首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-resistant subjects have a slow onset of insulin action, and the underlying mechanism has not been determined. To evaluate whether a delayed transcapillary transport is part of the peripheral insulin resistance, we followed the kinetics of infused insulin and inulin in plasma and muscle interstitial fluid in obese insulin-resistant patients and control subjects. A total of 10 lean and 10 obese men (BMI 24 +/- 0.8 vs. 32 +/- 0.8 kg/m(2), P < 0.001) was evaluated during a hyperinsulinemic-euglycemic clamp (insulin infusion rate 120 mU. m(-2). min(-1)) combined with an inulin infusion. Measurements of insulin and inulin in plasma were taken by means of arterial-venous catheterization of the forearm and microdialysis in brachioradialis muscle combined with forearm blood flow measurements with vein occlusion pletysmography. The obese subjects had a significantly lower steady-state glucose infusion rate and, moreover, demonstrated a delayed appearance of insulin (time to achieve half-maximal concentration [T(1/2)] 72 +/- 6 vs. 46 +/- 6 min in control subjects, P < 0.05) as well as inulin (T(1/2) 83 +/- 3 vs. 53 +/- 7 min, P < 0.01) in the interstitial fluid. Also, the obese subjects had a delayed onset of insulin action (T(1/2) 70 +/- 9 vs. 45 +/- 5 min in control subjects, P < 0.05), and their forearm blood flow rate was significantly lower. These results demonstrate a delayed transcapillary transport of insulin and inulin from plasma to the muscle interstitial fluid and a delayed onset of insulin action in insulin-resistant obese subjects.  相似文献   

2.
Clerk LH  Vincent MA  Jahn LA  Liu Z  Lindner JR  Barrett EJ 《Diabetes》2006,55(5):1436-1442
We have previously shown that skeletal muscle capillaries are rapidly recruited by physiological doses of insulin in both humans and animals. This facilitates glucose and insulin delivery to muscle, thus augmenting glucose uptake. In obese rats, both insulin-mediated microvascular recruitment and glucose uptake are diminished; however, this action of insulin has not been studied in obese humans. Here we used contrast ultrasound to measure microvascular blood volume (MBV) (an index of microvascular recruitment) in the forearm flexor muscles of lean and obese adults before and after a 120-min euglycemic-hyperinsulinemic (1 mU . min(-1) . kg(-1)) clamp. We also measured brachial artery flow, fasting lipid profile, and anthropomorphic variables. Fasting plasma glucose (5.4 +/- 0.1 vs. 5.1 +/- 0.1 mmol/l, P = 0.05), insulin (79 +/- 11 vs. 38 +/- 6 pmol/l, P = 0.003), and percent body fat (44 +/- 2 vs. 25 +/- 2%, P = 0.001) were higher in the obese than the lean adults. After 2 h of insulin infusion, whole-body glucose infusion rate was significantly lower in the obese versus lean group (19.3 +/- 3.2 and 37.4 +/- 2.6 mumol . min(-1) . kg(-1) respectively, P < 0.001). Compared with baseline, insulin increased MBV in the lean (18.7 +/- 3.3 to 25.0 +/- 4.1, P = 0.019) but not in the obese group (20.4 +/- 3.6 to 18.8 +/- 3.8, NS). Insulin increased brachial artery diameter and flow in the lean but not in the obese group. We observed a significant, negative correlation between DeltaMBV and BMI (R = -0.482, P = 0.027) in response to insulin. In conclusion, obesity eliminated the insulin-stimulated muscle microvascular recruitment and increased brachial artery blood flow seen in lean individuals.  相似文献   

3.
Insulin-mediated hemodynamic effects in muscle were assessed in relation to insulin resistance in obese and lean Zucker rats. Whole-body glucose infusion rate (GIR), femoral blood flow (FBF), hindleg glucose extraction (HGE), hindleg glucose uptake (HGU), 2-deoxyglucose (DG) uptake into muscles of the lower leg (R(g)), and metabolism of infused 1-methylxanthine (1-MX) to measure capillary recruitment were determined for isogylcemic (4.8 +/- 0.2 mmol/l, lean; 11.7 +/- 0.6 mmol/l, obese) insulin-clamped (20 mU. min(-1). kg(-1) x 2 h) and saline-infused control anesthetized age-matched (20 weeks) lean and obese animals. Obese rats (445 +/- 5 g) were less responsive to insulin than lean animals (322 +/- 4 g) for GIR (7.7 +/- 1.4 vs. 22.2 +/- 1.1 mg. min(-1). kg(-1), respectively), and when compared with saline-infused controls there was no increase due to insulin by obese rats in FBF, HGE, HGU, and R(g) of soleus, plantaris, red gastrocnemius, white gastrocnemius, extensor digitorum longus (EDL), or tibialis muscles. In contrast, lean animals showed marked increases due to insulin in FBF (5.3-fold), HGE (5-fold), HGU (8-fold), and R(g) ( approximately 5.6-fold). Basal (saline) hindleg 1-MX metabolism was 1.5-fold higher in lean than in obese Zucker rats, and insulin increased in only that of the lean. Hindleg 1-MX metabolism in the obese decreased slightly in response to insulin, thus postinsulin lean was 2.6-fold that of the postinsulin obese. We conclude that muscle insulin resistance of obese Zucker rats is accompanied by impaired hemodynamic responses to insulin, including capillary recruitment and FBF.  相似文献   

4.
The hypothalamus plays a central role in the regulation of energy intake and feeding behavior. However, the presence of a functional abnormality in the hypothalamus in humans that may be related to excess energy intake and obesity has yet to be demonstrated in vivo. We, therefore, used functional magnetic resonance imaging (fMRI) to monitor hypothalamic function after oral glucose intake. The 10 obese (34 +/- 2 years of age, BMI 34.2 +/- 1.3 kg/m2) and 10 lean (32 +/- 4 years of age, BMI 22.0 +/- 0.9 kg/m2) subjects with normal glucose tolerance ingested 75 g of glucose while a midsagittal slice through the hypothalamus was continuously imaged for 50 min using a conventional T2*-weighted gradient-echo pulse sequence. After glucose ingestion, lean subjects demonstrated an inhibition of the fMRI signal in the areas corresponding to the paraventricular and ventromedial nuclei. In obese subjects, this inhibitory response was markedly attenuated (4.8 +/- 1.3 vs. 7.0 +/- 0.6% inhibition, P < 0.05) and delayed (9.4 +/- 0.5 vs. 6.4 +/- 0.5 min, P < 0.05) compared with that observed in lean subjects. The time taken to reach the maximum inhibitory response correlated with the fasting plasma glucose (r = 0.75, P < 0.001) and insulin (r = 0.47, P < 0.05) concentrations in both lean and obese subjects. These results demonstrate in vivo, for the first time, the existence of differential hypothalamic function in lean and obese humans that may be secondary to obesity.  相似文献   

5.
To test the hypothesis that free fatty acids (FFAs) modulate microvascular function and that this contributes to obesity-associated insulin resistance, hypertension, and microangiopathy, we examined the effects of both FFA elevation in lean women and FFA lowering in obese women on skin microvascular function. A total of 16 lean and 12 obese women underwent, respectively, Intralipid plus heparin (or saline) infusion and overnight acipimox (or placebo) treatment. We measured capillary recruitment with capillaroscopy and endothelium-(in)dependent vasodilation by iontophoresis of acetylcholine and sodium nitroprusside before and during hyperinsulinemia (40 mU . m(-2) . min(-1)). FFA elevation impaired capillary recruitment and acetylcholine-mediated vasodilation before (44.6 +/- 16.8 vs. 56.9 +/- 18.9%, P < 0.05; and 338 +/- 131 vs. 557 +/- 162%, P < 0.01, respectively) and during (54.0 +/- 21.3 vs. 72.4 +/- 25.4%, P < 0.01; and 264 +/- 186 vs. 685 +/- 199%, P < 0.01, respectively) hyperinsulinemia. FFA lowering improved capillary recruitment before (50.9 +/- 14.6 vs. 37.4 +/- 9.3%, P < 0.01) and during (66.8 +/- 20.6 vs. 54.8 +/- 15.4%, P < 0.05) hyperinsulinemia. Changes in FFA levels were inversely associated with changes in capillary recruitment and insulin sensitivity in lean (r = -0.46, P = 0.08; and r = -0.56, P = 0.03) and in obese (r = -0.70, P = 0.02; and r = -0.62, P = 0.04) women. Regression analyses showed that changes in capillary recruitment statistically explained approximately 29% of the association between changes in FFA levels and insulin sensitivity. In conclusion, FFA levels modulate microvascular function and may contribute to obesity-associated insulin resistance, hypertension, and microangiopathy.  相似文献   

6.
Miyazaki Y  He H  Mandarino LJ  DeFronzo RA 《Diabetes》2003,52(8):1943-1950
Thiazolidinediones (TZDs) improve glycemic control and insulin sensitivity in patients with type 2 diabetes. To determine whether the TZD-induced improvement in glycemic control is associated with enhanced insulin receptor signaling in skeletal muscle, 20 type 2 diabetic patients received a 75-g oral glucose tolerance test (OGTT) and euglycemic insulin (80 mU x m(-2) x min(-1)) clamp with [3-(3)H]glucose/indirect calorimetry/vastus lateralis muscle biopsies before and after 16 weeks of rosiglitazone treatment. Six age-matched nondiabetic subjects served as control subjects. RSG improved fasting plasma glucose (185 +/- 8 to 139 +/- 5 mg/dl), mean plasma glucose during the OGTT (290 +/- 9 to 225 +/- 6 mg/dl), HbA(1c) (8.5 +/- 0.3 to 7.1 +/- 0.3%), insulin-mediated total-body glucose disposal (TGD) (6.9 +/- 0.7 to 9.2 +/- 0.8 mg x kg(-1) fat-free mass x min(-1)) (all P < 0.001), and decreased fasting plasma free fatty acid (FFA) (789 +/- 59 to 656 +/- 50 micro Eq/l) and mean FFA during the OGTT (644 +/- 41 to 471 +/- 35 micro Eq/l) (both P < 0.01). Before RSG treatment, insulin infusion did not significantly increase insulin receptor tyrosine phosphorylation (0.95 +/- 0.10 to 1.08 +/- 0.13 density units; NS) but had a small stimulatory effect on insulin receptor substrate (IRS)-1 tyrosine phosphorylation (1.05 +/- 0.10 to 1.21 +/- 0.12 density units; P < 0.01) and the association of p85 with IRS-1 (0.94 +/- 0.06 to 1.08 +/- 0.06 activity units; P < 0.01). RSG therapy had no effect on basal or insulin-stimulated insulin receptor tyrosine phosphorylation but increased insulin stimulation of IRS-1 tyrosine phosphorylation (1.13 +/- 0.11 to 1.56 +/- 0.17 density units; P < 0.01 vs. prerosiglitazone) and p85 association with IRS-1 (1.00 +/- 0.06 to 1.27 +/- 0.07 activity units; P < 0.05 vs. prerosiglitazone). In control and type 2 diabetic subjects, TGD/nonoxidative glucose disposal correlated positively with the insulin-stimulated increments in IRS-1 tyrosine phosphorylation (r = 0.52/r = 0.57, P < 0.01) and inversely with the plasma FFA concentration during the insulin clamp (r = -0.55/r = -0.53, P < 0.01). However, no significant association between plasma FFA concentrations during the insulin clamp and the increment in either IRS-1 tyrosine phosphorylation or the association of p85 with IRS-1 was observed. In conclusion, in type 2 diabetic patients, rosiglitazone treatment enhances downstream insulin receptor signaling in muscle and decreases plasma FFA concentration while improving glycemic control.  相似文献   

7.
It has previously been shown that Wortmannin, a phosphatidylinositol 3-kinase inhibitor, inhibits glucose transport activated by insulin but not by ischemia, suggesting the importance of an activating mechanism that bypasses the insulin signal. To evaluate the relevance of this insulin-independent pathway in insulin-resistant subjects, the ability of ischemia to stimulate glucose uptake was investigated in 9 patients with type 2 diabetes and in 9 healthy control subjects (fasting glucose level 9.4 +/- 0.8 vs. 5.1 +/- 0.1 mmol/l, P < 0.001, in type 2 diabetic patients and control subjects, respectively; fasting insulin level insulin 8.1 +/- 2.6 vs. 4.5 +/-0.7 mU/l, P < 0.05, respectively) matched for sex, age, and BMI. Arterial plasma and interstitial concentrations of glucose and lactate (measured by subcutaneous and muscle microdialysis) were recorded in the forearm before, during, and after ischemia induced locally for 20 min. During ischemia, the muscle interstitial glucose concentration decreased significantly from 7.7 +/- 0.6 to 5.4 +/- 0.4 mmol/l (P < 0.01) and from 4.4 +/- 0.3 to 3.6 +/- 0.3 mmol/l (P < 0.05) in type 2 diabetic patients and control subjects, respectively. The arterial-interstitial (A-I) glucose concentration difference was 1.7 +/- 0.6 and 0.7 +/- 0.3 mmol/ at basal, and it increased significantly to 3.5 +/- 0.7 (P < 0.01) and 1.4 +/-0.3 mmol/l (P < 0.05) during ischemia in each group, respectively. Interstitial lactate increased significantly during ischemia from 0.8 +/- 0.1 to 1.1 +/- 0.1 mmol/l (P < 0.05) and from 0.5 +/- 0.1 to 0.9 +/- 0.2 mmol/l (P < 0.05), respectively. The A-I glucose concentration difference was abolished immediately postischemia and regained after approximately 15 min, whereas high interstitial lactate levels remained elevated throughout the study. Subcutaneous interstitial glucose concentrations remained unchanged during ischemia and postischemia in both groups, whereas the interstitial lactate concentration in adipose tissue increased during ischemia from 1.4 +/- 0.2 to 2.0 +/- 0.2 mmol/l (P < 0.05) and from 1.1 +/- 0.1 to 1.8 +/- 0.3 mmol/l (P < 0.05) in type 2 diabetic patients and control subjects, respectively. Plasma glucose and lactate levels were unchanged in both groups during the study period. The results show that in muscle, but not in adipose tissue, glucose uptake is efficiently activated by ischemia in insulin-resistant type 2 diabetic subjects, suggesting the activation of a putative alternative pathway to the insulin signal in muscle cells.  相似文献   

8.
To investigate the effect of a sustained (7-day) decrease in plasma free fatty acid (FFA) concentrations on insulin action and intramyocellular long-chain fatty acyl-CoAs (LCFA-CoAs), we studied the effect of acipimox, a potent inhibitor of lipolysis, in seven type 2 diabetic patients (age 53 +/- 3 years, BMI 30.2 +/- 2.0 kg/m2, fasting plasma glucose 8.5 +/- 0.8 mmol/l, HbA 1c 7.5 +/- 0.4%). Subjects received an oral glucose tolerance test (OGTT) and 120-min euglycemic insulin (80 mU/m2 per min) clamp with 3-[3H]glucose/vastus lateralis muscle biopsies to quantitate rates of insulin-mediated whole-body glucose disposal (Rd) and intramyocellular LCFA-CoAs before and after acipimox (250 mg every 6 h for 7 days). Acipimox significantly reduced fasting plasma FFAs (from 563 +/- 74 to 230 +/- 33 micromol/l; P < 0.01) and mean plasma FFAs during the OGTT (from 409 +/- 44 to 184 +/- 22 micromol/l; P < 0.01). After acipimox, decreases were seen in fasting plasma insulin (from 78 +/- 18 to 42 +/- 6 pmol/l; P < 0.05), fasting plasma glucose (from 8.5 +/- 0.8 to 7.0 +/- 0.5 mmol/l; P < 0.02), and mean plasma glucose during the OGTT (from 14.5 +/- 0.8 to 13.0 +/- 0.8 mmol/l; P < 0.05). After acipimox, insulin-stimulated Rd increased from 3.3 +/- 0.4 to 4.4 +/- 0.4 mg x kg(-1) x min(-1) (P < 0.03), whereas suppression of endogenous glucose production (EGP) was similar and virtually complete during both insulin clamp studies (0.16 +/- 0.10 vs. 0.14 +/- 0.10 mg x kg(-1) x min(-1); P > 0.05). Basal EGP did not change after acipimox (1.9 +/- 0.2 vs. 1.9 +/- 0.2 mg x kg(-1) x min(-1)). Total muscle LCFA-CoA content decreased after acipimox treatment (from 7.26 +/- 0.58 to 5.64 +/- 0.79 nmol/g; P < 0.05). Decreases were also seen in muscle palmityl CoA (16:0; from 1.06 +/- 0.10 to 0.75 +/- 0.11 nmol/g; P < 0.05), palmitoleate CoA (16:1; from 0.48 +/- 0.05 to 0.33 +/- 0.05 nmol/g; P = 0.07), oleate CoA (18:1; from 2.60 +/- 0.11 to 1.95 +/- 0.31 nmol/g; P < 0.05), linoleate CoA (18:2; from 1.81 +/- 0.26 to 1.38 +/- 0.18 nmol/g; P = 0.13), and linolenate CoA (18:3; from 0.27 +/- 0.03 to 0.19 +/- 0.02 nmol/g; P < 0.03) levels after acipimox treatment. Muscle stearate CoA (18:0) did not decrease after acipimox treatment. The increase in R(d) correlated strongly with the decrease in muscle palmityl CoA (r = 0.75, P < 0.05), oleate CoA (r = 0.76, P < 0.05), and total muscle LCFA-CoA (r = 0.74, P < 0.05) levels. Plasma adiponectin did not change significantly after acipimox treatment (7.9 +/- 1.8 vs. 7.5 +/- 1.5 microg/ml). These data demonstrate that the reduction in intramuscular LCFA-CoA content is closely associated with enhanced insulin sensitivity in muscle after a chronic reduction in plasma FFA concentrations in type 2 diabetic patients despite the lack of an effect on plasma adiponectin concentration.  相似文献   

9.
Low plasma fibrinolytic activity in association with increased plasma plasminogen activator inhibitor 1 (PAI-1) levels has been linked to an increased risk of atherosclerosis in obesity and type 2 diabetes. We tested the hypothesis that troglitazone, which improves insulin sensitivity and lowers plasma insulin levels in insulin-resistant obese subjects and patients with type 2 diabetes, would also lower circulating PAI-1 antigen concentrations and activity. We assessed insulin sensitivity (5-h, 80 mU x m(-2) x min(-1) hyperinsulinemic-euglycemic clamp) and measured plasma PAI-1 antigen and activities and tissue plasminogen activator (tPA) in 14 patients with type 2 diabetes and 20 normal control subjects (10 lean, 10 obese) before and after 3 months of treatment with troglitazone (600 mg/day). At baseline, plasma PAI-1 antigen levels after an overnight fast were significantly higher in the obese (33.5 +/- 4.7 microg/l) and type 2 diabetic subjects (54.9 +/- 6.3 microg/l) than in the lean control subjects (16.3 +/- 3.2 microg/l; P < 0.01 and P < 0.001, respectively). Troglitazone decreased plasma PAI-1 antigen concentrations in the diabetic patients (36.8 +/- 5.0 microg/l; P < 0.001 vs. baseline), but the reduction in the obese subjects did not reach statistical significance (baseline, 33.5 +/- 4.7; after troglitazone, 25.6 +/- 5.2 microg/l). Changes in plasma PAI-1 activity paralleled those of PAI-1 antigen. The extent of the reduction in plasma PAI-1 antigen concentrations in the diabetic patients after troglitazone correlated with the reductions in fasting plasma insulin (r = 0.60, P < 0.05), nonesterified fatty acid (r = 0.63, P < 0.02), and glucose concentrations (r = 0.64, P < 0.02) but not with the improvement in glucose disposal rates during the glucose clamps. Three nonresponders to troglitazone with respect to effects on insulin sensitivity and fasting glucose and insulin levels also had no reduction in circulating PAI-1. In conclusion, troglitazone enhances fibrinolytic system activity in insulin-resistant type 2 diabetic patients. This effect appears to be intimately linked to its potential to lower plasma insulin levels and improve glycemic control through its peripheral tissue insulin-sensitizing effects.  相似文献   

10.
Increased intramyocellular lipid concentrations are thought to play a role in insulin resistance, but the precise nature of the lipid species that produce insulin resistance in human muscle are unknown. Ceramides, either generated via activation of sphingomyelinase or produced by de novo synthesis, induce insulin resistance in cultured cells by inhibitory effects on insulin signaling. The present study was undertaken to determine whether ceramides or other sphingolipids are increased in muscle from obese insulin-resistant subjects and to assess whether ceramide plays a role in the insulin resistance of Akt in human muscle. Lean insulin-sensitive and obese insulin-resistant subjects (n = 10 each) received euglycemic-hyperinsulinemic clamps with muscle biopsies basally and after 30, 45, or 60 min of insulin infusion. The rate of glucose infusion required to maintain euglycemia (reflecting glucose uptake) was reduced by >50%, as expected, in the obese subjects at each time point (P < 0.01). Under basal conditions, total muscle ceramide content was increased nearly twofold in the obese subjects (46 +/- 9 vs. 25 +/- 2 pmol/2 mg muscle, P < 0.05). All species of ceramides were increased similarly in the obese subjects; in contrast, no other sphingolipid was increased. Stimulation of Akt phosphorylation by insulin in the obese subjects was significantly reduced after 30 min (0.96 +/- 0.11 vs. 1.84 +/- 0.38 arbitrary units) or 45-60 min (0.68 +/- 0.17 vs. 1.52 +/- 0.26) of insulin infusion (P < 0.05 for both). Muscle ceramide content was significantly correlated with the plasma free fatty acid concentration (r = 0.51, P < 0.05). We conclude that obesity is associated with increased intramyocellular ceramide content. This twofold increase in ceramide may be involved in the decrease in Akt phosphorylation observed after insulin infusion and could theoretically play a role in the reduced ability of insulin to stimulate glucose uptake in skeletal muscle from obese subjects.  相似文献   

11.
The contribution of gluconeogenesis (GNG) to endogenous glucose output (EGO) in type 2 diabetes is controversial. Little information is available on the separate influence of obesity on GNG. We measured percent GNG (by the 2H2O technique) and EGO (by 6,6-[2H]glucose) in 37 type 2 diabetic subjects (9 lean and 28 obese, mean fasting plasma glucose [FPG] 8.3 +/- 0.3 mmol/l) and 18 control subjects (6 lean and 12 obese) after a 15-h fast. Percent GNG averaged 47 +/- 5% in lean control subjects and was significantly increased in association with both obesity (P < 0.01) and diabetes (P = 0.004). By multivariate analysis, percent GNG was independently associated with BMI (partial r = 0.27, P < 0.05, with a predicted increase of 0.9% per BMI unit) and FPG (partial r = 0.44, P = 0.0009, with a predicted increase of 2.7% per mmol/l of FPG). In contrast, EGO was increased in both lean and obese diabetic subjects (15.6 +/- 0.5 micromol x min(-1) x kg(-1) of fat-free mass, n = 37, P = 0.002) but not in obese nondiabetic control subjects (13.1 0.7, NS) as compared with lean control subjects (12.4 +/- 1.4). Consequently, gluconeogenic flux (percent GNG x EGO) was increased in obesity (P = 0.01) and markedly elevated in diabetic subjects (P = 0.0004), whereas glycogenolytic flux was reduced only in association with obesity (P = 0.05). Fasting plasma glucagon levels were significantly increased in diabetic subjects (P < 0.05) and positively related to EGO, whereas plasma insulin was higher in obese control subjects than lean control subjects (P = 0.05) and unrelated to measured glucose fluxes. We conclude that the percent contribution of GNG to glucose release after a 15-h fast is independently and quantitatively related to the degree of overweight and the severity of fasting hyperglycemia. In obese individuals, reduced glycogenolysis ensures a normal rate of glucose output. In diabetic individuals, hyperglucagonemia contributes to inappropriately elevated rates of glucose output from both GNG and glycogenolysis.  相似文献   

12.
Glucosamine is a popular nutritional supplement used to treat osteoarthritis. Intravenous administration of glucosamine causes insulin resistance and endothelial dysfunction. However, rigorous clinical studies evaluating the safety of oral glucosamine with respect to metabolic and cardiovascular pathophysiology are lacking. Therefore, we conducted a randomized, placebo-controlled, double-blind, crossover trial of oral glucosamine at standard doses (500 mg p.o. t.i.d.) in lean (n = 20) and obese (n = 20) subjects. Glucosamine or placebo treatment for 6 weeks was followed by a 1-week washout and crossover to the other arm. At baseline, and after each treatment period, insulin sensitivity was assessed by hyperinsulinemic-isoglycemic glucose clamp (SI(Clamp)) and endothelial function evaluated by brachial artery blood flow (BAF; Doppler ultrasound) and forearm skeletal muscle microvascular recruitment (ultrasound with microbubble contrast) before and during steady-state hyperinsulinemia. Plasma glucosamine pharmacokinetics after oral dosing were determined in each subject using a high-performance liquid chromatography method. As expected, at baseline, obese subjects had insulin resistance and endothelial dysfunction when compared with lean subjects (SI(Clamp) [median {25th-75th percentile}] = 4.3 [2.9-5.3] vs. 7.3 [5.7-11.3], P < 0.0001; insulin-stimulated changes in BAF [% over basal] = 12 [-6 to 84] vs. 39 [2-108], P < 0.04). When compared with placebo, glucosamine did not cause insulin resistance or endothelial dysfunction in lean subjects or significantly worsen these findings in obese subjects. The half-life of plasma glucosamine after oral dosing was approximately 150 min, with no significant changes in steady-state glucosamine levels detectable after 6 weeks of therapy. We conclude that oral glucosamine at standard doses for 6 weeks does not cause or significantly worsen insulin resistance or endothelial dysfunction in lean or obese subjects.  相似文献   

13.
The insulin-sensitizing effects of thiazolidinediones are thought to be mediated through peroxisome proliferator-activated receptor-gamma, a nuclear receptor that is highly abundant in adipose tissue. It has been reported that adipocytes secrete a variety of proteins, including tumor necrosis factor-alpha, resistin, plasminogen activator inhibitor-1, and adiponectin. Adiponectin is a fat cell-secreted protein that has been reported to increase fat oxidation and improve insulin sensitivity. Our aim was to study the effects of troglitazone on adiponectin levels in lean, obese, and diabetic subjects. Ten diabetic and 17 nondiabetic subjects (8 lean, BMI <27 kg/m(2) and 9 obese, BMI >27 kg/m(2)) participated in the study. All subjects underwent an 80 mU. m(-2). min(-1) hyperinsulinemic-euglycemic glucose clamp before and after 3 months' treatment with the thiazolidinedione (TZD) troglitazone (600 mg/day). Fasting plasma glucose significantly decreased in the diabetic group after 12 weeks of treatment compared with baseline (9.1 +/- 0.9 vs. 11.1 +/- 0.9 mmol/l, P < 0.005) but was unchanged in the lean and obese subjects. Fasting insulin for the entire group was significantly lower than baseline (P = 0.02) after treatment. At baseline, glucose disposal rate (R(d)) was lower in the diabetic subjects (3.4 +/- 0.5 mg. kg(-1). min(-1)) than in the lean (12.3 +/- 0.4) or obese subjects (6.7 +/- 0.7) (P < 0.001 for both) and was significantly improved in the diabetic and obese groups (P < 0.05) after treatment, and it remained unchanged in the lean subjects. Baseline adiponectin levels were significantly lower in the diabetic than the lean subjects (9.0 +/- 1.7 vs. 16.7 +/- 2.7 micro g/ml, P = 0.03) and rose uniformly in all subjects (12.2 +/- 2.3 vs. 25.7 +/- 2.6 micro g/ml, P < 10(-4)) after treatment, with no significant difference detected among the three groups. During the glucose clamps, adiponectin levels were suppressed below basal levels in all groups (10.2 +/- 2.3 vs. 12.2 +/- 2.3 micro g/ml, P < 0.01). Adiponectin levels correlated with R(d) (r = 0.46, P = 0.016) and HDL cholesterol levels (r = 0.59, P < 0.001) and negatively correlated with fasting insulin (r = -0.39, P = 0.042) and plasma triglyceride (r = -0.61, P < 0.001). Our findings show that TZD treatment increased adiponectin levels in all subjects, including normal subjects in which no other effects of TZDs are observed. Insulin also appears to suppress adiponectin levels. We have confirmed these results in normal rats. These findings suggest that adiponectin can be regulated by obesity, diabetes, TZDs, and insulin, and it may play a physiologic role in enhancing insulin sensitivity.  相似文献   

14.
We studied glucose metabolism in non-insulin-dependent diabetic (NIDDM) men with and without glycogen-depleting cycle exercise 12 h beforehand and have compared the results to our previous data in lean and obese subjects. Rates of total glucose utilization, glucose oxidation, nonoxidative glucose disposal (NOGD), glucose metabolic clearance rate (MCR), and endogenous glucose production (EGP) were determined with a "two-level" insulin-clamp technique (100-min infusions at 40 and 400 mU X m-2 X min-1) combined with indirect calorimetry and D-3-[3H]glucose infusion. Muscle biopsy specimens from vastus lateralis were analyzed for glycogen content and glycogen synthase activity before and after insulin infusions. After exercise, NIDDM subjects had muscle glycogen concentrations comparable with those of lean and obese subjects. The activation of glycogen synthase both by prior exercise and insulin infusion was similar to lean controls. After exercise, total glucose disposal was significantly increased during the 40-mU X m-2 X min-1 infusion (P less than .05), but the increase observed during the 400-mU X m-2 X min-1 infusion was not significant. These increases after exercise were the result of significantly higher NOGD during both levels of insulin infusion. The MCR of glucose during both insulin infusions was reduced in NIDDM compared with lean subjects but was very similar to that in obese nondiabetics. Basal EGP was significantly reduced on the morning after exercise (4.03 +/- 0.27 vs. 3.21 +/- 0.21 mg x kg-1 fat-free mass x min-1) (P less than .05) and associated with significant reductions of fasting plasma glucose (197 +/- 12 vs. 164 +/- 9 mg/dl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM.   总被引:25,自引:0,他引:25  
M Laakso  S V Edelman  G Brechtel  A D Baron 《Diabetes》1992,41(9):1076-1083
Patients with non-insulin-dependent diabetes mellitus (NIDDM) exhibit decreased rates of skeletal muscle insulin-mediated glucose uptake (IMGU). Because IMGU is equal to the product of the arteriovenous glucose difference (AVG delta) across and blood flow (F) into muscle (IMGU = AVG delta x F), reduced tissue permeability (AVG delta) and/or glucose and insulin delivery (F) can potentially lead to decreased IMGU. The components of skeletal muscle IMGU were studied in six obese NIDDM subjects (103 +/- 9 kg) and compared with those previously determined in six lean (weight 68 +/- 3 kg), and six obese (94 +/- 3 kg) with normal glucose tolerance. The insulin dose-response curves for whole body and leg muscle IMGU were constructed using the combined euglycemic clamp and leg balance techniques during sequential insulin infusions (range of serum insulin 130-80,000 pmol/L). In lean, obese, and NIDDM subjects, whole body IMGU, femoral AVG delta, and leg IMGU increased in a dose-dependent fashion over the range of insulin with an ED50 of 400-500 pmol/L in lean, 1000-1200 pmol/L in obese, and 4000-7000 pmol/L in NIDDM subjects (P less than 0.01 lean vs. obese and NIDDM). In lean and obese subjects, maximally effective insulin concentrations increased leg blood flow approximately 2-fold from basal with an ED50 of 266 pmol/L and 957 pmol/L, respectively (P less than 0.01 lean vs. obese). In contrast, leg F did not increase from the basal value in NIDDM subjects (2.7 +/- 0.1 vs. 3.5 +/- 0.5 dl/min, NS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity   总被引:5,自引:0,他引:5  
The kinetics of in vivo insulin-mediated glucose uptake in human obesity have not been previously studied. To examine this, we used the glucose-clamp technique to measure whole-body and leg muscle glucose uptake in seven lean and six obese men during hyperinsulinemia (approximately 2000 pM) at four glucose levels (approximately 4.5, approximately 8.3, approximately 13.5, and approximately 23.5 mM). To measure leg glucose uptake, the femoral artery and vein were catheterized, and blood flow was measured by thermodilution (leg glucose uptake = arteriovenous glucose difference x blood flow). With this approach, we found that rates of whole-body and leg glucose uptake were significantly lower in obese than in lean subjects at each glucose plateau. Leg blood flow rates increased from 4.3 +/- 0.4 to 6.5 +/- 0.8 dl/min over the range of glucose in lean subjects (P less than 0.05) but remained unchanged in obese subjects. The apparent maximal capacity (Vmax), based on whole-body and leg glucose uptake, was reduced in obese compared with lean subjects, but the apparent Km was similar in the lean and obese subjects (6-9 mM, NS). To assess the affinity of muscle for glucose extraction independent of changes in muscle plasma flow, we determined the mean half-maximal effective glucose concentration (EG50) and found it was similar in the lean and obese subjects (6.0 +/- 0.3 vs. 6.0 +/- 0.8 mM, NS). We conclude that 1) the kinetics of in vivo insulin-mediated glucose uptake in skeletal muscle in human obesity are characterized by reduced Vmax but normal Km; 2) the EG50 for insulin-mediated glucose extraction in skeletal muscle was 6 mM in both lean and obese subjects, consistent with a Km characteristic of the glucose-transport system; 3) obese subjects were unable to generate increases in blood flow in response to hyperglycemia under hyperinsulinemic conditions, and this contributed significantly to lower rates of leg and whole-body glucose uptake.  相似文献   

17.
Obesity is commonly associated with elevated plasma free fatty acid (FFA) levels, as well as with insulin resistance and hyperinsulinemia, two important cardiovascular risk factors. What causes insulin resistance and hyperinsulinemia in obesity remains uncertain. Here, we have tested the hypothesis that FFAs are the link between obesity and insulin resistance/hyperinsulinemia and that, therefore, lowering of chronically elevated plasma FFA levels would improve insulin resistance/hyperinsulinemia and glucose tolerance in obese nondiabetic and diabetic subjects. Acipimox (250 mg), a long-acting antilipolytic drug, or placebo was given overnight (at 7:00 P.M., 1:00 A.M., 7:00 A.M.) to 9 lean control subjects, 13 obese nondiabetic subjects, 10 obese subjects with impaired glucose tolerance, and 11 patients with type 2 diabetes. Euglycemic-hyperinsulinemic clamps and oral glucose tolerance tests (75 g) were performed on separate mornings after overnight Acipimox or placebo treatment. In the three obese study groups, Acipimox lowered fasting levels of plasma FFAs (by 60-70%) and plasma insulin (by approximately 50%). Insulin-stimulated glucose uptake during euglycemic-hyperinsulinemic clamping was more than twofold higher after Acipimox than after placebo. Areas under the glucose and insulin curves during oral glucose tolerance testing were both approximately 30% lower after Acipimox administration than after placebo. We conclude that lowering of elevated plasma FFA levels can reduce insulin resistance/hyperinsulinemia and improve oral glucose tolerance in lean and obese nondiabetic subjects and in obese patients with type 2 diabetes.  相似文献   

18.
Recently, a new stage in glucose tolerance, impaired fasting glucose (IFG) (fasting plasma glucose level of 6.1-6.9 mmol/l), was introduced in addition to impaired glucose tolerance (IGT) (2-h glucose level of 7.8-11.0 mmol/l). It is not clear whether IFG and IGT differ with respect to insulin secretion or sensitivity. To address this question, we estimated insulin secretion (by measuring both insulin levels and the ratio of insulin-to-glucose levels in 30-min intervals) and insulin sensitivity (by using the homeostasis model assessment [HOMA] index) from an oral glucose tolerance test (OGTT) in 5,396 individuals from the Botnia Study who had varying degrees of glucose tolerance. There was poor concordance between IFG and IGT: only 36% (303 of 840) of the subjects with IFG had IGT, whereas 62% (493 of 796) of the subjects with IGT did not have IFG. Compared with subjects with normal glucose tolerance (NGT), subjects with IFG were more insulin resistant (HOMA-insulin resistance [IR] values 2.64 +/- 0.08 vs. 1.73 +/- 0.03, P < 0.0005), had greater insulin responses during an OGTT (P = 0.0001), had higher waist-to-hip ratios (P < 0.005), had higher triglyceride and total cholesterol concentrations (P < 0.0005), and had lower HDL cholesterol concentrations (P = 0.0001). Compared with subjects with IFG, subjects with IGT had a lower incremental 30-min insulin-to-glucose area during an OGTT (13.8 +/- 1.7 vs. 21.7 +/- 1.7, P = 0.0008). Compared with subjects with IGT, subjects with mild diabetes (fasting plasma glucose levels <7.8 mmol/l) showed markedly impaired insulin secretion that could no longer compensate for IR and elevated glucose levels. A progressive decline in insulin sensitivity was observed when moving from NGT to IGT and to subjects with diabetes (P < 0.05 for trend), whereas insulin secretion followed an inverted U-shaped form. We conclude that IFG is characterized by basal IR and other features of the metabolic syndrome, whereas subjects with IGT have impaired insulin secretion in relation to glucose concentrations. An absolute decompensation of beta-cell function characterizes the transition from IGT to mild diabetes.  相似文献   

19.
STUDY DESIGN: Survey. OBJECTIVE: Determine intramuscular fat (IMF) in affected skeletal muscle after complete spinal cord injury using a novel analysis method and determine the correlation of IMF to plasma glucose or plasma insulin during an oral glucose tolerance test. SETTING: General community of Athens, GA, USA. METHODS: A total of 12 nonexercise-trained complete spinal cord injured (SCI) persons (10 males and two females 40+/-12 years old (mean+/-SD), range 26-71 years, and 8+/-5 years post SCI) and nine nonexercise-trained nondisabled (ND) controls 29+/-9 years old, range 23-51 years, matched for height, weight, and BMI, had T(1) magnetic resonance images of their thighs taken and underwent an oral glucose tolerance test (OGTT) after giving consent. RESULTS: Average skeletal muscle cross-sectional area (CSA) (mean+/-SD) was 58.6+/-21.6 cm(2) in spinal cord subjects and 94.1+/-32.5 cm(2) in ND subjects. Average IMF CSA was 14.5+/-6.0 cm(2) in spinal cord subjects and 4.7+/-2.5 cm(2) in nondisabled subjects, resulting in an almost four-fold difference in IMF percentage of 17.3+/-4.4% in spinal cord subjects and 4.6+/-2.6% in nondisabled subjects. The 60, 90 and 120 min plasma glucose or plasma insulin were higher in the SCI group. IMF (absolute and %) was related to the 90 or 120 min plasma glucose or plasma insulin (r(2)=0.71-0.40). CONCLUSIONS: IMF is a good predictor of plasma glucose during an OGTT and may be a contributing factor to the onset of impaired glucose tolerance and type II diabetes, especially in SCI. In addition, reports of skeletal muscle CSA should be corrected for IMF.  相似文献   

20.
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa rats (n = 26) and their lean (n = 23) littermates were infused for 90 min with AICAR, insulin, or saline. The insulin infusion rate (4 mU.kg(-1).min(-1)) was selected to match the glucose requirements during AICAR (bolus, 100 mg/kg; constant, 10 mg.kg(-1).min(-1)) isoglycemic clamps in the lean rats. The effects of these identical AICAR and insulin infusion rates were then examined in the obese Zucker rats. AICAR infusion increased muscle AMPK activity more than fivefold (P < 0.01 vs. control and insulin) in both lean and obese rats. Plasma triglycerides, fatty acid concentrations, and glycerol turnover, as assessed by [2-13C]glycerol, were all decreased in both lean and obese rats infused with AICAR (P < 0.05 vs. basal), whereas insulin had no effect on these parameters in the obese rats. Endogenous glucose production rates, measured by [U-13C]glucose, were suppressed by >50% during AICAR and insulin infusions in both lean and obese rats (P < 0.05 vs. basal). In lean rats, rates of whole-body glucose disposal increased by more than two-fold (P < 0.05 vs. basal) during both AICAR and insulin infusion; [3H]2-deoxy-D-glucose transport activity increased to a similar extent, by >2.2-fold (both P < 0.05 vs. control), in both soleus and red gastrocnemius muscles of lean rats infused with either AICAR or insulin. In the obese Zucker rats, neither AICAR nor insulin stimulated whole-body glucose disposal or soleus muscle glucose transport activity. However, AICAR increased glucose transport activity by approximately 2.4-fold (P < 0.05 vs. control) in the red gastrocnemius from obese rats, whereas insulin had no effect. In summary, acute infusion of AICAR in an insulin-resistant rat model activates skeletal muscle AMPK and increases glucose transport activity in red gastrocnemius muscle while suppressing endogenous glucose production and lipolysis. Because type 2 diabetes is characterized by diminished rates of insulin-stimulated glucose uptake as well as increased basal rates of endogenous glucose production and lipolysis, these results suggest that AICAR-related compounds may represent a new class of antidiabetic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号