are presented.  相似文献   

18.
A chronic phase following repetitive mild traumatic brain injury can present as chronic traumatic encephalopathy in some cases,which requires a neuropathological examination to make a definitive diagnosis.Positron emission tomography(PET)is a molecular imaging modality that has high sensitivity for detecting even very small molecular changes,and can be used to quantitatively measure a range of molecular biological processes in the brain using different radioactive tracers.Functional changes have also been reported in patients with different forms of traumatic brain injury,especially mild traumatic brain injury and subsequent chronic traumatic encephalopathy.Thus,PET provides a novel approach for the further evaluation of mild traumatic brain injury at molecular levels.In this review,we discuss the recent advances in PET imaging with different radiotracers,including radioligands for PET imaging of glucose metabolism,tau,amyloid-beta,γ-aminobutyric acid type A receptors,and neuroinflammation,in the identification of altered neurological function.These novel radiolabeled ligands are likely to have widespread clinical application,and may be helpful for the treatment of mild traumatic brain injury.Moreover,PET functional imaging with different ligands can be used in the future to perform largescale and sequential studies exploring the time-dependent changes that occur in mild traumatic brain injury.  相似文献   

19.
Brain trauma in humans increases the risk for developing Alzheimer disease (AD) and may induce the acute formation of AD-like plaques containing amyloid beta (A beta). To further explore the potential link between brain trauma and neurodegeneration, we conducted neuropathological studies using a pig model of diffuse brain injury. Brain injury was induced in anesthetized animals via nonimpact head rotational acceleration of 110 degrees over 20 ms in the coronal plane (n = 15 injured, n = 3 noninjured). At 1, 3, 7, and 10 days post-trauma, control and injured animals were euthanized and immunohistochemical analysis was performed on brain sections using antibodies specific for A beta, beta-amyloid precursor protein (betaPP), tau, and neurofilament (NF) proteins. In addition to diffuse axonal pathology, we detected accumulation of A beta and tau that colocalized with immunoreactive betaPP and NF in damaged axons throughout the white matter in all injured animals at 3-10 days post-trauma. In a subset of brain injured animals, diffuse A beta-containing plaque-like profiles were found in both the gray and white matter, and accumulations of tau and NF rich inclusions were observed in neuronal perikarya. These results show that this pig model of diffuse brain injury is characterized by accumulations of proteins that also form pathological aggregates in AD and related neurodegenerative diseases.  相似文献   

20.
Cyclosporin A has emerged as a promising therapeutic agent in traumatic brain injury (TBI), although its precise neuroprotective mechanism is unclear. Cyclosporin A, given as a single-dose intrathecal bolus, has previously been shown to attenuate mitochondrial damage and reduce axonal injury in experimental TBI. We assessed the effect of a range of intravenous cyclosporin A doses upon axonal injury attenuation to determine the ideal dose. Rats were subjected to experimental TBI and given one of five intravenous doses of cyclosporin A. At 3 h post-injury, brains were processed for brain tissue cyclosporin A concentration. In a second set of animals, at 24 h postinjury, brains were processed for amyloid precursor protein immunoreactivity, a widely used marker of axonal injury. Intravenous administration produced therapeutic levels of cyclosporin A in brain parenchyma. Higher concentrations were achieved with equivalent doses given intrathecally; this is consistent with the reported poor blood-brain barrier permeability of cyclosporin A. Cyclosporin A 10 mg/kg i.v. produced the greatest degree of neuroprotection against diffuse axonal injury; cyclosporin A 50 mg/kg i.v. was toxic. Intravenous cyclosporin A administration achieves therapeutic levels in brain parenchyma and 10 mg/kg is the most effective dose in attenuating axonal damage after traumatic brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号