首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
MotivationIdentifying carcinoma subtype can help to select appropriate treatment options and determining the subtype of benign lesions can be beneficial to estimate the patients’ risk of developing cancer in the future. Pathologists’ assessment of lesion subtypes is considered as the gold standard, however, sometimes strong disagreements among pathologists for distinction among lesion subtypes have been previously reported in the literature.ObjectiveTo propose a framework for classifying hematoxylin-eosin stained breast digital slides either as benign or cancer, and then categorizing cancer and benign cases into four different subtypes each.Materials and methodsWe used data from a publicly available database (BreakHis) of 81 patients where each patient had images at four magnification factors (×40, ×100, ×200, and ×400) available, for a total of 7786 images. The proposed framework, called MuDeRN (MUlti-category classification of breast histopathological image using DEep Residual Networks) consisted of two stages. In the first stage, for each magnification factor, a deep residual network (ResNet) with 152 layers has been trained for classifying patches from the images as benign or malignant. In the next stage, the images classified as malignant were subdivided into four cancer subcategories and those categorized as benign were classified into four subtypes. Finally, the diagnosis for each patient was made by combining outputs of ResNets’ processed images in different magnification factors using a meta-decision tree.ResultsFor the malignant/benign classification of images, MuDeRN’s first stage achieved correct classification rates (CCR) of 98.52%, 97.90%, 98.33%, and 97.66% in ×40, ×100, ×200, and ×400 magnification factors respectively. For eight-class categorization of images based on the output of MuDeRN’s both stages, CCRs in four magnification factors were 95.40%, 94.90%, 95.70%, and 94.60%. Finally, for making patient-level diagnosis, MuDeRN achieved a CCR of 96.25% for eight-class categorization.ConclusionsMuDeRN can be helpful in the categorization of breast lesions.  相似文献   

2.

Cancer statistics in 2020 reveals that breast cancer is the most common form of cancer among women in India. One in 28 women is likely to develop breast cancer during their lifetime. The mortality rate is 1.6 to 1.7 times higher than maternal mortality rates. According to the US statistics, about 42,170 women in the US are expected to die in 2020 from breast cancer. The chance of survival can be increased through early and accurate diagnosis of cancer. The pathologists manually analyze the histopathology images using high-resolution microscopes to detect the mitotic cells. This is a time-consuming process because there is a minute difference between the normal and mitotic cells. To overcome these challenges, an automatic analysis and detection of breast cancer by using histopathology images play a vital role in prognosis. Earlier researchers used conventional image processing techniques for the detection of mitotic cells. These methods were found to be producing results with low accuracy and time-consuming. Therefore, several deep learning techniques were adopted by researchers to increase the accuracy and minimize the time. The hybrid deep learning model is proposed for selecting abstract features from the histopathology images. In the proposed approach, we have concatenated two different CNN architectures into a single model for effective classification of mitotic cells. Convolution neural network (CNN) automatically detects efficient features without human intervention and classifies cancerous and non-cancerous images using a hybrid fully connected network. It is a computationally efficient, very powerful, and efficient model for performing automatic feature extraction. It detects different phenotypic signatures of nuclei. In order to enhance the accuracy and computational efficiency, the histopathology images are preprocessed, segmented, and feature extracted through CNN and fed into a hybrid CNN for classification. The hybrid CNN is obtained by concatenating two CNN models; together, this is called model leveraging. Model averaging can be improved by weighting the contributions of each sub-model to the combined prediction by the expected performance of the sub-model. The proposed hybrid CNN architecture with data preprocessing with median filter and Otsu-based segmentation technique is trained using 50,000 images and tested using 50,000 images. It provides an overall accuracy of 98.9%.

  相似文献   

3.
This paper presents an ensemble of feature selection and classification technique for classifying two types of breast lesion, benign and malignant. Features are selected based on their area under the ROC curves (AUC) which are then classified using a hybrid hidden Markov model (HMM)-fuzzy approach. HMM generated log-likelihood values are used to generate minimized fuzzy rules which are further optimized using gradient descent algorithms in order to enhance classification performance. The developed model is applied to Wisconsin breast cancer dataset to test its performance. The results indicate that a combination of selected features and the HMM-fuzzy approach can classify effectively the lesion types using only two fuzzy rules. Our experimental results also indicate that the proposed model can produce better classification accuracy when compared to most other computational tools.  相似文献   

4.
自动乳腺全容积超声成像(ABVS)系统因其高效、无辐射等特性成为筛查乳腺癌的重要方式。针对ABVS图像进行计算机辅助乳腺肿瘤良恶性分类的研究,有利于帮助临床医生准确、快速地进行乳腺癌的诊断,甚至可辅助提高低年资医生的诊断水平。ABVS系统产生的三维乳腺图像数据量较大,造成常规的深度学习方式训练时间长、占用资源巨大。本研究设计了一种基于ABVS数据的多视角图像提取方式,替代常规的三维数据输入,在降低参数量的同时弥补二维深度学习中的空间关联性;其次,基于交叉视角图像的空间位置关系,提出一种深度自注意力编码器(Transformer)网络,用于获得图像的有效特征表达。实验是基于自有ABVS数据库的153例容积图像,良恶性分类的准确率为86.88%,F1-评分为81.70%,AUC达到0.831 6。所提出的方法有望应用于ABVS图像的乳腺肿瘤良恶性筛查。  相似文献   

5.
The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. As the incidence of this disease has increased significantly in the recent years, machine learning applications to this problem have also took a great attention as well as medical consideration. This study aims at diagnosing breast cancer with a new hybrid machine learning method. By hybridizing a fuzzy-artificial immune system with k-nearest neighbour algorithm, a method was obtained to solve this diagnosis problem via classifying Wisconsin Breast Cancer Dataset (WBCD). This data set is a very commonly used data set in the literature relating the use of classification systems for breast cancer diagnosis and it was used in this study to compare the classification performance of our proposed method with regard to other studies. We obtained a classification accuracy of 99.14%, which is the highest one reached so far. The classification accuracy was obtained via 10-fold cross validation. This result is for WBCD but it states that this method can be used confidently for other breast cancer diagnosis problems, too.  相似文献   

6.
医学图像自动分割具有广泛和重要临床应用价值,特别是病灶、脏器的自动分割。基于传统图像处理方法的医学图像分割仅能利用浅层结构模型的浅层特征来识别感兴趣区域,并且需要大量人工干预。而基于机器学习的分割方法在模型建模时存在局限性且缺乏可解释性。本研究提出一种基于Transformer和卷积神经网络结合形态结构约束的三维医学图像分割方法。编码器中利用卷积神经网络和Transformer构建U型网络结构提取多重特征;解码器中采用上采样并通过跳跃连接将不同层次的特征拼接在一起;加入形态结构约束模块,通过提取病灶和脏器等分割目标的形状信息,以增强模型可解释性,并采用最大池化和平均池化操作,对经过卷积神经网络得到的结果进一步提取有代表性的特征,作为形态结构模块的输入,最终提高分割结果的准确性。在公开数据集Synapse和ACDC上利用评价指标Dice相似系数(DSC)和Hausdorff距离(HD)验证所提出算法的有效性。其中,在Synapse数据集上,18例数据作为训练集,12例数据作为测试集;在ACDC数据集上,70例数据作为训练集,10例数据作为验证集,20例数据作为测试集。实验结果表明,在Sy...  相似文献   

7.
It is highly acknowledged in the medical profession that density of breast tissue is a major cause for the growth of breast cancer. Increased breast density was found to be linked with an increased risk of breast cancer growth, as high density makes it difficult for radiologists to see an abnormality which leads to false negative results. Therefore, there is need for the development of highly efficient techniques for breast tissue classification based on density. This paper presents a hybrid scheme for classification of fatty and dense mammograms using correlation-based feature selection (CFS) and sequential minimal optimization (SMO). In this work, texture analysis is done on a region of interest selected from the mammogram. Various texture models have been used to quantify the texture of parenchymal patterns of breast. To reduce the dimensionality and to identify the features which differentiate between breast tissue densities, CFS is used. Finally, classification is performed using SMO. The performance is evaluated using 322 images of mini-MIAS database. Highest accuracy of 96.46 % is obtained for two-class problem (fatty and dense) using proposed approach. Performance of selected features by CFS is also evaluated by Naïve Bayes, Multilayer Perceptron, RBF Network, J48 and kNN classifier. The proposed CFS–SMO method outperforms all other classifiers giving a sensitivity of 100 %. This makes it suitable to be taken as a second opinion in classifying breast tissue density.  相似文献   

8.

Diabetic retinopathy is a chronic condition that causes vision loss if not detected early. In the early stage, it can be diagnosed with the aid of exudates which are called lesions. However, it is arduous to detect the exudate lesion due to the availability of blood vessels and other distractions. To tackle these issues, we proposed a novel exudates classification from the fundus image known as hybrid convolutional neural network (CNN)-based binary local search optimizer–based particle swarm optimization algorithm. The proposed method from this paper exploits image augmentation to enlarge the fundus image to the required size without losing any features. The features from the resized fundus images are extracted as a feature vector and fed into the feed-forward CNN as the input. Henceforth, it classifies the exudates from the fundus image. Further, the hyperparameters are optimized to reduce the computational complexities by utilization of binary local search optimizer (BLSO) and particle swarm optimization (PSO). The experimental analysis is conducted on the public ROC and real-time ARA400 datasets and compared with the state-of-art works such as support vector machine classifiers, multi-modal/multi-scale, random forest, and CNN for the performance metrics. The classification accuracy is high for the proposed work, and thus, our proposed outperforms all the other approaches.

  相似文献   

9.
Identifying topics of discussions in online health communities (OHC) is critical to various information extraction applications, but can be difficult because topics of OHC content are usually heterogeneous and domain-dependent. In this paper, we provide a multi-class schema, an annotated dataset, and supervised classifiers based on convolutional neural network (CNN) and other models for the task of classifying discussion topics. We apply the CNN classifier to the most popular breast cancer online community, and carry out cross-sectional and longitudinal analyses to show topic distributions and topic dynamics throughout members’ participation. Our experimental results suggest that CNN outperforms other classifiers in the task of topic classification and identify several patterns and trajectories. For example, although members discuss mainly disease-related topics, their interest may change through time and vary with their disease severities.  相似文献   

10.
A rapid and highly accurate diagnostic tool for distinguishing benign tumors from malignant ones is required owing to the high incidence of breast cancer. Although various computer-aided diagnosis (CAD) systems have been developed to interpret ultrasound images of breast tumors, feature selection and the setting of parameters are still essential to classification accuracy and the minimization of computational complexity. This work develops a highly accurate CAD system that is based on a support vector machine (SVM) and the artificial immune system (AIS) algorithm for evaluating breast tumors. Experiments demonstrate that the accuracy of the proposed CAD system for classifying breast tumors is 96.67 %. The sensitivity, specificity, PPV, and NPV of the proposed CAD system are 96.67, 96.67, 95.60, and 97.48 %, respectively. The receiver operator characteristic (ROC) area index Az is 0.9827. Hence, the proposed CAD system can reduce the number of biopsies and yield useful results that assist physicians in diagnosing breast tumors.  相似文献   

11.
Although magnetic resonance imaging (MRI) has a higher sensitivity of early breast cancer than mammography, the specificity is lower. The purpose of this study was to develop a computer-aided diagnosis (CAD) scheme for distinguishing between benign and malignant breast masses on dynamic contrast material-enhanced MRI (DCE-MRI) by using a deep convolutional neural network (DCNN) with Bayesian optimization. Our database consisted of 56 DCE-MRI examinations for 56 patients, each of which contained five sequential phase images. It included 26 benign and 30 malignant masses. In this study, we first determined a baseline DCNN model from well-known DCNN models in terms of classification performance. The optimum architecture of the DCNN model was determined by changing the hyperparameters of the baseline DCNN model such as the number of layers, the filter size, and the number of filters using Bayesian optimization. As the input of the proposed DCNN model, rectangular regions of interest which include an entire mass were selected from each of DCE-MRI images by an experienced radiologist. Three-fold cross validation method was used for training and testing of the proposed DCNN model. The classification accuracy, the sensitivity, the specificity, the positive predictive value, and the negative predictive value were 92.9% (52/56), 93.3% (28/30), 92.3% (24/26), 93.3% (28/30), and 92.3% (24/26), respectively. These results were substantially greater than those with the conventional method based on handcrafted features and a classifier. The proposed DCNN model achieved high classification performance and would be useful in differential diagnoses of masses in breast DCE-MRI images as a diagnostic aid.  相似文献   

12.
乳腺癌是女性致死率最高的恶性肿瘤之一。为提高诊断效率,提供给医生更加客观和准确的诊断结果。借助影像组学的方法,利用公开数据集BreaKHis中82例患者的乳腺肿瘤病理图像,提取乳腺肿瘤病理图像的灰度特征、Haralick纹理特征、局部二值模式(LBP)特征和Gabor特征共139维影像组学特征,并用主成分分析(PCA)对影像组学特征进行降维,然后利用随机森林(RF)、极限学习机(ELM)、支持向量机(SVM)、k最近邻(kNN)等4种不同的分类器构建乳腺肿瘤良恶性的诊断模型,并对上述不同的特征集进行评估。结果表明,基于支持向量机的影像组学特征的分类效果最好,准确率能达到88.2%,灵敏性达到86.62%,特异性达到89.82%。影像组学方法可为乳腺肿瘤良恶性预测提供一种新型的检测手段,使乳腺肿瘤良恶性临床诊断的准确率得到很大提升。  相似文献   

13.
乳腺癌是全球女性癌症死亡的主要原因之一。现有诊断方法主要是医生通过乳腺癌观察组织病理学图像进行判断,不仅费时费力,而且依赖医生的专业知识和经验,使得诊断效率无法令人满意。针对以上问题,设计基于组织学图像的深度学习框架,以提高乳腺癌诊断准确性,同时减少医生的工作量。开发一个基于多网络特征融合和稀疏双关系正则化学习的分类模型:首先,通过子图像裁剪和颜色增强进行乳腺癌图像预处理;其次,使用深度学习模型中典型的3种深度卷积神经网络(InceptionV3、ResNet-50和VGG-16),提取乳腺癌病理图像的多网络深层卷积特征并进行特征融合;最后,通过利用两种关系(“样本-样本”和“特征-特征”关系)和lF正则化,提出一种有监督的双关系正则化学习方法进行特征降维,并使用支持向量机将乳腺癌病理图像区分为4类—正常、良性、原位癌和浸润性癌。实验中,通过使用ICIAR2018公共数据集中的400张乳腺癌病理图像进行验证,获得93%的分类准确性。融合多网络深层卷积特征可以有效地捕捉丰富的图像信息,而稀疏双关系正则化学习可以有效降低特征冗余并减少噪声干扰,有效地提高模型的分类性能。  相似文献   

14.
It is often difficult for clinicians to decide correctly on either biopsy or follow-up for breast lesions with masses on ultrasonographic images. The purpose of this study was to develop a computerized determination scheme for histological classification of breast mass by using objective features corresponding to clinicians’ subjective impressions for image features on ultrasonographic images. Our database consisted of 363 breast ultrasonographic images obtained from 363 patients. It included 150 malignant (103 invasive and 47 noninvasive carcinomas) and 213 benign masses (87 cysts and 126 fibroadenomas). We divided our database into 65 images (28 malignant and 37 benign masses) for training set and 298 images (122 malignant and 176 benign masses) for test set. An observer study was first conducted to obtain clinicians’ subjective impression for nine image features on mass. In the proposed method, location and area of the mass were determined by an experienced clinician. We defined some feature extraction methods for each of nine image features. For each image feature, we selected the feature extraction method with the highest correlation coefficient between the objective features and the average clinicians’ subjective impressions. We employed multiple discriminant analysis with the nine objective features for determining histological classification of mass. The classification accuracies of the proposed method were 88.4 % (76/86) for invasive carcinomas, 80.6 % (29/36) for noninvasive carcinomas, 86.0 % (92/107) for fibroadenomas, and 84.1 % (58/69) for cysts, respectively. The proposed method would be useful in the differential diagnosis of breast masses on ultrasonographic images as diagnosis aid.  相似文献   

15.
Magnetic resonance imaging (MRI) is playing an important role in the classification of breast tumors. MRI can be used to obtain multiparametric (mp) information, such as structural, hemodynamic, and physiological information. Quantitative analysis of mp-MRI data has shown potential in improving the accuracy of breast tumor classification. In general, a large set of quantitative and texture features can be generated depending upon the type of methodology used. A suitable combination of selected quantitative and texture features can further improve the accuracy of tumor classification. Machine learning (ML) classifiers based upon features derived from MRI data have shown potential in tumor classification. There is a need for further research studies on selecting an appropriate combination of features and evaluating the performance of different ML classifiers for accurate classification of breast tumors. The objective of the current study was to develop and optimize an ML framework based upon mp-MRI features for the characterization of breast tumors (malignant vs. benign and low- vs. high-grade). This study included the breast mp-MRI data of 60 female patients with histopathology results. A total of 128 features were extracted from the mp-MRI tumor data followed by features selection. Five ML classifiers were evaluated for tumor classification using 10-fold crossvalidation with 10 repetitions. The support vector machine (SVM) classifier based on optimum features selected using a wrapper method with an adaptive boosting (AdaBoost) technique provided the highest sensitivity (0.96 ± 0.03), specificity (0.92 ± 0.09), and accuracy (94% ± 2.91%) in the classification of malignant versus benign tumors. This method also provided the highest sensitivity (0.94 ± 0.07), specificity (0.80 ± 0.05), and accuracy (90% ± 5.48%) in the classification of low- versus high-grade tumors. These findings suggest that the SVM classifier outperformed other ML methods in the binary classification of breast tumors.  相似文献   

16.
Prompt and widely available diagnostics of breast cancer is crucial for the prognosis of patients. One of the diagnostic methods is the analysis of cytological material from the breast. This examination requires extensive knowledge and experience of the cytologist. Computer-aided diagnosis can speed up the diagnostic process and allow for large-scale screening. One of the largest challenges in the automatic analysis of cytological images is the segmentation of nuclei. In this study, four different clustering algorithms are tested and compared in the task of fast nuclei segmentation. K-means, fuzzy C-means, competitive learning neural networks and Gaussian mixture models were incorporated for clustering in the color space along with adaptive thresholding in grayscale. These methods were applied in a medical decision support system for breast cancer diagnosis, where the cases were classified as either benign or malignant. In the segmented nuclei, 42 morphological, topological and texture features were extracted. Then, these features were used in a classification procedure with three different classifiers. The system was tested for classification accuracy by means of microscopic images of fine needle breast biopsies. In cooperation with the Regional Hospital in Zielona Góra, 500 real case medical images from 50 patients were collected. The acquired classification accuracy was approximately 96–100%, which is very promising and shows that the presented method ensures accurate and objective data acquisition that could be used to facilitate breast cancer diagnosis.  相似文献   

17.
为更加准确地从动态心电中提取异常心拍,设计一种融合卷积神经网络(CNN)和多层双边长短时记忆网络(BiLSTM)的心律失常心拍分类模型。心电信号首先被分割成0.75 s和4 s两种不同尺度大小的心拍信号,然后利用11层CNN网络和3层BiLSTM网络分别对小/大尺度心拍信号进行特征提取与合并,并使用3层全连接网络对合并特征进行降维,最后利用softmax函数实现分类。针对MIT心律失常数据库异常心拍类型分布不均衡的问题,采用添加随机运动噪声和基线漂移噪声的样本扩展方法,降低模型的过拟合。采用基于患者的5折交叉检验进行模型验证。MIT心律失常数据库116 000个心拍的分类结果表明:所建立的模型针对4类心拍(正常、房性早搏、室性早搏、未分类)的识别准确率为90.42%,比单独使用CNN(76.45%)和BiLSTM(83.28%)的模型分别提高13.97%和7.14%。所提出的融合CNN和BiLSTM的心律失常心拍分类模型,相比单一基于CNN模型或者BiLSTM模型的机器学习算法,有更好的异常心拍分类准确率。  相似文献   

18.
Lung cancer is the major cause of death among patients with cancer worldwide. This work is intended to develop a methodology for the diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI). The proposed methodology uses image processing and pattern recognition techniques. To differentiate the patterns of malignant and benign forms, we used a Minkowski functional, distance measures, representation of the vector of points measures, triangulation measures, and Feret diameters. Finally, we applied a genetic algorithm to select the best model and a support vector machine for classification. In the test stage, we applied the proposed methodology to 1405 (394 malignant and 1011 benign) nodules from the LIDC–IDRI database. The proposed methodology shows promising results for diagnosis of malignant and benign forms, achieving accuracy of 93.19 %, sensitivity of 92.75 %, and specificity of 93.33 %. The results are promising and demonstrate a good rate of correct detections using the shape features. Because early detection allows faster therapeutic intervention, and thus a more favorable prognosis for the patient, herein we propose a methodology that contributes to the area.  相似文献   

19.
To evaluate the relationship between the c-kit proto-oncogene product and malignant transformation of human breast tissue, we examined the immunohistochemical expression of the c-kit proto-oncogene product in both malignant and non-malignant breast tissues. The immunohistochemical expression of the c-kit proto-oncogene product in 40 primary breast cancer tissues (22 axillary lymph nodes negative, 18 lymph nodes positive), in 18 corresponding axillary lymph nodes, and in 10 distant metastastic tissues were studied using an anti-c-kit proto-oncogene product antibody in comparison with 20 normal and 20 benign breast tissues. The mean values of immunoreactive score (IRS) were compared. The IRS of the c-kit proto- oncogene product in normal mammary epithelia was 5.90±1.37 (mean ± s.d.). In benign tissues, the c-kit proto-oncogene product was detected heterogeneously with a reduced IRS (4.05±1.82). In primary breast cancer tissues, the expression of the c-kit proto-oncogene product was often deleted and the average IRS (0.90±1.73) was significantly reduced compared to those of the normal breast tissues or benign breast disease tissues, but no significant difference was shown between the breast cancer groups. The c-kit proto-oncogene product may correlate with growth control or the differentiation of normal breast epithelium. This result suggests that the loss of expression of this protein might correlate with malignant breast cancer progression, but it is most likely involved at an early stage of human breast cancer development. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Female breast cancer is the major cause of cancer-related deaths in western countries. Efforts in computer vision have been made in order to help improving the diagnostic accuracy by radiologists. In this paper, we present a methodology that uses Moran's index and Geary's coefficient measures in breast tissues extracted from mammogram images. These measures are used as input features for a support vector machine classifier with the purpose of distinguishing tissues between normal and abnormal cases as well as classifying them into benign and malignant cancerous cases. The use of both proposed techniques showed to be very promising, since we obtained an accuracy of 96.04% and Az ROC of 0.946 with Geary's coefficient and an accuracy of 99.39% and Az ROC of 1 with Moran's index to discriminate tissues in mammograms as normal or abnormal. We also obtained accuracy of 88.31% and Az ROC of 0.804 with Geary's coefficient and accuracy of 87.80% and Az ROC of 0.89 with Moran's index to discriminate tissues in mammograms as benign and malignant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号