首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fenton BM  Paoni SF  Ding I 《Cancer research》2004,64(16):5712-5719
Although clinical trials of antiangiogenic strategies have been disappointing when administered as single agents, such approaches can play an important role in cancer treatment when combined with conventional therapies. Previous studies have shown that DC101, an antiangiogenic monoclonal antibody against vascular endothelial growth factor receptor-2, can produce significant growth inhibition in spontaneous and transplanted tumors but can also induce substantial hypoxia. Because DC101 appears to potentiate radiotherapy in some tumors, the present studies were undertaken to characterize pathophysiological changes following combined therapy and to determine whether radioresponse is enhanced despite the induction of hypoxia. MCa-4 and MCa-35 mammary carcinomas were treated with: (a) DC101; (b) 5 x 6 Gy radiation fractions; or (c) the combination. Image analysis of frozen tumor sections was used to quantitate: (a) hypoxia; (b) spacing of total and perfused blood vessels; and (c) endothelial and tumor cell apoptosis. For MCa-4, combination treatment schedules produced significant and prolonged delays in tumor growth, whereas single-modality treatments had minor effects. For MCa-35, radiation or the combination led to equivalent growth inhibition. In all tumors, hypoxia increased markedly after either radiation or DC101 alone. Although combination therapy produced no immediate pathophysiological changes, hypoxia ultimately increased after cessation of therapy. Preferential increases in endothelial apoptosis following combination treatment suggest that in addition to blocking tumor angiogenesis, DC101 enhances radiotherapy by specifically sensitizing endothelial cells, leading to degeneration of newly formed blood vessels.  相似文献   

2.
PURPOSE: Recent results in the literature have demonstrated that the antiangiogenic agent endostatin can enhance antitumor effects when administered before or during radiotherapy. To better understand the underlying pathophysiologic basis for this radiosensitization, the current study investigated whether short-term endostatin administration is linked to alterations in tumor vascular perfusion and oxygen delivery. METHODS AND MATERIALS: Three daily doses of recombinant endostatin (20 mg/kg) were administered to two murine mammary carcinomas, the highly vascularized MCa-35 and the less vascularized MCa-4. Image analysis techniques were used to quantify (1) total and perfused vascular spacing, and (2) changes in tumor hypoxia as a function of distance from the nearest blood vessel. RESULTS: In MCa-35 tumors, endostatin had no effect on vessel spacing, tumor hypoxia, or tumor growth. In MCa-4 tumors, total and perfused vessel spacings were also unchanged, but tumor growth was inhibited, and tumor hypoxia significantly decreased. These tumors demonstrated an increased vascular functionality suggestive of an increase in the number of intermittently perfused vessels, without corresponding alterations in tumor oxygen consumption rate. CONCLUSIONS: Poorly vascularized, hypoxic mammary carcinomas were much more responsive to short-term endostatin treatment than well-vascularized, more homogeneously oxygenated tumors. Oxygen levels in the responsive tumors were transiently improved after treatment, which could have substantial implications with respect to the therapeutic effectiveness of combining antiangiogenic agents with conventional therapies.  相似文献   

3.
Clinical trials utilizing strategies to manipulate tumor oxygenation, blood flow and angiogenesis are under way, although limited quantitative information exists regarding basic tumor pathophysiology. The current study utilized murine KHT fibrosarcomas, spontaneous mammary carcinomas and first-generation spontaneous transplants to examine heterogeneity in vascular structure and function, to relate these changes to the distribution of tumor hypoxia and to determine whether fundamental relationships among the different pathophysiological parameters exist. Three methods were included: (i) immunohistochemical staining of anatomical and perfused blood vessels, (ii) cryospectrophotometric measurement of intravascular oxyhemoglobin saturations and (iii) fluorescent detection of the EF5 hypoxic marker. While a distinct pattern of decreasing oxygenation with increasing distance from the tumor surface was observed for KHT tumors, striking intertumor variability was found in both spontaneous and first-generation transplants, with a reduced dependence on tumor volume. EF5 hypoxic marker uptake was also much more heterogeneous among individual spontaneous and first-generation tumors compared to KHT. Although mammary carcinomas demonstrated fewer anatomical blood vessels than fibrosarcomas, the proportion of perfused vessels was substantially reduced in KHT tumors, especially at larger tumor volumes. Vascular morphology, tissue histological appearance and pathophysiological parameters differed substantially between KHT tumors and both spontaneous and first-generation tumors. Such differences in vascular structure and function are also likely to correlate with altered response to therapies targeted to the vascular system. Finally, spontaneous differentiation status, tumor morphology, vascular configuration and function were well preserved in first-generation transplanted tumors, suggesting a close relationship between vascular development and function in early-generation transplants and spontaneous tumor models.  相似文献   

4.
PURPOSE: To examine the effects of hydralazine on vascular perfusion and hypoxia in spontaneous vs. first generation and long-term transplanted murine tumor models. METHODS AND MATERIALS: Total anatomic blood vessels were quantified using image analysis of CD31 stained frozen sections, perfused vessels by i.v. injection of fluorescent DiOC(7), and tumor hypoxia was measured using the EF5 hypoxia marker. KHT sarcomas, spontaneous mammary carcinomas, and first generation transplants of the spontaneous tumors were evaluated before and after i.p. administration of 5 mg/kg hydralazine. RESULTS: Although anatomic and perfused vessel spacings were similar among untreated tumors, response to hydralazine varied widely among the three tumor models. In KHT tumors, perfused vessel numbers decreased significantly at 30 min post-hydralazine, then recovered somewhat by 60 min. First-generation transplants showed a less substantial decrease in perfused vessels following hydralazine, which tapered off slightly by 60 min. Finally, spontaneous tumors had only a modest decrease in perfused vessel numbers, with complete recovery at 60 min. Although response of individual tumors varied widely, overall hypoxic marker uptake was significantly increased in both KHT and first generation tumors, and slightly reduced in the spontaneous tumors. CONCLUSION: Response to hydralazine varies substantially between transplanted and spontaneous tumor models. Results suggest that increased tumor pressure may be a critical factor in tumor response to hydralazine, possibly explaining tumor volume dependent variations.  相似文献   

5.
In this study the effect of suramin on tumor growth, vascularity and oxygenation of a human glioma xenografted in the nude mouse was examined. Vascular parameters and oxygenation status of the xenografts were determined immunohistochemically in frozen sections of the tumors, using the hypoxia marker pimonidazole-hydrochloride to detect hypoxic areas. Tumor vessels in these sections were stained by an endothelial cell marker and perfusion of vessels was visualized by administration of the perfusion marker Hoechst 333342 before harvesting the tumors. The vascular parameters were quantified with an image analysis system. The results show that tumor growth was reduced considerably after suramin treatment. This growth suppression was accompanied by marked changes in vascular architecture. Although the total vascular area and perfused fraction of tumor vessels remained unchanged after suramin treatment, vascular density increased, indicating that more but smaller vessel structures had developed during therapy. These vessel structures were also more homogeneously spread over the tumor area. Control tumors showed extensive areas of hypoxia while in treated tumors hypoxic areas had mostly disappeared. This effect was probably due to the higher density of homogeneously distributed perfused vessel structures in the treated tumors, contributing to an increased oxygenation of the tumor. These observations suggest that suramin therapy can result in marked changes not only in tumor vascularity but also in tumor oxygenation status which may have important consequences for sensitivity of these tumors to other therapies such as radiation treatment.  相似文献   

6.
A variety of strategies have been proposed to control tumor growth and metastasis by inhibiting tumor angiogenesis. To optimally combine such antiangiogenic approaches with conventional therapy, improved methods are needed to characterize the underlying pathophysiologic changes. The objective of the current work was to demonstrate the utility of a combination of recently developed immunohistochemical and image analysis techniques in quantitating changes in tumor vasculature and hypoxia. Murine MCa-35 mammary carcinomas were frozen after administration of two COX-2 inhibitors: meloxicam and celecoxib (Celebrex). Total blood vessels were visualized using anti-CD31 staining, perfused vessels by intravenous injection of DiOC7, and tumor hypoxia by EF5 uptake. Although both agents produced similar reductions in tumor volume compared with untreated tumors, varied effects on tumor vasculature and hypoxia were noted. Meloxicam reduced total vessel numbers significantly, whereas celecoxib had no effect. Both drugs substantially increased perfused vessel densities. Although mean hypoxic marker uptake was unchanged from matched controls, intratumor EF5 heterogeneities were significantly different between drugs. The results suggest that COX-2 inhibitors can have varying effects on tumor pathophysiology. Successful use of these drugs to enhance radiation response will likely require optimization of drug choice, dose schedule, and direct physiologic monitoring.  相似文献   

7.
Because antiangiogenic therapies inhibit the growth of new tumor-associated blood vessels, as well as prune newly formed vasculature, they would be expected to reduce the supply of oxygen and thus increase tumor hypoxia. However, it is not clear if antiangiogenic treatments lead only to consistent and sustained increases in hypoxia, or transient decreases in tumor hypoxia along with periods of increased hypoxia. We undertook a detailed analysis of an orthotopically transplanted human breast carcinoma (MDA-MB-231) over a 3-week treatment period using DC101, an anti-vascular endothelial growth factor receptor 2 antibody. We observed consistent reductions in microvascular density, blood flow (measured by high-frequency micro-ultrasound), and perfusion. These effects resulted in an increase in the hypoxic tumor fraction, measured with an exogenous marker, pimonidazole, concurrent with an elevation in hypoxia-inducible factor-1alpha expression, an endogenous marker. The increase in tumor hypoxia was evident within 5 days and remained so throughout the entire course of treatment. Vascular perfusion and flow were impaired at days 2, 5, 7, 8, 14, and 21 after the first injection, but not at 4 hours. A modest increase in the vessel maturation index was detected after the 3-week treatment period, but this was not accompanied by an improvement in vascular function. These results suggest that sustained hypoxia and impairment of vascular function can be two consistent consequences of antiangiogenic drug treatment. The implications of the results are discussed, particularly with respect to how they relate to different theories for the counterintuitive chemosensitizing effects of antiangiogenic drugs, even when hypoxia is increased.  相似文献   

8.
A number of laboratories are utilising both hypoxia and perfusion markers to spatially quantify tumour oxygenation and vascular distributions, and scientists are increasingly turning to automated image analysis methods to quantify such interrelationships. In these studies, the presence of regions of necrosis in the immunohistochemical sections remains a potentially significant source of error. In the present work, frozen MCa-4 mammary tumour sections were used to obtain a series of corresponding image montages. Total vessels were identified using CD31 staining, perfused vessels by DiOC(7) staining, hypoxia by EF5/Cy3 uptake, and necrosis by haematoxylin and eosin staining. Our goal was to utilise image analysis techniques to spatially quantitate hypoxic marker binding as a function of distance from the nearest blood vessel. Several refinements to previous imaging methods are described: (1) hypoxia marker images are quantified in terms of their intensity levels, thus providing an analysis of the gradients in hypoxia with increasing distances from blood vessels, (2) zonal imaging masks are derived, which permit spatial sampling of images at precisely defined distances from blood vessels, as well as the omission of necrotic artifacts, (3) thresholding techniques are applied to omit holes in the tissue sections, and (4) distance mapping is utilised to define vascular spacing.  相似文献   

9.
Preclinical studies typically use human tumor xenografts or murine tumor isografts. Tumor growth may be accelerated by in vivo passage, thus making these tumors more sensitive to some therapies than the original tumors. In the present study, by comparing the effects of DC101, an antimurine vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody, on spontaneous autochthonous tumors and their early generation transplants, we show that this growth acceleration is diminished by DC101 treatment. Spontaneous autochthonous tumors in aged C3H mice consisted of s.c. sarcomas and adenocarcinomas, and their growth rate was accelerated by in vivo passages. Anti-VEGFR2 treatment decreased vessel density, increased apoptosis, and reduced tumor growth in large (500 mm(3)) spontaneous autochthonous tumors. Anti-VEGFR2 treatment significantly delayed tumor growth and extended animal survival. Tumor growth acceleration by in vivo passage was diminished by DC101 treatment. To our knowledge, this is the first evaluation of antiangiogenic therapy in a spontaneous autochthonous tumor model, which may more closely resemble human tumors. Additionally, this is the first study to compare treatment response between the parental tumor and its isografts. Although passaged tumors behave differently, it is encouraging that the tumor growth rates under DC101 treatment are comparable among different passage generations.  相似文献   

10.
Fenton BM  Paoni SF 《Cancer research》2007,67(20):9921-9928
Although antiangiogenic strategies have proven highly promising in preclinical studies and some recent clinical trials, generally only combinations with cytotoxic therapies have shown clinical effectiveness. An ongoing question has been whether conventional therapies are enhanced or compromised by antiangiogenic agents. The present studies were designed to determine the pathophysiologic consequences of both single and combined treatments using fractionated radiotherapy plus AG-013736, a receptor tyrosine kinase inhibitor that preferentially inhibits vascular endothelial growth factor receptors. DU145 human prostate xenograft tumors were treated with (a) vehicle alone, (b) AG-013736, (c) 5x2 Gy/wk radiotherapy fractions, or (d) the combination. Automated image processing of immunohistochemical images was used to determine total and perfused blood vessel spacing, overall hypoxia, pericyte/collagen coverage, proliferation, and apoptosis. Combination therapy produced an increased tumor response compared with either monotherapy alone. Vascular density progressively declined in concert with slightly increased alpha-smooth muscle actin-positive pericyte coverage and increased overall tumor hypoxia (compared with controls). Although functional vessel endothelial apoptosis was selectively increased, reductions in total and perfused vessels were generally proportionate, suggesting that functional vasculature was not specifically targeted by combination therapy. These results argue against either an AG-013736- or a combination treatment-induced functional normalization of the tumor vasculature. Vascular ablation was mirrored by the increased appearance of dissociated pericytes and empty type IV collagen sleeves. Despite the progressive decrease in tumor oxygenation over 3 weeks of treatment, combination therapy remained effective and tumor progression was minimal.  相似文献   

11.
Endostatin, a fragment of the COOH-terminal domain of mouse collagen XVIII is a recently demonstrated endogenous inhibitor of tumor angiogenesis and endothelial cell growth. Antiangiogenic therapy with endostatin in animals requires multiple and prolonged administration of the protein. Gene therapy could provide an alternative approach to continuous local delivery of this antiangiogenic factor in vivo. Established MCa-4 murine mammary carcinomas, grown in immunodeficient mice, were treated with intratumoral injection of endostatin plasmid at 7-day intervals. At the time of sacrifice, 14 days after the first injection, endostatin-treated tumor weights were 51% of controls (P < 0.01). Tumor growth inhibition was accompanied by a marked reduction in total vascular density. Specifically, computerized image analysis showed a 18-21% increase in the median distances between tumor cells and both the nearest anatomical (CD31-stained) vessel [48.1 +/- 3.8 versus 38.3 +/- 1.6 microm (P < 0.05)] and the nearest tumor-specific (CD105-stained) vessel [48.5 +/- 1.5 versus 39.8 +/- 1.5 microm (P < 0.01)]. An increased apoptotic index of tumor cells in endostatin-treated tumors [3.2 +/- 0.5% versus 1.9 +/- 0.3% (P < 0.05)] was observed in conjunction with a significant decrease in tumor perfused vessels (DiOC7 staining), and an increase in tumor cell hypoxia (EF5 staining). Hypoxia resulting from endostatin therapy most likely caused a compensatory increase of in situ vascular endothelial growth factor (VEGF) and VEGF receptor mRNA expression. Increased immunoreactivity of endostatin staining in endostatin-treated tumors was also associated with an increased thrombospondin-1 staining [1.12 +/- 0.16 versus 2.44 +/- 0.35]. Our data suggest that intratumoral delivery of the endostatin gene efficiently suppresses murine mammary carcinoma growth and support the potential utility of the endostatin gene for cancer therapy.  相似文献   

12.
The selective cyclooxygenase (COX)-2 inhibitor, celecoxib, alone and in combination with radiation was investigated in vitro and in vivo. Murine mammary tumor line (MCa-35) and human lung carcinoma line (A549) have high and low basal levels of COX-2 protein, respectively. Treatment of both tumor cells with celecoxib alone resulted in a dose- and time-dependent reduction of cell number (clonogenic cell death) and tumor cell growth rate in vitro; however, inhibition of tumor cell growth by celecoxib was not correlated with the reduction of COX-2 protein in tumor cells. Although both tumor cell types had similar DNA damage after celecoxib treatment, significant induction of tumor cell apoptosis was only observed in MCa-35. Celecoxib-mediated radiation sensitization also occurred in MCa-35 cells determined by clonogenic assay, in part due to a G2/M arrest at 8 to 24 hours after treatment. The tumor growth inhibitory effects of celecoxib were also studied in vivo. It was found that celecoxib inhibited both tumor growth after intragastric administration of celecoxib (5 daily doses of 50 mg/kg). Combined with a single 30-Gy dose of radiation, celecoxib resulted in additive effects on A549 tumors. Celecoxib-treated A549 tumors had marginal reduction of total and perfused blood vessels compared with untreated controls. Reduction of tumor angiogenic cytokine and growth factor mRNA was associated with decreased perfused vessels. Finally, reduction of vascular endothelial growth factor protein after celecoxib was also observed in both tumor lines by Western blot. Our results indicate that the selective inhibition of COX-2 combined with radiation has potential application in radiotherapy, and celecoxib-mediated antitumor effects may act through different mechanisms including direct inhibition of tumor cell proliferation, alteration of tumor cell cycle, and antiangiogenesis.  相似文献   

13.
Structural and functional abnormalities in tumor blood vessels impact the delivery of oxygen and nutrients to solid tumors, resulting in chronic and cycling hypoxia. Although chronically hypoxic regions exhibit treatment resistance, more recently it has been shown that cycling hypoxic regions acquire prosurvival pathways. Angiogenesis inhibitors have been shown to transiently normalize the tumor vasculatures and enhance tumor response to treatments. However, the effect of antiangiogenic therapy on cycling tumor hypoxia remains unknown. Using electron paramagnetic resonance imaging and MRI in tumor-bearing mice, we have examined the vascular renormalization process by longitudinally mapping tumor partial pressure of oxygen (pO(2)) and microvessel density during treatments with a multi-tyrosine kinase inhibitor sunitinib. Transient improvement in tumor oxygenation was visualized by electron paramagnetic resonance imaging 2 to 4 days following antiangiogenic treatments, accompanied by a 45% decrease in microvessel density. Radiation treatment during this time period of improved oxygenation by antiangiogenic therapy resulted in a synergistic delay in tumor growth. In addition, dynamic oxygen imaging obtained every 3 minutes was conducted to distinguish tumor regions with chronic and cycling hypoxia. Sunitinib treatment suppressed the extent of temporal fluctuations in tumor pO(2) during the vascular normalization window, resulting in the decrease of cycling tumor hypoxia. Overall, the findings suggest that longitudinal and noninvasive monitoring of tumor pO(2) makes it possible to identify a window of vascular renormalization to maximize the effects of combination therapy with antiangiogenic drugs.  相似文献   

14.
The effects of antiangiogenic therapy on tumors relapsing after irradiation are not known. To this end, we irradiated human tumors growing s.c. in nude mice with a single dose of 20 or 30 Gy. Compared with primary (treatment-naive) xenografts, the growth rate of recurrent tumors was 1.6-fold slower, which is consistent with the known "tumor bed effect." For similar size tumors, recurrences had fewer functional vessels, a reduced vessel coverage by perivascular cells, and were more necrotic. Placenta growth factor concentration was significantly lower in relapses, whereas vascular endothelial growth factor (VEGF) levels were similar between primary and recurrent tumors. On the other hand, fibrillar collagen deposition was significantly increased in recurrent tumors. This radiation-induced fibrosis was partially responsible for the slower growth of recurrences; the i.t. injection of collagenase increased the growth rate of tumor relapses without affecting primary tumor growth. The mouse-specific VEGF receptor 2-blocking antibody DC101 induced a 2.2-fold longer growth delay in recurrent tumors compared with treatment-naive tumors. DC101 significantly decreased the interstitial fluid pressure and did not change the functional vessel density and perivascular cell coverage in both tumor variants. Interestingly, DC101 induced a rapid (2 days after treatment initiation) and significant decrease in tumor cell proliferation in recurrent but not in primary tumors. Thus, our results show that the stromal compartment and the response to antiangionenic therapy of primary and in-field recurrent tumors are significantly different. Our findings suggest that antiangiogenic agents could be effective in the treatment of patients with relapses after radiotherapy.  相似文献   

15.
The purpose of our study was the investigation of early changes in tumor vascularization during antiangiogenic therapy with the vascular endothelial growth factor (VEGF) receptor 2 antibody (DC101) using dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Subcutaneous heterotransplants of human skin squamous cell carcinomas in nude mice were treated with DC101. Animals were examined before and repeatedly during 2 weeks of antiangiogenic treatment using Gd-DTPA-enhanced dynamic T1-weighted MRI. With a two-compartment model, dynamic data were parameterized in "amplitude" (increase of signal intensity relative to precontrast value) and k(ep) (exchange rate constant). Data obtained by MRI were validated by parallel examinations of histological sections immunostained for blood vessels (CD31). Already 2 days after the first DC101 application, a decrease of tumor vascularization was observed, which preceded a reduction of tumor volume. The difference between treated tumors and controls became prominent after 4 days, when amplitudes of treated tumors were decreased by 61% (P =.02). In line with change of microvessel density, the decrease in amplitudes was most pronounced in tumor centers. On day 7, the mean tumor volumes of treated (153 +/- 843 mm(3)) and control animals (596 +/- 384 mm(3)) were significantly different (P =.03). After 14 days, treated tumors showed further growth reduction (83 +/- 93 mm(3)), whereas untreated tumors (1208 +/- 822 mm(3)) continued to increase (P =.02). Our data underline the efficacy of DC101 as antiangiogenic treatment in human squamous cell carcinoma xenografts in nude mice and indicate DCE MRI as a valuable tool for early detection of treatment effects before changes in tumor volume become apparent.  相似文献   

16.
PURPOSE: To test whether a direct antiangiogenic peptide (anginex) and a vascular endothelial growth factor antibody (bevacizumab, Avastin) can transiently normalize vasculature within tumors to improve oxygen delivery, alleviate hypoxia, and increase the effect of radiation therapy. EXPERIMENTAL DESIGN: Tumor oxygenation levels, microvessel density and pericyte coverage were monitored in three different solid tumor models (xenograft human ovarian carcinoma MA148, murine melanoma B16F10, and murine breast carcinoma SCK) in mice. Multiple treatment schedules were tested in these models to assess the influence on the effect of radiation therapy. RESULTS: In all three tumor models, we found that tumor oxygenation levels, monitored daily in real time, were increased during the first 4 days of treatment with both anginex and bevacizumab. From treatment day 5 onward, tumor oxygenation in treated mice decreased significantly to below that in control mice. This "tumor oxygenation window" occurred in all three tumor models varying in origin and growth rate. Moreover, during the treatment period, tumor microvessel density decreased and pericyte coverage of vessels increased, supporting the idea of vessel normalization. We also found that the transient modulation of tumor physiology caused by either antiangiogenic therapy improved the effect of radiation treatment. Tumor growth delay was enhanced when single dose or fractionated radiotherapy was initiated within the tumor oxygenation window as compared with other treatment schedules. CONCLUSIONS: The results are of immediate translational importance because the clinical benefits of bevacizumab therapy might be increased by more precise treatment scheduling to ensure radiation is given during periods of peak radiosensitivity. The oxygen elevation in tumors by non-growth factor-mediated peptide anginex suggests that vessel normalization might be a general phenomenon of agents directed at disrupting the tumor vasculature by a variety of mechanisms.  相似文献   

17.
Increased levels of hypoxia and hypoxia‐inducible factor 1α (HIF‐1α) in human sarcomas correlate with tumor progression and radiation resistance. Prolonged antiangiogenic therapy of tumors not only delays tumor growth but may also increase hypoxia and HIF‐1α activity. In our recent clinical trial, treatment with the vascular endothelial growth factor A (VEGF‐A) antibody, bevacizumab, followed by a combination of bevacizumab and radiation led to near complete necrosis in nearly half of sarcomas. Gene Set Enrichment Analysis of microarrays from pretreatment biopsies found that the Gene Ontology category “Response to hypoxia” was upregulated in poor responders and that the hierarchical clustering based on 140 hypoxia‐responsive genes reliably separated poor responders from good responders. The most commonly used chemotherapeutic drug for sarcomas, doxorubicin (Dox), was recently found to block HIF‐1α binding to DNA at low metronomic doses. In four sarcoma cell lines, HIF‐1α shRNA or Dox at low concentrations blocked HIF‐1α induction of VEGF‐A by 84–97% and carbonic anhydrase 9 by 83–93%. HT1080 sarcoma xenografts had increased hypoxia and/or HIF‐1α activity with increasing tumor size and with anti‐VEGF receptor antibody (DC101) treatment. Combining DC101 with HIF‐1α shRNA or metronomic Dox had a synergistic effect in suppressing growth of HT1080 xenografts, at least in part via induction of tumor endothelial cell apoptosis. In conclusion, sarcomas respond to increased hypoxia by expressing HIF‐1α target genes that may promote resistance to antiangiogenic and other therapies. HIF‐1α inhibition blocks this evasive resistance and augments destruction of the tumor vasculature.  相似文献   

18.
In spite of aggressive therapy, children suffering from neuroblastoma have a poor prognosis. Therapeutic failure is most often observed in neuroblastomas with unfavorable features, including amplification/over-expression of the N-myc oncogene, rapid growth, effective angiogenesis and/or the tendency to metastasize. Here, we have used cultured human neuroblastoma cells with such features and we have examined whether antiangiogenic agents alone or in combination with tumor irradiation inhibit their angiogenesis and growth in vivo. We report that antiangiogenic agents (arginine deiminase, SU5416 and DC101) inhibit in vivo growth of neuroblastomas with unfavorable properties and that these effects are potentiated by simultaneous irradiation. Combination of either agent with irradiation leads to a reduction in the absolute number of tumor vessels and of perfused tumor vessels. Combination of arginine deiminase or DC101 with irradiation does not increase tumor hypoxia. Our data demonstrate for the first time that arginine deiminase suppresses the growth of unfavorable experimental neuroblastomas and that this effect is potentiated by irradiation. We suggest that antiangiogenesis alone or in combination with established therapeutic regimen may improve the outcome of unfavorable neuroblastomas in a clinical setting.  相似文献   

19.
PURPOSE: Given the complex tumor microenvironment, targeting multiple cellular components may be the most effective cancer treatment strategy. Therefore, we tested whether antiangiogenic and immune-based therapy might synergize by characterizing the activity of DC101, an antiangiogenic monoclonal antibody specific for vascular endothelial growth factor receptor-2 (VEGF-R2), alone and with HER-2/neu (neu)-targeted vaccination. EXPERIMENTAL DESIGN: Neu-expressing breast tumors were measured in treated nontolerant FVB mice and immune-tolerant neu transgenic (neu-N) mice. Neu-specific and tumor cell-specific immune responses were assessed by intracellular cytokine staining, ELISPOT, and CTL assays. RESULTS: DC101 decreased angiogenesis and increased tumor cell apoptosis. Although DC101 increased serum levels of the immunosuppressive cytokine VEGF, no evidence of systemic immune inhibition was detected. Moreover, DC101 did not impede the influx of tumor-infiltrating lymphocytes. In FVB mice, DC101 inhibited tumor growth in part through a T cell-dependent mechanism, resulting in both increased tumor-specific CD8(+) T cells and tumor regression. Combining DC101 with neu-specific vaccination accelerated tumor regression, augmenting the lytic activity of CD8(+) cytotoxic T cells. In tolerant neu-N mice, DC101 only delayed tumor growth without inducing frank tumor regression or antigen-specific T-cell activation. Notably, mitigating immune tolerance by inhibiting regulatory T cell activity with cyclophosphamide revealed DC101-mediated augmentation of antitumor responses in vaccinated neu-N mice. CONCLUSIONS: This is the first report of DC101-induced antitumor immune responses. It establishes the induction of tumor-specific T-cell responses as one consequence of VEGF-R2 targeting with DC101. These data support the development of multitargeted cancer therapy combining immune-based and antiangiogenic agents for clinical translation.  相似文献   

20.
We examined the ability of recombinant murine interleukin-12 (rmIL-12) to inhibit the vasculature and growth of mammary carcinomas arising in situ in mouse mammary tumor virus (MMTV)-infected female C3H/HeN mice. Although it is a potent antiangiogenic and antitumor agent in many transplanted murine tumor models, rmIL-12 failed to inhibit the vascularity, reduce the perfusion, or alter the growth of these autochthonous carcinomas. Factors intrinsic to these tumor cells were unlikely to be responsible for therapy failure. This is because primary cells derived from these carcinomas responded to IFN-gamma, and rmIL-12 was effective against transplanted tumors arising from Mm5MT cells, a line established from a MMTV-induced mammary carcinoma in C3H mice. Factors intrinsic to the mice that host the autochthonous mammary carcinomas were also not responsible for failure, because they sponsored rmIL-12 antiangiogenic and antitumor effects against transplanted K1735 murine melanoma tumors. Instead, the autochthonous nature of the mammary carcinomas and their possession of a high percentage of mature, pericyte-covered vessels that are resistant to therapeutic regression may be responsible. This is supported by the observation that transplanted Mm5MT tumors had a lower proportion of pericyte-covered vessels and responded to rmIL-12 therapy. These results point to significant differences between the vasculature of transplanted and autochthonous murine tumors and indicate that their susceptibility to antivascular therapy may differ substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号