首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 An improved, isolated, left ventricular-ejecting, murine heart model is described and evaluated. Special attention was paid to the design and impedance characteristics of the artificial aortic outflow tract and perfusate composition, which contained glucose (10 mM plus insulin) and pyruvate (1.5 mM) as substrates. Temperature of the isolated perfused hearts was maintained at 38.5 °C. During antegrade perfusion (preload 10 mm Hg, afterload 50 mm Hg, 2.5 mM Ca2+) proper design of the aortic outflow tract provided baseline values for cardiac output (CO), left ventricular developed pressure (LVDP) and the maximum first derivative of left ventricular pressure (LV dP/dt max) of 11.1±1.7 ml min–1, 83±5 mm Hg and 6283±552 mm Hg s–1, respectively, resembling findings in the intact mouse. During 100 min normoxic antegrade perfusion CO declined non-significantly by less than 10%. Varying pre- and afterloads resulted in typical Frank-Starling relationships with maximal CO values of 18.6±1.8 ml min–1 at pre- and afterload pressures of 25 and 50 mm Hg, respectively. Left ventricular function curves were constructed at free [Ca2+] of 1.5 and 2.5 mM in the perfusion medium. Significantly higher values for CO, LVDP and LV dP/dt max and LV dP/dt min were obtained at 2.5 mM Ca2+ at all loading conditions investigated. Phosphocreatine and creatine levels remained stable throughout the perfusion period. Despite a small but significant decline in tissue ATP content, the sum of adenine nucleotides did not change during the normoxic perfusion period. The tissue content of glycogen increased significantly. Received: 28 April 1998 / Received after revision and accepted: 10 September 1998  相似文献   

2.
Cytosolic calcium transients were recorded from spontaneously beating chick embryonic myocardial cell aggregates loaded with the fluorescent [Ca2+]i indicator, indo-1. Calcium transients rose rapidly from an end-diastolic [Ca2+]i of 230±18 nM to a peak systolic [Ca2+]i of 619±34 nM (n=21). Relaxation of the transients was slow, and continued throughout diastole. Bay K8644 (0.5 M) markedly prolonged the action potential and caused similar prolongation of the calcium transients. Calcium transients in the presence of Bay K8644 had an inflection on their rising phase, which was followed by a more gradual increase that continued until the membrane had repolarized to a negative potential of –15 to –30 mV. Bay K8644 caused marked elevation of peak systolic [Ca2+]i to 955±56 nM (P<0.002), with concomitant elevation of end-diastolic [Ca2+]i to 400±36 nM (P<0.002). Optical recordings of contraction showed changes similar to those in the calcium transient: the initial upstroke of the contraction was followed by a more gradual second component, which gave the contraction a half-dome appearance. The time to peak [Ca2+]i and the time to peak contraction increased linearly with action potential duration (APD50). The effects of Bay K8644 were simulated, in part, by CsCl (7.5 mM), which produced equivalent prolongation of the action potential and calcium transients. However, CsCl did not elevate diastolic [Ca2+]i. To determine the mechanism of the diastolic [Ca2+]i, increase, Bay K8644 was applied to aggreagates rendered quiescent by tetrodotoxin. Bay K8644 caused a graded increase in [Ca2+]i, which was followed by resumption of spontaneous beating. Bay K8644 can therefore increase [Ca2+]i in the absence of action potentials. We conclude that the duration of the calcium transient and its companion contraction are tightly coupled to the duration of the action potential in chick embryonic myocardial cells. Besides increasing action potential duration, Bay K8644 has the further effect of elevating diastolic [Ca2+]i, which appears to contribute to the positive inotropic effect.  相似文献   

3.
Cell swelling induced by hypotonic solution led to an osmolality-dependent increase in intracellular Ca2+ activity ([Ca2+]i) in HT29 cells. At moderate reductions in osmolality from 290 to 240 or 225 mosmol/l in most cases only a small monophasic increase of [Ca2+]i to a stable plateau of 10–20 nmol/l above resting [Ca2+]i was observed. Lower osmolalities resulted in a triphasic increase of [Ca2+]i to a peak value. In a first phase after the volume change, lasting 20–40 s, [Ca2+]i increased slowly by about 30 nmol/l. Thereafter [Ca2+]i increased more rapidly within 20–30 s to a peak value. This peak was 189±45 nmol/l (190 mosmol/l, n=9) and 243±41 nmol/l (160 mosmol/l, n=20) above resting [Ca2+]i. The peak was then followed by a decline of [Ca2+]i over the next 2–3 min to a stable plateau value of 28±6 (n=6) and 32±11 nmol/l (n=11) above resting [Ca2+]i at 190 and 160 mosmol/l, respectively. The plateau lasted as long as the hypotonic solution was present. Under Ca2+-free bath conditions the peak value for the cell-swelling-induced [Ca2+]i transient was reached significantly later (60–100 s, compared to 40–60 s under control conditions). The peak values under Ca2+-free conditions were not significantly lower. This indicates that the [Ca2+]i peak was mostly of intracellular origin. No [Ca2+]i plateau phase was observed under Ca2+-free bath conditions. With the use of the fura-2-Mn 2+ quenching technique an increased Ca2+ influx induced by hypotonic cell swelling was shown (160 mosmol/l; n=4). This influx started immediately after or simultaneously with the cell swelling and preceded the [Ca2+]i peak for more than 50 s.This study was supported by DFG grant Gr 480/10.  相似文献   

4.
The free intracellular calcium concentration, [Ca2+]i, was studied in single myotubes using the fluorescent Ca2+ indicator fura-2. Myotubes cultured from satellite cells of small muscle specimens from Duchenne muscular dystrophy (DMD) patients were compared with human control myotubes and with myotubes cultured from MDX and control mouse muscle satellite cells. The resting [Ca2+]i levels in DMD and control myotubes were not significantly different, i. e. 104 ±26 nM (mean ± SD, n=190 cells from eight DMD patients) compared with 97±25 nM (175/seven controls) and were not significantly lower than the corresponding murine values (154±33 nM, n=135 MDX myotubes; 159±34 nM, n=135 controls). All myotubes reacted to 10 M acetylcholine or 40 mM KCl with fast transient increases of [Ca2+]i. After application of a hyposmotic (130 mOsm) solution, [Ca2+]i was increased 1.5- to 3-fold within 2–3 min, the DMD myotubes tending to stronger reactions (significantly higher [Ca2+]i in 2 out of 6 cases). The response was usually transient, [Ca2+]i decreasing to the initial level within 10 min. Gadolinium (50 M) reduced the response by 50%–70%, indicating that the osmotic shock increased Ca2+ influx. During exposure to high (15 mM) [Ca2+]e, [Ca2+]i of DMD and control cells was 1.5- to 2-fold higher. Adult muscle fibres from MDX mice and controls showed identical Ca2+ resting levels (n=45 fibres from three mice in each case), but did not respond to decreased external osmolarity with a change in [Ca2+]i. The results indicate that lack of dystrophin in muscle fibres does not necessarily lead to increased [Ca2+]i. It is suggested that increased [Ca2+]i is probably a secondary consequence of fibre damage.  相似文献   

5.
Receptor sites, specific for guanosine 5′-triphosphate (GTP) were characterised in myoblasts and myotubes of C2C12 mouse skeletal muscle cells, using binding experiments and measurements of intracellular Ca2+ concentration ([Ca2+]i). We identified two GTP binding sites in myoblasts membranes: a high affinity site (K d = 15.4 ± 4.6 μM; B max = 1.7 ± 0.5 nmol mg−1 protein); and a low affinity site (K d = 170 ± 94.5 μM; B max = 14.2 ± 3.9 nmol mg−1 protein). In myotube membranes only a low affinity binding site for GTP (K d = 169 ± 39 μM; B max = 12.3 ± 1.4 nmol mg−1 protein) was detected. In myoblasts GTP binding was not displaced by ATP or UTP, even at high concentrations (up to of 1 mM), but it was affected by treatments with suramin or Reactive Blue 2 (RB2), the non-selective purine receptor antagonists. In contrast, in myotubes GTP binding was partially displaced by high concentrations of ATP, but treatments with the non-selective purine receptor antagonists, suramin or RB2, and with UTP had no effect on GTP binding. The addition of GTP to myoblasts, and to myotubes, resulted in elevations of [Ca2+]i. The patterns of Ca2+ response however, were different in the two cell phenotypes. In myoblasts the addition of GTP induced two types of Ca2+ responses: (1) a fast increase in [Ca2+]i, followed by a sustained [Ca2+]i elevation, and (2) a slow raising and steady prolonged increase in [Ca2+]i. In myotubes, however only fast Ca2+ responses were observed following the addition of 500 μM GTP. In the myoblasts and myotubes GTP-stimulated [Ca2+]i increases were abolished by treatments with suramin or RB2 at concentrations which had no effect on the ATP-induced Ca2+ responses. We conclude, that C2C12 cells express two distinct binding sites for GTP before differentiation, but only one after, the low affinity binding site. These results suggest a possible role of the high affinity GTP binding site in early stage of development of skeletal muscle. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Single pieces of fura-2-loaded cortical collecting tubule (CCT) isolated either from normal or adrenalectomized (ADX) rats were superfused in vitro, and the cytosolic calcium concentration ([Ca2+]i) was calculated from fluorescence recordings. The effects of altering the sodium gradient across cell membranes were investigated. Switching external sodium from 164 mM to 27 mM (low [Na+]o) had little effect on [Ca2+]i in normal tubules (106±9 versus 101±9 nM, n=15) whereas it resulted in a large peak of [Ca2+]i in CCT from ADX-rats (270±32 versus 135±11 nM, n=21). Since CCT from ADX rats are known to have a reduced Na-pump activity, the effect of ouabain treatment on CCT from normal rats was also tested. When CCT from normal rats were exposed to 1 mM of ouabain in the presence of 164 mM of [Na+]o, [Ca2+]i increased only moderately (123±15 versus 111±11 nM, n=13); when the low [Na+]o solution was applied to these ouabain-treated tubules, a large and transient increase in [Ca2+]i was obtained (287±38 versus 123±15 nM, n=13). This response was absent with [Ca2+]o=0. The data suggest the presence of 3 Na+/1 Ca2+ exchangers in cell membranes of rat CCT. The calcium flux equation derived by Läuger for the exchanger indicates a non-linear relationship between net calcium flux and driving force which could account for the difference observed here between the poor effect of applying either low [Na+]o or ouabain alone and the large peak of [Ca2+]i induced by combining these two conditions.  相似文献   

7.
Cytosolic free Ca2+ concentration ([Ca2+]i) was measured in freshly isolated rat ventricular cardiomyocytes during substrate-free anoxia. Cardiomyocytes were loaded with fura-2 and incubated in an anoxic chamber in which a pO2 equal to 0 mmHg was realized by inclusion of Oxyrase. [Ca2+]i was measured in individual cells using digital imaging fluorescence microscopy. During anoxia, the shape of cardiomyocytes changed from a relaxed-elongated form into a rigor configuration within 15 min after the onset of anoxia. After the cells had developed the rigor state, a delayed rise in [Ca2+]i reached a stable maximal level within 45 min. The mean values for the pre-anoxic and maximal anoxic [Ca2+ i were 52±3 nM (N=42) and 2115±59 nM (N=45), respectively. The purported Na+ overload blocker R 56865, significantly reduced maximal anoxic [Ca2+]i to 553±56 nM (P<0.05), implicating a role of elevated intracellular Na+ in the anoxia-induced increase in [Ca2+]i. Veratridine (30 M), which induces Na+ overload, increased [Ca2+]i to 787±39 nM. The compound R 56865 reduced veratridine-induced increases in [Ca2+]i to 152±38 nM. Upon reperfusion, after 45 min of anoxia, two distinct responses were observed. Most often, [Ca2+]i decreased upon reperfusion without a change in morphology or viability, while in the minority of cases, [Ca2+]i increased further followed by hypercontraction and loss of cell viability. The mean value for [Ca2+]i 10 min after reperfusion of the former group, was 752±46 nM (N=38). The cardiomyocyte cell shape could be followed by monitoring changes in the total fura-2 fluorescence (340+380 nm signal). Within 15 min after the onset of anoxia, the total fluorescence signal increased suddenly, before [Ca2+]i started to rise, coinciding with the onset of rigor contraction induced by ATP depletion.  相似文献   

8.
The variations of intracellular free calcium concentration ([Ca2+]i) were recorded on-line from guinea-pig isolated vestibular sensory cells using a fura-2 fast fluorescent photometry system, during mechanical displacements of the hair bundle. Repetitive displacements of the hair bundle towards the kinocilium (positive stimulation 7°, 300 ms, 2Hz for 10 s), revealed [Ca2+]i variations detectable only in the cuticular plate. [Ca2+]i increased from 105 to 145 nM. Single mechanical displacements of the hair bundle (7°, 200 ms, 0.5Hz) evoked increases of [Ca2+]ifrom 50±23 nM to 139±79 (n=12). In the opposite direction, the mechanical stimulations (8°, 400ms, 0.5Hz) evoked a decrease of [Ca2+]i from 68±17 nM to 37±12 nM (n= 8). The variations of [Ca2+]i detected in the cuticular plate during positive displacements of the hair bundle were reversibly abolished in the presence of 100 M gentamicin and they could not be evoked in 0.1 mM calcium in the external medium. From these experiments, it has been concluded that the [Ca2+]i variations recorded in the cuticular plate were due to a limited entry of calcium ions through transduction channels localized in the hair bundle. The typical kinetics of variations of [Ca2+]i evoked during positive displacements of the hair bundle should account for the presence of strong calcium regulation systems in the hair bundle and cuticular plate.  相似文献   

9.
The free intracellular calcium ion concentration ([Ca2+]i) was measured simultaneously with isometric force in strips of guinea-pig mesotubarium using the Fura-2 technique. During the relaxed period (5–15 min) between spontaneous contractions [Ca2+]i continues to decrease after full mechanical relaxation to reach a minimal level of 86±8 nM (n=9) just before the start of the next contraction. During the spontaneous contractions (5–15 min) [Ca2+]i reached a maximum of 211±19 nM and then oscillated between 155±16 nM and 194±9 nM. Increased extracellular Ca2+ concentration to 10 mM from the standard concentration of 1.5 mM caused a decreased frequency of spontaneous contractions and an increase in [Ca2+]i both in the relaxed and contracted states. In 10 mM extracellular Ca2+, addition of AlF4 , as 1 mM NaF + 10 M AlCl3, caused a sustained increase in [Ca2+]i and maintained force. Addition of verapamil (10 M) in this situation decreased [Ca2+]i to the resting level. The results suggest that the cyclic appearance of trains of action potentials is related to variation in [Ca2+]i, possibly via inactivation of Ca2+-dependent K+ channels.  相似文献   

10.
The outer hair cell isolated from the guinea-pig was superfused in vitro and the cytosolic calcium concentration ([Ca2+]i) and sodium concentration ([Na+]i) were measured using fluorescence indicators. Under the resting condition, [Ca2+]i and [Na+]i were 91±9 nM (n = 51) and 110±5 mM (n = 12), respectively. Removal of external Na+ by replacing with N-methyl-D-glucamine (NMDG+) increased [Ca2+]i by 270±79% (n = 27) and decreased [Na+]i by 23±4 mM (n = 6). Both changes in [Ca2+]i and [Na+]i were totally reversible on returning external Na+ to the initial value and were inhibited by addition of 0.1 mM La3+ or 100 M amiloride 5-(N,N-dimethyl) hydrochloride. Elevation of external Ca2+ ions to 20 mM reversibly decreased [Na+]i by 8±6 mM (n = 5). Moreover, the chelation of the intracellular Ca2+ with 1,2-bis (2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) exerted an inhibitory action on the NMDG+-induced reduction in [Na+]i. Exposure to 5 mM NaCN for 2 min significantly and reversibly increased [Ca2+]i by 290±37% (n = 5), but did not affect the [Ca2+]i elevation induced by the NMDG+ solution. The rise in [Ca2+]i induced by the NMDG+ solution was not enhanced by ouabain pretreatment. Addition of ouabain did not alter the [Na+]i. The present results are best explained by the presence of an Na+-Ca2+ exchanger in cell membrane and indicate that the activity of Na+/K+ pump is poor in outer hair cells.  相似文献   

11.
Summary Dispersed brain cells from 12–14 day old mouse embryos were loaded with the Ca2+-sensitive fluorescent probe, quin2 and shown to have a resting intracellular Ca2+ concentration ([Ca2+]i) of 158 nM (SE ± 5) in the presence of 1 mM [Ca2+]o. When external [Ca2+] was raised from 0 to 1 mM there was an increase of [Ca2+]i of 70 nM; with further additions of Ca to >10 mM [Ca2+]o the level of [Ca2+]i increased by <25 nM. Releasable intracellular Ca2+ stores, estimated from the increase in [Ca2+] produced by 4Br A23187 in the absence of extracellular Ca2+, were 24 fmol/106 cells. A small increase in [Ca2+]i could be produced by the mitochondrial inhibitor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). When extracellular K+ was raised by 10–20 mM, intracellular Ca2+ levels increased from 152 (SE ± 7) to 204 nM (SE ± 10). These K+-induced increases in [Ca2+]i were blocked by verapamil, did not occur in the absence of extracellular Ca2+, and presumably reflect the activation of voltage-dependent Ca2+ channels. N-methyl-D-aspartic acid (NMDA) evoked an increase in [Ca2+]i, while the kainate-like lathyrus sativus neurotoxin, L-3-oxalyl-amino-2aminopropionic acid (L-3,2-OAP) did not; this is consistent with previous observations of different and respectively Ca2+-dependent and -independent mechanisms of action of these excitatory amino acids.  相似文献   

12.
The pancreatic duct has been regarded as a typical cAMP-regulated epithelium, and our knowledge about its Ca2+ homeostasis is limited. Hence, we studied the regulation of intracellular calcium, [Ca2+]i, in perfused rat pancreatic ducts using the Ca2+-sensitive probe fura-2. In some experiments we also measured the basolateral membrane voltage, V bl, of individual cells. The resting basal [Ca2+]i was relatively high, corresponding to 263±28 nmol/l, and it decreased rapidly to 106±28 nmol/l after removal of Ca2+ from the bathing medium (n=31). Carbachol increased [Ca2+]i in a concentration-dependent manner. At 10 mol/l the fura-2 fluorescence ratio increased by 0.49±0.06 (n=24), corresponding to an increase in [Ca2+]i by 111±15 nmol/l (n=17). ATP, added to the basolateral side at 0.1 mmol/l and 1 mmol/l, increased the fluorescence ratio by 0.67±0.06 and 1.01±14 (n=46; 12), corresponding to a [Ca2+]i increase of 136±22 nmol/l and 294±73 nmol/l respectively (n= 15; 10). Microelectrode measurements showed that ATP (0.1 mmol/l) hyperpolarized V bl from –62±3 mV to-70±3 mV, an effect which was in some cases only transient (n=7). This effect of ATP was different from that of carbachol, which depolarized Vbl. Applied together with secretin, ATP delayed the secretin-induced depolarization and prolonged the initial hyperpolarization of V bl (n=4). Several other putative agonists of pancreatic HCO 3 secretion were also tested for their effects on [Ca2+]i. Bombesin (10 nmol/l) increased the fura-2 fluorescence ratio by 0.24±0.04 (n=8), neurotensin (10 nmol/l) by 0.25±0.04 (n=6), substance P (0.1 mol/l) by 0.22±0.06 (n=6), and cholecystokinin (10 nmol/l) by 0.14±0.03 (n=7). Taken together, our studies show that Ca2+ homeostasis plays a role in pancreatic ducts. The most important finding is that carbachol and ATP markedly increase [Ca2+]i, but their different electrophysiological responses indicate that intracellular signalling pathways may differ.Preliminary reports of the present study have been presented at the 72nd Meeting of the German Physiological Society, March 1993  相似文献   

13.
Cytosolic free Ca2+ ([Ca2+]i) was measured in single fragments of rat cortical collecting tubule (CCT) by using fura-2 and a tubule superfusion device. Under basal conditions, i.e. with 1 mM of external Ca2+ ([Ca2+]o), the average steady state [Ca2+]i was 179±16 nM (n=44 tubules). Random alterations of [Ca2+]o between 0 mM and 4 mM led to corresponding variations in steady state [Ca2+]i levels, which were linearly correlated with [Ca2+]o (average slope 93±34 nM [Ca2+]i per 1 mM [Ca2+]o for six tubules). In contrast, [Ca2+]i was little affected by decreasing external Na+ concentration. Cell membrane depolarization with 100 mM of external K+ induced a sustained drop in [Ca2+]i (21% as an average). The data suggest that steady state [Ca2+]i in CCT cells resulted from a non-saturable passive entry of calcium ions across cell membranes balanced with an active extrusion by calcium ATPase (pump and leak mechanism). The passive component cannot be accounted for either by Na+/Ca2+ exchangers nor by voltage-dependent calcium channels; it is best explained by the presence of voltage-independent calcium channels in cell membranes.  相似文献   

14.
Reactive oxygen metabolites have been implicated in the pathogenesis of toxic, ischaemic and immunologically mediated renal injury. An increase in the cytosolic free Ca2+ concentration ([Ca2+]i) has been proposed as a mechanism of oxidative stress-induced cell injury. We used a fluorescence spectrometer and a fluorescence probe to measure the [Ca2+]i and viability of rat primary cultured inner medullary collecting duct (IMCD) cells during oxidative stress induced by 5 mM tert-butyl hydroperoxide (TBHP). Initially, this oxidative stress evoked a small increase in [Ca2+]i which was followed by a slower sustained increase from the resting level of 170.8±38.8 nM to 1490.5±301.7 nM after 60 min, and this preceded the loss of plasma membrane integrity, measured by the propidium iodide fluorescence method. The elimination of extracellular Ca2+ from the culture medium prevented the TBHP-induced [Ca2+]i increase and improved cell viability. Restoration of extracellular Ca2+ resulted in an immediate and large increase in [Ca2+]i and extensive cell death. Verapamil, a Ca2+ channel blocker, inhibited the [Ca+]i increase and afforded significant protection against cellular injury following exposure to TBHPinduced oxidative stress. Extracellular acidosis also prevented the increase in [Ca2+]i and cell death caused by this oxidative stress. These results are consistent with the hypothesis that oxidative stress-induced IMCD cellular injury may be the result of increased [Ca2+]i caused, in part, by activation of voltage-dependent Ca2+ channels.  相似文献   

15.
Mechanisms of fatigue were studied in single muscle fibres of the cane toad (Bufo marinus) in which force, intracellular calcium ([Ca2+]i), [Mg2+]i, glycogen and the rapidly releasable Ca2+ from the sarcoplasmic reticulum (SR) were measured. Fatigue was produced by repeated tetani continued until force had fallen to 50%. Two patterns of fatigue in the absence of glucose were studied. In the first fatigue run force fell to 50% in 8–10 min. Fatigue runs were then repeated until force fell to 50% in <3 min in the final fatigue run. Addition of extracellular glucose after the final fatigue run prolonged a subsequent fatigue run. In the first fatigue run peak tetanic [Ca2+]i initially increased and then declined and at the time when force had fallen to 50% tetanic [Ca2+]i was 54 ± 5% of initial value. In the final fatigue run force and peak tetanic [Ca2+]i declined more rapidly but to the same level as in first fatigue runs. At the end of the first fatigue run, the rapidly releasable SR Ca2+ store fell to 46 ± 6% of the pre-fatigue value. At the end of the final fatigue run the rapidly releasable SR Ca2+ store was 109 ± 16% of the pre-fatigue value. In unstimulated fibres the nonwashable glycogen content was 176 ± 30 mmol glycosyl units/l fibre. After one fatigue run the glycogen content was 117 ± 17 mmol glycosyl units/l fibre; at the end of the final fatigue run the glycogen content was reduced to 85 ± 9 mmol glycosyl units/l fibre. [Mg2+]i did not change significantly at the end of fatigue in either the first or the final fatigue run suggesting that globally-averaged ATP does not decline substantially in either pattern of fatigue. These results suggest that different mechanisms are involved in the decline of tetanic [Ca2+]i in first compared to final fatigue runs. The SR Ca2+ store is reduced in first fatigue runs; this is not the case for the final fatigue run which is associated with a decline in glycogen and possibly related to either a non-metabolic effect of glycogen or a spatially-localised metabolic decline.  相似文献   

16.
We have measured the effects of thapsigargin, a specific inhibitor of endoplasmic Ca2+-adenosine 5-triphosphatase (Ca2+-ATPase), on membrane currents and on the intracellular Ca2+ concentration ([Ca2+]i) in single endothelial cells from the human umbilical cord vein. Currents were recorded by means of the patchclamp technique in the whole-cell mode and [Ca2+]i was measured using Fura II. Application of thapsigargin at concentrations between 0.2 and 2 mol/l induced a slow increase in [Ca2+]i to a peak value of 400±110 nmol/l above a resting level of 120±35 nmol/l, and then slowly declined to a new steady-state level of 315±90 nmol/l (n=33). The thapsigargin-induced increase in [Ca2+]i depended on the extracellular Ca2+ concentration ([Ca2+]o: it declined after removal of extracellular Ca2+, but increased again when [Ca2+]o was augmented, indicating that the response depends on a transmembrane influx of Ca2+ ions. The peak amplitude of the histamine-induced Ca2+ transient was reduced in the presence of thapsigargin. This reduction was more pronounced when histamine was applied at the peak of the increase in [Ca2+]i induced by thapsigargin than during the rising phase of the changes in [Ca2+]i. The decline of the Ca2+ transient induced by histamine after washing out the agonist was also affected by thapsigargin. Before application of thapsigargin, this decline could be described by a single exponential with a time constant equal to 24.5±5 s (n=7). In the presence of thapsigargin, the decline was much slower (n =8 cells), although in four cells a fraction of about 23% still exchanged with a similar fast value of 29.4±4 s. Thapsigargin also induced a slowly developing inward current in endothelial cells at a holding potential of –40 mV. Voltage ramps applied before and during the development of this current indicated that a non-selective cation channel with a reversal potential near 0 mV was activated. In contrast with the Ca2+ transients, these currents did not show a declining phase. These results indicate that inhibition of the endoplasmic Ca2+ pump in endothelial cells increases [Ca2+]i. The tonic component of this increase might be partly due to opening of non-selective Ca2+-permeable cation channels activated by depletion of intracellular stores.  相似文献   

17.
The effect of antidiuretic hormone ([Arg]vasopressin, ADH) on intracellular calcium activity [Ca2+]i of isolated perfused rabbit cortical thick ascending limb (cTAL) segments was investigated with the calcium fluorescent dye fura-2. The fluorescence emission ratio at 500–530 nm (R) was monitored as a measure of [Ca2+]i after excitation at 335 nm and 380 nm. In addition the transepithelial potential difference (PD te) and transepithelial resistance (R te) of the tubule were measured simultaneously. After addition of ADH (1–4 nmol/l) to the basolateral side of the cTAL R increased rapidly, but transiently, from 0.84±0.05 to 1.36±0.08 (n = 46). Subsequently, within 7–12 min R fell to control values even in the continued presence of ADH. The increase in R evoked by the ADH application corresponded to a rise of [Ca2+]i from a basal level of 155±23 nmol/l [Ca2+]i up to 429±53 nmol/l [Ca2+]i at the peak of the transient, as estimated by intra- or extracellular calibration procedures. The electrical parameters (PD te and R te) of the tubules were not changed by ADH. The ADH-induced Ca2+ transient was dependent on the presence of Ca2+ on the basolateral side, whereas luminal Ca2+ had no effect. d(CH2)5[Tyr(Me)2]2,Arg8vasopressin, a V1 antagonist (Manning compound, 10 nmol/l), blocked the ADH effect on [Ca2+]i completely (n = 5). The V2 agonist 1-desamino-[d-Arg8]vasopressin (10 nmol/l, n=4), and the cAMP analogues, dibutyryl-cAMP (400 mol/l, n = 4), 8-(4-chlorophenylthio)-cAMP (100 mol/l, n = 1) or 8-bromo-cAMP (200 mol/1, n = 4) had no influence on [Ca2+]i. The ADH-induced [Ca2+]i increase was not sensitive to the calcium-channel blockers nifedipine and verapamil (100 mol/l, n = 4). We conclude that ADH acts via V1 receptors to increase cytosolic calcium activity transiently in rabbit cortical thick ascending limb segments, possibly by an initial Ca2+ release from intracellular stores and by further Ca2+ influx through Ca2+ channels in the basolateral membrane. These channels are insensitive to L-type Ca2+ channel blockers, e.g. nifedipine and verapamil.Supported by DFG GR 480/10  相似文献   

18.
We have investigated the effects of acidic stimuli upon [Ca2+]i in isolated carotid body type I cells from the neonatal rat using indo-1 (AM-loaded). Under normocapnic, non-hypoxic conditions (23 mM HCO3 , 5% CO2 in air, pHo=7.4), the mean [Ca2+]i for single cells was 102±5.0 nM (SEM, n=55) with 58% of cells showing sporadic [Ca2+]i fluctuations. A hypercapnic acidosis (increase in CO2 to 10%–20% at constant HCO3 , pHo 7.15–6.85), an isohydric hypercapnia (increase in CO2 to 10% at constant pHo=7.4) and an isocapnic acidosis (pHo=7.0, constant CO2) all increased [Ca2+]i in single cells and cell clusters. The averaged [Ca2+]i response to both hypercapnic acidosis and isohydric hypercapnia displayed a rapid rise followed by a secondary decline. The averaged [Ca2+]i response to isocapnic acidosis displayed a slower rise and little secondary decline. The rise of [Ca2+]i in response to all the above stimuli can be attributed to no single factor other than to a fall of pHi. The hypercapnia-induced rise of [Ca2+]i was almost completely abolished in Ca2+-free solution, suggesting a role for Ca2+ influx in triggering and/or sustaining the [Ca2+]i response. These results are consistent with a role for type I cell [Ca2+]i in mediating pH/PCO2 chemoreception.  相似文献   

19.
The effects of the metabolic inhibition on the activity of the Na+/Ca2+ exchanger (NCX) were studied in single isolated pacemaker cells from the cane toad. Ca2+ influx on NCX (reverse mode) was estimated by measuring the increase in intracellular calcium concentration ([Ca2+]i) in response to extracellular Na+-free solution. After application of 2 mM sodium cyanide for 3–5 min, the peak [Ca2+]i in Na+-free solution was significantly decreased from 377±42 nM to 260±46 nM, suggesting inhibition of NCX. To study Ca2+ efflux on NCX (forward mode), we recorded the tail currents on repolarization which were abolished by Ni2+ and by Na+-free solution. Cyanide decreased the amplitude of tail currents by 36±3%. To investigate the intrinsic properties of NCX during the metabolic inhibition, we used rapid application of caffeine to trigger sarcoplasmic reticulum Ca2+ release, which then stimulates NCX current (INCX ). Both the caffeine-induced peak [Ca2+]i and the peak INCX were reduced by cyanide exposure. When INCX was plotted against [Ca2+], the slope of the decay phase was decreased in the presence of CN to 44±8% of control, indicating that for a given [Ca2+]i there was less INCX produced. These results show that cyanide (CN) inhibits NCX activity at least partly through changes in the intrinsic properties of NCX. The inhibition of NCX probably contributes to the slower firing rate of pacemaker cells in CN.  相似文献   

20.
The effects of changing the intracellular concentrations of Ca2+ or Mg2+ ([Ca2+]i, [Mg2+]i) on Ca current (I Ca) was studied in frog ventricular myocytes using the whole-cell and cell-attached patch clamp techniques. In the physiological range of [Mg2+]i an increase in [Ca2+]i enhancedI Ca whereas at lower [Mg2+]i I Ca was suppressed. The increase inI Ca caused by Ca2+ loading was not mediated by phosphorylation since the kinase inhibitors H-8 {N-[2-(methylamino)-ethyl]-5-isoquinolinesulphonamide dihydrochloride}, staurosporine and KN-62 {1-[N,O-bis(5-isoquinoline-sulphonyl)-N-methyl-1-tyrosyl]-4-phenylpiperazine} and a non-hydrolysable adenosine 5-triphosphate analogue ,-methyleneadenosine 5-triphosphate did not prevent the Ca2+-inducedI Ca increase.I Ca was dramatically increased from 10 ± 6 (n = 4) to 71 ± 7 nA/nF (n = 4) when [Mg2+]i was lowered from 1.0 × 10–3 to 1.0 × 10–6 M at a [Ca2+]i of 10–8 M. The concentration response relation for inhibition of Ca channels by [Mg2+]i is modulated by [Ca2+]i. To account for the experimental results it is postulated that competitive binding of Ca2+ or Mg2+ to the Ca channel accelerates the transition of the channel from an active to a silent mode. Single-channel recordings support this hypothesis. The regulation may have clinical relevance in cytoprotection during cardiac ischaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号