首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood–brain barrier (BBB) leakage plays a key role in cerebral ischemia–reperfusion injury. It is quite necessary to further explore the characteristic and mechanism of BBB leakage during stroke. We induced a focal cerebral ischemia model by transient middle cerebral artery occlusion in male rats for defining the time course of BBB permeability within 120 h following reperfusion and evaluate the specific role of tight junction (TJ) associated proteins claudin-5, occludin, and ZO-1 as well as protein kinase C delta (PKCδ) pathway in BBB leakage induced by reperfusion injury. We verified a bimodal increase in the permeability of the BBB following focal ischemia by Evans blue assay. Two peaks of BBB permeability appeared at 3 h and 72 h of reperfusion after 2 h focal ischemia, respectively. The leak at the endothelial cell was represented at the level of transmission electron microscopy. TTC staining results showed increased infarct size with time after cerebral ischemia reperfusion. The mRNA and protein expression levels of these three TJ associated proteins were significantly decreased compared with the sham-operated group within 120 h of reperfusion, corresponding to the time-dependent change of the biphasic pattern in BBB leakage. The redistribution of claudin-5, occludin, and ZO-1 in ischemia brain microvascular endothelial cells was observed at the same time points. In addition, Western blot assay revealed PKCδ level was also significantly increased in a similar biphasic pattern to above results within 120 h after cerebral ischemia–reperfusion. This study demonstrates the timing of TJ associated proteins claudin-5, occludin, and ZO-1 in light of BBB permeability associated with cerebral ischemia reperfusion, and suggests PKCδ pathway may participate in TJ barrier open and BBB leakage during reperfusion injury in a time-dependent manner.  相似文献   

2.
Blood–brain barrier (BBB) disruption, resulting from loss of tight junctions (TJ) and activation of matrix metalloproteinases (MMPs), is associated with edema formation in ischemic stroke. Cerebral edema develops in a phasic manner and consists of both vasogenic and cytotoxic components. Although it is contingent on several independent mechanisms, involving hypoxic and inflammatory responses, the single effect of prolonged hypoxia on BBB integrity in vivo was not addressed so far. Exposing mice to normobaric hypoxia (8% oxygen for 48 h) led to a significant increase in vascular permeability associated with diminished expression of the TJ protein occludin. Immunofluorescence studies revealed that hypoxia resulted in disrupted continuity of occludin and zonula occludens-1 (Zo-1) staining with significant gap formation. Hypoxia increased gelatinolytic activity specifically in vascular structures and gel zymography identified MMP-9 as enzymatic source. Treatment with an MMP inhibitor reduced vascular leakage and attenuated disorganization of TJ. Inhibition of vascular endothelial growth factor (VEGF) attenuated vascular leakage and MMP-9 activation induced by hypoxia. In conclusion, our data suggest that hypoxia-induced edema formation is mediated by MMP-9-dependent TJ rearrangement by a mechanism involving VEGF. Therefore, inhibition of MMP-9 might provide the basis for therapeutic strategies to treat brain edema.  相似文献   

3.

Aim

Blood–brain barrier (BBB) dysfunction is one of the hallmarks of ischemic stroke. USP14 has been reported to play a detrimental role in ischemic brain injury. However, the role of USP14 in BBB dysfunction after ischemic stroke is unclear.

Methods

In this study, we tested the role of USP14 in disrupting BBB integrity after ischemic stroke. The USP14-specific inhibitor IU1 was injected into middle cerebral artery occlusion (MCAO) mice once a day. The Evans blue (EB) assay and IgG staining were used to assess BBB leakage 3 days after MCAO. FITC-detran test was slected to examine the BBB leakage in vitro. Behavior tests were conducted to evaluate recovery from ischemic stroke.

Results

Middle cerebral artery occlusion increased endothelial cell USP14 expression in the brain. Furthermore, the EB assay and IgG staining showed that USP14 inhibition through IU1 injection protected against BBB leakage after MCAO. Analysis of protein expression revealed a reduction in the inflammatory response and chemokine release after IU1 treatment. In addition, IU1 treatment was found to rescue neuronal loss resulting from ischemic stroke. Behavior tests showed a positive effect of IU1 in attenuating brain injury and improving motor function recovery. In vitro study showed that IU1 treatment could alleviate endothelial cell leakage induced by OGD in cultured bend.3 cells through modulating ZO-1 expression.

Conclusions

Our results demonstrate a role for USP14 in disrupting the integrity of the BBB and promoting neuroinflammation after MCAO.  相似文献   

4.
The outcome of stroke is greatly influenced by the state of the blood–brain barrier (BBB). The BBB endothelium is sealed paracellularly by tight junction (TJ) proteins, i.e., claudins (Cldns) and the redox regulator occludin. Functions of Cldn3 and occludin at the BBB are largely unknown, particularly after stroke. We address the effects of Cldn3 deficiency and stress factors on the BBB and its TJs. Cldn3 tightened the BBB for small molecules and ions, limited endothelial endocytosis, strengthened the TJ structure and controlled Cldn1 expression. After middle cerebral artery occlusion (MCAO) and 3-h reperfusion or hypoxia of isolated brain capillaries, Cldn1, Cldn3 and occludin were downregulated. In Cldn3 knockout mice (C3KO), the reduction in Cldn1 was even greater and TJ ultrastructure was impaired; 48 h after MCAO of wt mice, infarct volumes were enlarged and edema developed, but endothelial TJs were preserved. In contrast, junctional localization of Cldn5 and occludin, TJ density, swelling and infarction size were reduced in affected brain areas of C3KO. Taken together, Cldn3 and occludin protect TJs in stroke, and this keeps the BBB intact. However, functional Cldn3, Cldn3-regulated TJ proteins and occludin promote edema and infarction, which suggests that TJ modulation could improve the outcome of stroke.  相似文献   

5.
AimsPre‐existing hyperglycemia (HG) aggravates the breakdown of blood–brain barrier (BBB) and increases the risk of hemorrhagic transformation (HT) after acute ischemic stroke in both animal models and patients. To date, HG‐induced ultrastructural changes of brain microvascular endothelial cells (BMECs) and the mechanisms underlying HG‐enhanced HT after ischemic stroke are poorly understood.MethodsWe used a mouse model of mild brain ischemia/reperfusion to investigate HG‐induced ultrastructural changes of BMECs that contribute to the impairment of BBB integrity after stroke. Adult male mice received systemic glucose administration 15 min before middle cerebral artery occlusion (MCAO) for 20 min. Ultrastructural characteristics of BMECs were evaluated using two‐dimensional and three‐dimensional electron microscopy and quantitatively analyzed.ResultsMice with acute HG had exacerbated BBB disruption and larger brain infarcts compared to mice with normoglycemia (NG) after MCAO and 4 h of reperfusion, as assessed by brain extravasation of the Evans blue dye and microtubule‐associated protein 2 immunostaining. Electron microscopy further revealed that HG mice had more endothelial vesicles in the striatal neurovascular unit than NG mice, which may account for their deterioration of BBB impairment. In contrast with enhanced endothelial transcytosis, paracellular tight junction ultrastructure was not disrupted after this mild ischemia/reperfusion insult or altered upon HG. Consistent with the observed increase of endothelial vesicles, transcytosis‐related proteins caveolin‐1, clathrin, and hypoxia‐inducible factor (HIF)‐1α were upregulated by HG after MCAO and reperfusion.ConclusionOur study provides solid structural evidence to understand the role of endothelial transcytosis in HG‐elicited BBB hyperpermeability. Enhanced transcytosis occurs prior to the physical breakdown of BMECs and is a promising therapeutic target to preserve BBB integrity.  相似文献   

6.

Objective

Progesterone receptor membrane component 2 (PGRMC2) belongs to the membrane-associated progesterone receptor family, which regulates multiple pathophysiological processes. However, the role of PGRMC2 in ischemic stroke remains unexplored. The present study sought to determine the regulatory role of PGRMC2 in ischemic stroke.

Methods

Male C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAO). The protein expression level and localization of PGRMC2 were examined by western blotting and immunofluorescence staining. The gain-of-function ligand of PGRMC2 (CPAG-1, 45 mg/kg) was intraperitoneally injected into sham/MCAO mice, and brain infarction, blood–brain barrier (BBB) leakage, and sensorimotor functions were evaluated by magnetic resonance imaging, brain water content, Evans blue extravasation, immunofluorescence staining, and neurobehavioral tests. The astrocyte and microglial activation, neuronal functions, and gene expression profiles were revealed by RNA sequencing, qPCR, western blotting, and immunofluorescence staining after surgery and CPAG-1 treatment.

Results

Progesterone receptor membrane component 2 was elevated in different brain cells after ischemic stroke. Intraperitoneal delivery of CPAG-1 reduced infarct size, brain edema, BBB leakage, astrocyte and microglial activation, and neuronal death, and improved sensorimotor deficits after ischemic stroke.

Conclusion

CPAG-1 acts as a novel neuroprotective compound that could reduce neuropathologic damage and improve functional recovery after ischemic stroke.  相似文献   

7.
Blood-brain barrier (BBB) breakdown after stroke is linked to the up-regulation of metalloproteinases (MMPs) and inflammation. This study examines the effects of progesterone (PROG) and its neuroactive metabolite allopregnanolone (ALLO) on BBB integrity following permanent middle cerebral artery occlusion (pMCAO). Rats underwent pMCAO by electro-coagulation and received intraperitoneal injections of PROG (8 mg/kg), ALLO (8 mg/kg) or vehicle at 1 h post-occlusion and then subcutaneous injections (8 mg/kg) at 6, 24, and 48 h. MMP activation and expression were analyzed by Western blot, immunohistochemistry and gelatin zymography 72 h post-pMCAO. Occludin1, claudin5, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were analyzed at 72 h post-pMCAO with Western blots. BBB permeability was measured by Evans blue extravasation and infarct size was evaluated by cresyl violet at 72 h after pMCAO. Ischemic injury significantly (p < 0.05) increased the expression of MMP-9, MMP-2, TNF-α and IL-6, and reduced the levels of occludin1 and claudin5. These changes were followed by increased infarct size (% contralateral hemisphere) and Evans blue extravasation into the brain indicating compromise of the BBB. PROG and ALLO attenuated BBB disruption and infarct size following pMCAO by reducing MMPs and the inflammatory response and by preventing the degradation of occludin1 and claudin5. We conclude that PROG and ALLO can help to protect BBB disruption following pMCAO.  相似文献   

8.
Curcumin (Cur) is a major active component of the food flavor turmeric isolated from the powdered dry rhizome of Curcuma longa Linn., which has been used in traditional Chinese medicine to ameliorate intracerebral ischemic damage and reduce brain edema. However, the effects of Cur on the disruption of the blood–brain barrier (BBB) induced by brain ischemia are still unclear. The effects of Cur on the disruption of BBB and changes of tight junction (TJ) proteins induced by oxygen glucose deprivation (OGD) were studied in BBB in vitro. The transendothelial electrical resistance and the flux of horseradish peroxidase in BBB in vitro were measured. The expression and localization of the TJ proteins occludin and zonula occludens-1 (ZO-1) were evaluated by Western blots and immunofluorescence microscopy. The protein levels of heme oxygenase-1 (HO-1) were also analyzed via Western blots. Cur attenuated OGD-induced disruption of paracellular permeability and increased the expression of HO-1 protein in rat brain microvascular endothelial cells (RBMECs). After administration of OGD, the expression of occludin and ZO-1 proteins was restored by Cur, and this effect was blocked by a HO-1 inhibitor, zinc protoporphyrin (ZnPP). Cur protects RBMECs against OGD-induced disruption of TJ and barrier dysfunction via the HO-1 pathway. We propose that Cur is capable of improving the barrier function of BBB under ischemic conditions and this beneficial effect might be reversed by a HO-1 inhibitor, ZnPP.  相似文献   

9.
10.

BACKGROUND AND PURPOSE

Blood–brain barrier (BBB) disruption detected on magnetic resonance imaging (MRI) in acute ischemic stroke as a hyperintense acute reperfusion marker (HARM) is associated with upregulation of matrix metalloproteinase‐9 (MMP‐9). Although activated leukocytes, including monocytes, are the main source of MMPs, limited data exist to support relationship between leukocyte activation and BBB disruption in patients with acute ischemic stroke. The goal of this study is to investigate the relationship between neutrophils, lymphocytes, and monocytes with BBB disruption detected as HARM (+) in patients with acute ischemic stroke.

METHODS

We conducted a retrospective analysis of prospectively collected data in patients who did not receive any reperfusion therapy with acute (<12 hours) ischemic stroke. MRI scans were obtained at baseline, 24 hours, and 5 days. HARM was evaluated on the 24‐hour follow‐up scan.

RESULTS

Thirty‐three patients were studied. HARM was detected in 27% of patients. Median volumes of baseline perfusion (mean transit time [MTT]) deficit (219.4 mL vs. 158.4 mL, P = .029) and DWI infarct growth at 24 hours (18.50 mL vs. .14 mL, P = .017), as well as the median absolute numbers (1 × 103/mm3) of monocytes, were significantly higher in HARM (+) versus HARM (?) patients (0.9 vs. 0.6, p = 0.011).

CONCLUSION

Increased monocyte count associated with HARM supports importance of systemic inflammation in BBB disruption in acute ischemic stroke.  相似文献   

11.
Oxidative stress generated during stroke is a critical event leading to blood-brain barrier (BBB) disruption with secondary vasogenic edema and hemorrhagic transformation of infarcted brain tissue, restricting the benefit of thrombolytic reperfusion. In this study, the authors demonstrate that ischemia-reperfusion-induced BBB disruption in mice deficient in copper/zinc-superoxide dismutase (SOD1) was reduced by 88% ( P < 0.0001) and 73% ( P < 0.01), respectively, after 3 and 7 hours of reperfusion occurring after 1 hour of ischemia by the inhibition of matrix metalloproteinases. Accordingly, the authors show that local metalloproteinase-generated proteolytic imbalance is more intense in ischemic regions of SOD1 mice than in wild-type litter mates. Moreover, active in situ proteolysis is, for the first time, demonstrated in ischemic leaking capillaries that produce reactive oxygen species. By showing that oxidative stress mediates BBB disruption through metalloproteinase activation in experimental ischemic stroke, this study provides a new target for future therapeutic strategies to prevent BBB disruption and potentially reperfusion-triggered intracerebral hemorrhage.  相似文献   

12.
13.
We sought to identify magnetic resonance imaging (MRI) parameters that can identify as well as predict disruption of the blood-brain barrier (BBB) after embolic stroke in the rat. Rats subjected to embolic stroke with (n=13) and without (n=13) rt-PA treatment were followed with MRI using quantitative permeability-related parameters, consisting of: transfer constant (K(i)) of Gd- DTPA, the distribution volume (V(p)) of the mobile protons, and the inverse of the apparent forward transfer rate for magnetization transfer (k(inv)), as well as the apparent diffusion coefficient of water (ADC(w)), T2, and cerebral cerebral blood flow (CBF). Tissue progressing to fibrin leakage resulting from BBB disruption and adjacent tissue were then analyzed to identify MRI markers that characterize BBB disruption. Animals were killed after final MRI measurements at 24 h after induction of embolic stroke and cerebral tissues were perfused and stained to detect fibrin leakage. K(i), V(p), and k(inv) were the most sensitive early (2 to 3 h) indices of the cerebral tissue that progresses to fibrin leakage. Cerebral blood flow was not significantly different between ischemic tissue with a compromised and an intact BBB. Our data indicate that compromise of the BBB can be sensitively predicted using a select set of MR parameters.  相似文献   

14.
Brain microvascular endothelial cells play an essential role in maintaining blood–brain barrier (BBB) integrity, and disruption of the BBB aggravates the ischemic injury. CaMKK (α and β) is a major kinase activated by elevated intracellular calcium. Previously, we demonstrated that inhibition of CaMKK exacerbated outcomes, conversely, overexpression reduced brain injury after stroke in mice. Interestingly, CaMKK has been shown to activate a key endothelial protector, sirtuin 1 (SIRT1). We hypothesized that CaMKK protects brain endothelial cells via SIRT1 activation after stroke. In this study, Oxygen‐Glucose Deprivation (OGD) was performed in human brain microvascular endothelial cells. Stroke was induced by middle cerebral artery occlusion (MCAO) in male mice. Knockdown of CaMKK β using siRNA increased cell death following OGD. Inhibition of CaMKK β by STO‐609 significantly and selectively down‐regulated levels of phosphorylated SIRT1 after OGD. Changes in the downstream targets of SIRT1 were observed following STO‐609 treatment. The effect of STO‐609 on cell viability after OGD was absent, when SIRT1 was concurrently inhibited. We also demonstrated that STO‐609 increased endothelial expression of the pro‐inflammatory proteins ICAM‐1 and VCAM‐1 and inhibition of CaMKK exacerbated OGD‐induced leukocyte‐endothelial adhesion. Finally, intracerebroventricular injection of STO‐609 exacerbated endothelial apoptosis and reduced BBB integrity after 24‐hr reperfusion following MCAO in vivo. Collectively, these results demonstrated that CaMKK inhibition reduced endothelial cell viability, exacerbated inflammatory responses and aggravated BBB impairment after ischemia. CaMKK activation may attenuate ischemic brain injury via protection of the microvascular system and a reduction in the infiltration of pro‐inflammatory factors.  相似文献   

15.
Summary The mechanism of exacerbation of ischemic brain edema after blood flow restoration was studied in 20 cats under ketamine and alpha-chloralose anesthesia. Regional cerebral blood flow was measured by the hydrogen clearance method, and the left middle cerebral artery (MCA) was occluded for 6 h in group A, and for 3 h with subsequent 3 h recirculation in group B. Severity of brain edema was assessed by specific gravity measurement of tissue samples taken from coronal brain sections at the MCA area, while severity of blood-brain barrier (BBB) disruption was determined by measuring the amount of extravasated serum albumin by using [125I]albumin and tissue-uptake method in the same samples as those used for gravimetry. Structural and ultrastructural change was correlated with the severity of ischemic brain edema and BBB disruption. The results obtained showed that: (i) ischemic brain edema observed in group A was not associated with BBB opening to serum proteins; (ii) ischemic edema in group B was exacerbated significantly after recirculation in correlation with serum protein extravasation in most of the postischemic area; (iii) in the severely edematous area, serum protein extravasation reached a plateau and morphological examination at this type of area revealed cell membrane disruption especially of astrocytes, with leakage of intracellular substances. Our study indicated that the increase of extracellular osmotic pressure due to leakage of serum proteins via the disrupted BBB and of intracellular substances via the ischemically injured cell membrane into the extracellular space is the mechanism responsible for edema fluid accumulation in exacerbated ischemic brain edema.  相似文献   

16.
Hemoglobin (Hb) released from extravasated erythrocytes may have a critical role in the process of blood–brain barrier (BBB) disruption and subsequent edema formation after intracerebral hemorrhage (ICH). Excessive nitric oxide (NO) production synthesized by nitric oxide synthase (NOS) has been well documented to contribute to BBB disruption. However, considerably less attention has been focused on the role of NO in Hb-induced BBB disruption. This study was designed to examine the hypothesis that Hb-induced NOS overexpression and excessive NO production may contribute to the changes of tight junction (TJ) proteins and subsequent BBB dysfunction. Hemoglobin was infused with stereotactic guidance into the right caudate nucleus of male Sprague Dawley rats. Then, we investigated the effect of Hb on the BBB permeability, changes of TJ proteins (claudin-5, occludin, zonula occludens-1 (ZO-1), and junctional adhesion molecule-1 (JAM-1)), iron deposition, expression of inducible NOS (iNOS) and endothelial NOS (eNOS), as well as NO production. Hb injection caused a significant increase in BBB permeability. Significant reduction of claudin-5, ZO-1, and JAM-1 was observed after Hb injection as evidenced by PCR and immunofluorescence. After a decrease at early stage, occludin showed a fivefold increase in mRNA level at 7 days. Significant iron deposition was detectable from 48 h to 7 days in a time-dependent manner. The iNOS and eNOS levels dramatically increased after Hb injection concomitantly with large quantities of NO released. Furthermore, enhanced iNOS or eNOS immunoreactivity was co-localized with diffused or diminished claudin-5 staining. We concluded that overexpressed NOS and excessive NO production induced by Hb may contribute to BBB disruption, which may provide an important potential therapeutic target in the treatment of ICH.  相似文献   

17.
Using a rodent model of ischemic stroke [permanent middle cerebral artery occlusion (pMCAO)], our laboratory has previously demonstrated that sensory‐evoked cortical activation via mechanical single whisker stimulation treatment delivered under an anesthetized condition within 2 h of ischemic onset confers complete protection from impending infarct. There is a limited time window for this protection; rats that received the identical treatment at 3 h following ischemic onset lost neuronal function and sustained a substantial infarct. Rats in these studies, however, were anesthetized with sodium pentobarbital or isoflurane, whereas most human stroke patients are typically awake. To optimize our animal model, the present study examined, using functional imaging, histological, and behavioral analysis, whether self‐induced sensorimotor stimulation is also protective in unrestrained, behaving rats that actively explore an enriched environment. Rats were revived from anesthesia either immediately or at 3 h after pMCAO, at which point they were allowed to freely explore an enriched environment. Rats that explored immediately after ischemic onset maintained normal cortical function and did not sustain infarct, even when their whiskers were clipped. Rats that were revived at 3 h post‐pMCAO exhibited eliminated cortical function and sustained cortical infarct. Further, the data suggested that the level of individual active exploration could influence the outcome. Thus, early activation of the ischemic cortical area via unrestrained exploration resulted in protection from ischemic infarct, whereas late activation resulted in infarct, irrespective of the level of arousal or whisker‐specific stimulation.  相似文献   

18.
Protection of the blood-brain barrier (BBB) is correlated with improved outcome in stroke. Sphingosine kinase (SphK)-directed production of sphingosine-1-phosphate, which we previously documented as being vital to preconditioning-induced stroke protection, mediates peripheral vascular integrity via junctional protein regulation. We used a hypoxic preconditioning (HPC) model in adult wild-type and SphK2-null mice to examine the isoform-specific role of SphK2 signaling for ischemic tolerance to transient middle cerebral artery occlusion and attendant BBB protection. Reductions in infarct volume and BBB permeability in HPC-treated mice were completely lost in SphK2-null mice. Hypoxic preconditioning-induced attenuation of postischemic BBB disruption in wild types, evidenced by reduced extravascular immunoglobulin G intensity, suggests direct protection of BBB integrity. Measurement of BBB junctional protein status in response to HPC revealed SphK2-dependent increases in triton-insoluble claudin-5 and VE-cadherin, which may serve to strengthen the BBB before stroke. Postischemic loss of VE-cadherin, occludin, and zona occludens-1 in SphK2-null mice with prior HPC suggests that SphK2-dependent protection of these adherens and tight junction proteins is compulsory for HPC to establish a vasculoprotective phenotype. Further elucidation of the mediators of this endogenous, HPC-activated lipid signaling pathway, and their role in protecting the ischemic BBB, may provide new therapeutic targets for cerebrovascular protection in stroke patients.  相似文献   

19.
The role of the inducible matrix metalloproteinase (MMP)-9 in blood-brain barrier (BBB) disruption after ischemic stroke is well accepted. Recombinant tissue plasminogen activator (r-tPA) is the only approved thrombolytic treatment of ischemic stroke but r-tPA is potentially neurotoxic. Vasogenic edema after r-tPA treatment has been linked with an increase in cerebral MMP-9. However, because cerebral ischemia clearly increases the levels of endogenous tPA, the consequence of additional r-tPA may be questionable. In this study, wild type and MMP-9 knockout mice were subjected to 90 min transient middle cerebral artery occlusion and treated with 10 mg/kg r-tPA. At 24 h after occlusion, BBB permeability, hemispheric enlargement, collagen and laminin degradation as well as cerebral infarction were increased in both wild type and MMP-9 knockout treated animals as compared with non-treated animals. Mortality was increased in wild type but reduced in knockout treated mice. Cerebral MMP-9 concentration was not modified by r-tPA. However, pre-treatment with p-aminobenzoyl-gly-pro-D-leu-D-ala-hydroxamate, a broad-spectrum MMP inhibitor, counteracted the effects of r-tPA on the neurovascular unit and decreased mortality in both wild type and knockout mice. MMP inhibition did not modify cerebral infarction in r-tPA-treated animals. Our results suggest that r-tPA toxicity is mainly independent of MMP-9 after transient middle cerebral artery occlusion but could involve some other MMPs. Additionally, our results support the hypothesis of a dissociation between r-tPA-dependent mechanisms of BBB breakdown and cerebral infarction. Due to the importance of r-tPA in thrombolytic treatment of ischemic stroke patients, the MMPs that could participate in r-tPA-induced BBB disruption should be further characterized.  相似文献   

20.
Hypoxia (Hx) is a component of many disease states including stroke. Ischemic stroke occurs when there is a restriction of cerebral blood flow and oxygen to part of the brain. During the ischemic, and subsequent reperfusion phase of stroke, blood–brain barrier (BBB) integrity is lost with tight junction (TJ) protein disruption. However, the mechanisms of Hx and reoxygenation (HR)-induced loss of BBB integrity are not fully understood. We examined the role of protein kinase C (PKC) isozymes in modifying TJ protein expression in a rat model of global Hx. The Hx (6% O2) induced increased hippocampal and cortical vascular permeability to 4 and 10 kDa dextran fluorescein isothiocyanate (FITC) and endogenous rat-IgG. Cortical microvessels revealed morphologic changes in nPKC-θ distribution, increased nPKC-θ and aPKC-ζ protein expression, and activation by phosphorylation of nPKC-θ (Thr538) and aPKC-ζ (Thr410) residues after Hx treatment. Claudin-5, occludin, and ZO-1 showed disrupted organization at endothelial cell margins, whereas Western blot analysis showed increased TJ protein expression after Hx. The PKC inhibition with chelerythrine chloride (5 mg/kg intraperitoneally) attenuated Hx-induced hippocampal vascular permeability and claudin-5, PKC (θ and ζ) expression, and phosphorylation. This study supports the hypothesis that nPKC-θ and aPKC-ζ signaling mediates TJ protein disruption resulting in increased BBB permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号