首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
Tumorigenesis is a complex process involving genetic, epigenetic, and metabolic alterations. Gestational arsenic exposure has been shown to increase hepatic tumors in adult male offspring of C3H mice, which spontaneously develop hepatic tumors often harboring activating Ha-ras mutation. We explored tumor-promoting changes by gestational arsenic exposure with a focus on Ha-ras mutation and gene expression changes. The results of this study demonstrated that gestational arsenic exposure particularly increased hepatic tumors with a C61A Ha-ras mutation. Real-time PCR analyses on the adult normal livers showed that two genes (Creld2, Slc25a30), whose expression are induced by endoplasmic reticulum stress and cellular oxidative stress, respectively, were significantly upregulated and two genes (Fabp4, Ell3), whose products are involved in lipid efflux and apoptosis, respectively, were significantly downregulated more than twofold by gestational arsenic exposure compared with control mice. The expression changes in the four genes were shown to be late-onset events and to some extent to be associated with corresponding histone modifications, and not with DNA methylation changes. The gene expression changes suggested alterations in lipid metabolism and associated oxidative stress augmentation. Consistently, expression of an oxidative-stress-inducible gene heme oxygenase-1 (HO-1) was upregulated in the livers of the arsenic group. We also found increased expression of retrotransposon L1 mRNA in the tumor-bearing livers of the arsenic group in comparison with control mice. These results suggested that gestational arsenic exposure induces tumor-augmenting changes, including oxidative stress and L1 activation, in a late-onset manner, which would particularly promote tumorigenic expansion of cells with a C61A Ha-ras mutation.  相似文献   

2.
《Inhalation toxicology》2013,25(13):1129-1137
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, São Paulo city) during the gestational period and/or for 3?mo after birth, according to 4 protocols: control group—prenatal and postnatal life in CC; prenatal group—prenatal in PC and postnatal life in CC; postnatal group—prenatal in CC and postnatal life in PC; and pre–post group—prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45?±?0.84?nmol/mg) and pre–post groups (3.84?±?1.39?nmol/mg) compared to the control group (0.31?±?0.10?nmol/mg) (p?<?.01). MDA values in the pre–post group were significantly increased compared to the prenatal group (0.71?±?0.15?nmol/mg) (p?=?.017). Myocardial isoprostane area fraction in the pre–post group was increased compared to other groups (p?≤?.01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.  相似文献   

3.
Objective: Worldwide popularity of waterpipe tobacco smoking has increased, including in pregnant women. This study investigates the effect of prenatal waterpipe tobacco smoke (WTS) exposure on airway inflammation in a murine model of asthma of adult offspring mice.

Materials and methods: Pregnant BALB/c mice were exposed to fresh air or WTS, using a whole-body exposure system that mimics human use during WTS. Adult male offspring mice were divided into; (1) control (prenatal fresh air, postnatal ovalbumin sensitization and saline challenge), (2) postnatal Ova S/C (prenatal fresh air, postnatal ovalbumin sensitization and challenge (Ova S/C)), (3) prenatal WTS (prenatal WTS, postnatal ovalbumin sensitization and saline challenge) and (4) prenatal WTS?+?postnatal Ova S/C. Cells from the bronchoalveolar lavage fluid, cytokines, and oxidative stress markers (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and thiobarbituric acid reactive substances (TBARS)) from lung homogenates were evaluated.

Results: Prenatal WTS increased recruitment of cells in lungs and levels of SOD and catalase when compared to unexposed offspring’s. The levels of cytokines, GPx and TBARS were not affected by prenatal WTS. Prenatal WTS exposure and postnatal Ova S/C increased airway inflammation and activity of SOD compared to control and Ova S/C mice and reduced IL-18 levels compared to Ova S/C mice.

Discussion and conclusions: Prenatal exposure to WTS induced airway inflammation, further enhanced by a murine model of asthma in adult offspring. Prenatal exposure to WTS adversely affects the lung function of the offspring and careful strategies for increasing public awareness regarding the harmful effects of WTS during pregnancy is important.  相似文献   

4.
OBJECTIVE: To determine whether in utero tobacco and alcohol exposure induces long-term neurobehavioral alterations and whether oxidative stress/damage is a possible causal factor. METHODS: Gravid mice were subjected to tobacco smoking and alcohol consumption. Their offspring were subsequently evaluated in developmental and behavioral tests. Antioxidative enzymes and erythrocyte membrane fluidity of adult offspring were measured. RESULTS: The intrauterine tobacco and alcohol exposure has resulted in significant reduced postnatal body and organ weights accompanied by reduced gestational body weight gain in their mothers. Such exposure also induced remarkable developmental delay in neonatal reflexes and notable behavioral deficit in adulthood, namely reduced motive coordination and locomotor activity as well as impaired learning and memory abilities. Furthermore, the formation of malondialdehyde (MDA) increased significantly whereas the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (Cat) and glutathione S-transferases (GST) decreased in the cerebral cortex and liver of prenatal intoxicated offspring. The embryonic intoxication also markedly reduced erythrocyte membrane fluidity in offspring. CONCLUSION: Our study shows the long-term neurotoxicity associated with prenatal tobacco and alcohol exposure, and suggests that the deleterious outcome may be in relation to increased free radicals formation and oxidative stress.  相似文献   

5.
KWIK-URIBE, C. L., M. S. GOLUB AND C. L. KEEN. Behavioral consequences of marginal iron deficiency during development in a murine model. NEUROTOXICOL TERATOL 21(6) 661–672, 1999.—Marginal iron deficiency is a common nutritional disorder in human populations world-wide; however, the neurobehavioral effects of chronic marginal iron (Fe) intakes during development are poorly characterized in animals. For this reason, we investigated whether mice reared on marginal Fe diets during pre- and postnatal development would experience neurobehavioral deficits. Swiss–Webster mice reared on either control (75 ppm Fe) or marginal iron (12.5 ppm) diets were assessed for changes in behavior on postnatal days 30, 40, and 50 using a neurobehavioral test battery. Because alterations in tissue mineral status can lead to an oxidative stress, markers of both protein (glutamine synthetase) and lipid oxidation (TBARS) were measured. Marginal iron animals exhibited a 20–55% reduction in grip strength. Although both marginal iron males and females demonstrated persistent lowering of body weights, statistical analysis using weight as the covariate demonstrated that the grip strength reductions were independent of body weight changes. This reduction in grip strength occurred in conjunction with a 25–45% lowering of brain iron in the marginal iron animals. Despite dramatic reductions in both brain and liver iron, hematocrits were unaffected by dietary iron reductions. Oxidative stress was indicated by an elevation in noniron-stimulated TBARS in the cerebellum of marginal iron animals. These data suggest that a chronic marginal Fe deficiency during critical periods of growth can result in functional changes in motor development even in the absence of iron deficiency anemia; furthermore, alterations in mineral status and oxidative stress may be mechanisms contributing to these observed changes.  相似文献   

6.
The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular interest, since these isozymes have high activity toward peroxidative byproducts of oxidative injury that are linked to teratogenesis. The present study was initiated to examine the expression and catalytic activities of alpha class GST isozymes in human prenatal liver. Northern analysis demonstrated the presence of hGSTA1 and/or A2 (hGSTA1/2) and hGSTA4 steady-state mRNAs in second trimester prenatal livers. Western blotting of prenatal liver proteins provided corroborating evidence via detection of an hGSTA1/2-reactive protein in both cytosol and mitochondria and of hGSTA4-4-reactive protein in mitochondria alone. Catalytic studies demonstrated that prenatal liver cytosolic GSTs were active toward 1-chloro-2,4-dinitrobenzene (a general GST reference substrate), delta5-androstene-3,17-dione (relatively specific for hGSTA1-1), and 4-hydroxynonenal, a highly mutagenic alpha,beta-unsaturated aldehyde produced during oxidative damage and a substrate for hGSTA4-4. Total GSH-peroxidase and GST-dependent peroxidase activities were 9- and 18-fold higher, respectively, in adult liver than in prenatal liver. Multiple tissue array analyses demonstrated considerable tissue-specific and developmental variation in GST mRNA expression. In summary, our results demonstrate the presence of two important alpha class GSTs in second trimester human prenatal tissues, and indicate that mitochondrial targeting of GST may represent an important pathway for removal of cytotoxic products in prenatal liver. Furthermore, the relatively inefficient prenatal reduction of hydroperoxides may underlie an increased susceptibility to maternally transferred pro-oxidant drugs and chemicals.  相似文献   

7.
The present study was designed to evaluate whether treatment with quercetin exerts any beneficial effect on cadmium (Cd)-induced hepatotoxicity in order to establish the possible protective mechanisms of quercetin. Wistar rats were distributed in four experimental groups: control, Cd, quercetin, and Cd + quercetin. Hepatic toxicity was evaluated by measuring plasma concentrations of markers of hepatic injury. The activity of antioxidant enzymes in liver was also measured. Hepatic expression of metallothioneins (MT), and endothelial nitric oxide synthase (eNOS) was assayed by Western and Northern blot. Our results demonstrated that Cd administration induced an increased marker enzyme activity in plasma. This effect was not inhibited by quercetin. However, the administration of quercetin softened Cd-induced oxidative damage. MT levels in liver were substantially increased when the animals received Cd and quercetin. Hepatic eNOS expression was significantly increased after treatment with Cd and quercetin, being this increase higher than in animals receiving Cd alone. In conclusion, in this experimental model, quercetin was not able to prevent the Cd-induced liver damage although the animals that received both, Cd and quercetin showed a marked improvement in oxidative stress and an increase in the MT and eNOS expression. These results suggest that other mechanisms different to oxidative stress could be involved in hepatic damage.  相似文献   

8.
To elucidate the possible metabolic mechanism of intrauterine growth retardation induced by nicotine, this study determines the effects of prenatal nicotine exposure on fetal development and cytochrome P4501A1 (CYP1A1), CYP2E1, and P-glycoprotein (Pgp) expression in maternal liver and placenta. Pregnant rats were given 1.0 mg/kg nicotine subcutaneously twice a day from gestational day (GD) 8 to GD 15, 18, or 21. In nicotine-treated groups, fetal developmental parameters including body weight were significantly lower. The activities of CYP1A1 and CYP2E1 in maternal liver microsomes in nicotine-treated groups increased significantly with progressing gestation when compared with the corresponding control, but returned to the level similar to the control in late pregnancy. Nicotine-treated groups induced pathological changes and increased malondialdehyde (MDA) content in the placenta when compared with the control. The gene expressions of CYP1A1 and CYP2E1 in the placenta increased significantly in nicotine-treated groups on GD 15 and GD 18, but returned to the level similar to the corresponding control on GD 21. In nicotine group, there was a decrease of mdr1a expression on GD 15, GD 18, and GD 21, with the most significant decrease on GD 15. In contrast, no significant difference was found in mdr1b mRNA expression between the nicotine-treated animals and the corresponding control. In comparison with the corresponding control, the placental Pgp protein significantly decreased on GD 15 and GD 18. Our results showed that prenatal nicotine exposure resulted in inhibition of fetal growth significantly. The induction of CYP2E1 and CYP1A1 gene expression by nicotine in the maternal liver and placenta may be involved with the observed increase in oxidative stress and lipid peroxidation. The inhibition of the placental Pgp expression by nicotine may also contribute to an increased susceptibility of the fetus to environmental toxins.  相似文献   

9.
Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies.  相似文献   

10.
2-Butoxyethanol has been reported to induce an increase in liver tumors in male B6C3F1 mice following chronic inhalation while rats, similarly treated, showed no increase in liver tumors. The mechanism for the selective induction of cancer in mouse liver is unknown, however, 2-butoxyethanol has been shown to induce hemolysis in mice, resulting in an accumulation of hemosiderin (iron) in the liver. Previous studies by our group and others have shown that mouse liver compared to other rodent species has a lower antioxidant capacity and appears to be more susceptible to chemically-induced oxidative damage. Since iron is known to produce hydroxyl radicals (through the Fenton reaction), we have proposed that the 2-butoxyethanol-induced iron overload (through hemolysis) may contribute to the induction of liver neoplasia in the mouse. In the present studies, 2-butoxyethanol induced oxidative stress in the liver of mice following 7-day treatment by gavage. These studies also examined whether 2-butoxyethanol, 2-butoxy acetic acid (a major metabolite of 2-butoxyethanol) or iron (FeSO(4)) produced oxidative stress in mouse and rat hepatocytes. Oxidative stress was examined by measuring oxidative DNA damage (OH8dG), lipid peroxidation (MDA formation) and cellular vitamin E concentrations. Neither 2-butoxyethanol or 2-butoxyacetic acid induced changes in the oxidative stress parameters examined in either rat or mouse hepatocytes. In contrast, FeSO(4) produced a dose-related increase in OH8dG and MDA and a decrease in vitamin E levels following 24 h treatment. Mouse hepatocytes were more sensitive than rat hepatocytes to the oxidative damage induced by the FeSO(4). FeSO(4)-induced oxidative stress was not increased by co-treatment of FeSO(4) with either 2-butoxyethanol or 2-butoxy acetic acid. These results support the proposal that the induction of hepatic oxidative stress by 2-butoxyethanol in vivo occurs secondary to induction of hemolysis and iron deposition in the liver rather than as a direct action of 2-butoxyethanol or its main metabolite, 2-butoxy acetic acid.  相似文献   

11.
12.
This study evaluates whether quercetin (25, 50 and 75 mg/kg body weight) treatment has a protective effect on the pro-oxidant-antioxidant state following chronic ethanol treatment in mice. Pretreatment (quercetin 25, 50 and 75 mg/kg body weight for 15 d+co-treatment of ethanol 18%+quercetin for 15 d and ethanol 18% for the 15 d) increased the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH) in comparison to the ethanol group. No significant differences from the ethanol group were observed in the group after post-treatment (ethanol 18% for 30 d+quercetin 25, 50 and 75 mg/kg body weight for 15 d) with quercetin. A significant increase in lipid peroxidation (malondialdehyde, MDA) products was observed in liver tissue after administration of ethanol, which was attenuated by pre- and post-treatment with a high dose of quercetin. GSH levels increased and oxidized glutathione (GSSG) levels decreased in groups of ethanol-exposed mice that received quercetin for 15 d prior to ethanol exposure. In conclusion, pre-treatment of quercetin may protect against ethanol-induced oxidative stress by directly quenching lipid peroxides and indirectly by enhancing the production of the endogenous antioxidant GSH. There was no protective effect on post-treatment with quercetin.  相似文献   

13.
Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.  相似文献   

14.
The flavonol quercetin shows a wide range of effects in biological systems. We investigated whether quercetin exerts its proposed antioxidant properties via the antioxidant enzyme system. Quercetin in a concentration range from 5 to 100 microM decreased manganese superoxide dismutase, glutathione peroxidase, and copper zinc superoxide dismutase mRNA expression levels each by 30-40% in rat hepatoma H4IIE cells. Catalase mRNA expression levels increased about 30% but only with the cytotoxic concentration of 100 microM. Despite the down-regulation of antioxidant enzyme mRNA expression quercetin treatment of cells induced only a mild oxidative stress. Pretreatment of H4IIE cells with quercetin even protected against an oxidative stress resulting from hydrogen peroxide exposure. In conclusion, the antioxidant capacity of quercetin was shown not to be due to the antioxidant enzyme system.  相似文献   

15.
Exposure to the antimicrobial agent Triclosan (TCS) induces oxidative stress in diverse organisms, including birds. However, whether TCS-induced oxidative stress effectively translates into detrimental effects is still unclear. The present study examined whether prenatal TCS exposure induces oxidative stress and telomere shortening in the brain and the liver of near-term embryos of the yellow-legged gull (Larus michahellis). Prenatal TCS exposure caused a significant overproduction of reactive oxygen species (ROS) in the brain, but no oxidative damage occurred. Telomeres of TCS-exposed embryos had brain telomeres 30 % shorter compared to controls, probably because the relatively modest antioxidant defenses of this organ during prenatal development cannot counteract the impact of the TCS-induced ROS. No telomere shortening was observed in the liver. Our results demonstrated that prenatal exposure to TCS in wild bird species can modulate the oxidative status and induce telomere shortening in the brain of the yellow-legged gull embryos.  相似文献   

16.
目的 探讨槲皮素通过NLRP炎症小体相关通路对顺铂诱导肝损伤的保护作用及其生物学机制。方法 在顺铂处理之前给小鼠灌胃槲皮素;通过血清生化分析和肝组织病理学分析检查小鼠的肝损伤情况;通过Western blotting检测凋亡相关蛋白和NLRP3炎症小体相关蛋白的变化。结果 槲皮素可通过抑制血清谷丙转氨酶和谷草转氨酶水平升高,恢复肝脏组织病理学改变,从而有效防治顺铂诱导的肝损伤。同时,槲皮素可以明显抑制氧化应激相关因子的产生,降低肝细胞凋亡,降低Bax、Bad、裂解的caspase-3和增加Bcl-2表达。此外,NLRP3炎性小体途径在槲皮素的作用下被灭活。结论 槲皮素可以抑制顺铂诱导的小鼠肝损伤,可能是通过调节NLRP3炎症小体相关途径来实现的。  相似文献   

17.
The plasticizer di-(2-ethylhexyl)phthalate (DEHP) affects reproductive development, glycogen and lipid metabolism. Whereas liver is a main DEHP target in adult rodents, the potential impact on metabolic programming is unknown. Effects of in utero DEHP exposure on liver development were investigated upon treatment of pregnant CD-1 mice on gestational days (GD)11–19. F1 mice were examined at post-natal days 21 (weaning) and 35 (start of puberty): parameters included liver histopathological, immunocytochemical and α-fetoprotein (AFP) gene expression analyses. In utero DEHP exposure altered post-natal liver development in weanling mice causing significant, dose-related (i) increased hepatosteatosis, (ii) decreased glycogen storage, (iii) increased β-catenin intracytoplasmic localization (females only). At puberty, significantly decreased glycogen storage was still present in males. A treatment-induced phenotype was identified with lack of glycogen accumulation and intracytoplasmic localization of β-catenin which was associated with increased AFP gene expression. Our findings suggested that DEHP alters post-natal liver development delaying the programming of glycogen metabolism.  相似文献   

18.
19.
20.
Histone deacetylase 2 (HDAC2), a prominent member of the class I HDAC family, plays crucial roles in inflammation and other pathological processes. Recent studies have found that the activity and expression of HDAC2 were altered under oxidative stress conditions. The aim of the current study was to elucidate the expression and the possible pathophysiological significance of HDAC2 in CCl(4)-induced oxidative hepatitis. Our resultant data indicated that the expression of HDAC2 in liver increased after CCl(4) exposure, which was attenuated by antioxidants N-acetyl-l-cysteine or α-lipoic acid. Administration of sodium butyrate (NaB), a representative HDAC inhibitor resulted in further elevation of serum aminotransferase levels, enhanced oxidative stress, reduced antioxidant enzyme activities, increased production of proinflammatory cytokines and aggravated hepatocellular necrosis as well as leukocyte infiltration in liver. The results suggested that oxidative stress in CCl(4)-exposed mice induce the expression of HDAC2, while inhibition of HDAC result in exacerbated liver injury. Therefore, HDAC might be involved in the pathogenesis of CCl(4)-induced liver injury and provide protective benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号