首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article extends our previous quantitative analysis of the relationship between the dynamics of the primary structure of DNA and mutagenesis associated with single-strand lesions to an analysis of the production and processing of endogenous double-strand breaks (EDSBs) and to their implications for oncogenesis. We estimate that in normal human cells approximately 1% of single-strand lesions are converted to approximately 50 EDSBs per cell per cell cycle. This number is similar to that for EDSBs produced by 1.5-2.0 Gy of sparsely ionizing radiation. Although EDSBs are usually repaired with high fidelity, errors in their repair contribute significantly to the rate of cancer in humans. The doubling dose for induced DSBs is similar to doubling doses for mutation and for the induction of carcinomas by ionizing radiation. We conclude that rates of production of EDSBs and of ensuing spontaneous mitotic recombination events can account for a substantial fraction of the earliest oncogenic events in human carcinomas.  相似文献   

2.
Cellular DNA double-strand break-repair pathways have evolved to protect the integrity of the genome from a continual barrage of potentially detrimental insults. Inherited mutations in genes that control this process result in an inability to properly repair DNA damage, ultimately leading to developmental defects and also cancer predisposition. Here, we describe a patient with a previously undescribed syndrome, which we have termed RIDDLE syndrome (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties), whose cells lack an ability to recruit 53BP1 to sites of DNA double-strand breaks. As a consequence, cells derived from this patient exhibit a hypersensitivity to ionizing radiation, cell cycle checkpoint abnormalities, and impaired end-joining in the recombined switch regions. Sequencing of TP53BP1 and other genes known to regulate ionizing radiation-induced 53BP1 foci formation in this patient failed to detect any mutations. Therefore, these data indicate the existence of a DNA double-strand break-repair protein that functions upstream of 53BP1 and contributes to the normal development of the human immune system.  相似文献   

3.
DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSBs after physiologically relevant radiation doses is available. Many of the methods used to measure DSB repair inadvertently introduce this form of damage as part of the methodology, and hence are limited in their sensitivity. Here we present evidence that foci of gamma-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual DSBs. This finding allows the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods. Surprisingly, DSBs induced in cultures of nondividing primary human fibroblasts by very low radiation doses (approximately 1 mGy) remain unrepaired for many days, in strong contrast to efficient DSB repair that is observed at higher doses. However, the level of DSBs in irradiated cultures decreases to that of unirradiated cell cultures if the cells are allowed to proliferate after irradiation, and we present evidence that this effect may be caused by an elimination of the cells carrying unrepaired DSBs. The results presented are in contrast to current models of risk assessment that assume that cellular responses are equally efficient at low and high doses, and provide the opportunity to employ gamma-H2AX foci formation as a direct biomarker for human exposure to low quantities of ionizing radiation.  相似文献   

4.
p53-binding protein 1 (53BP1) participates in the cellular response to DNA double-stranded breaks where it associates with various DNA repair/cell cycle factors including the H2AX histone variant. Mice deficient for 53BP1 (53BP1(-/-)) are sensitive to ionizing radiation and immunodeficient because of impaired Ig heavy chain class switch recombination. Here we show that, as compared with p53(-/-) mice, 53BP1(-/-)/p53(-/-) animals more rapidly develop tumors, including T cell lymphomas and, at lower frequency, B lineage lymphomas, sarcomas, and teratomas. In addition, T cells from animals deficient for both 53BP1 and p53 (53BP1(-/-)/p53(-/-)) display elevated levels of genomic instability relative to T cells deficient for either 53BP1 or p53 alone. In contrast to p53(-/-) T cell lymphomas, which routinely display aneuploidy but not translocations, 53BP1(-/-)/p53(-/-) thymic lymphomas fall into two distinct cytogenetic categories, with many harboring clonal translocations (40%) and the remainder showing aneuploidy (60%). We propose that 53BP1, in the context of p53 deficiency, suppresses T cell lymphomagenesis through its roles in both cell-cycle checkpoints and double-stranded break repair.  相似文献   

5.
6.
Severe combined immunodeficient (SCID) mice display an increased sensitivity to ionizing radiation compared with the parental, C.B-17, strain due to a deficiency in DNA double-strand break repair. The catalytic subunit of DNA-dependent protein kinase (DNA-PKCS) has previously been identified as a strong candidate for the SCID gene. DNA-PK phosphorylates many proteins in vitro, including p53 and replication protein A (RPA), two proteins involved in the response of cells to DNA damage. To determine whether p53 and RPA are also substrates of DNA-PK in vivo following DNA damage, we compared the response of SCID and MO59J (human DNA-PKcs-deficient glioblastoma) cells with their respective wild-type parents following ionizing radiation. Our findings indicate that (i) p53 levels are increased in SCID cells following ionizing radiation, and (ii) RPA p34 is hyperphosphorylated in both SCID cells and MO59J cells following ionizing radiation. The hyperphosphorylation of RPA p34 in vivo is concordant with a decrease in the binding of RPA to single-stranded DNA in crude extracts derived from both C.B-17 and SCID cells. These results suggest that DNA-PK is not the only kinase capable of phosphorylating RPA. We conclude that the DNA damage response involving p53 and RPA is not associated with the defect in DNA repair in SCID cells and that the physiological substrate(s) for DNA-PK essential for DNA repair has not yet been identified.  相似文献   

7.
Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated gamma-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was found to depend linearly on the dose-length product, a radiodiagnostic unit that is proportional to both the local dose delivered and the length of the body exposed. Analysis of lymphocytes sampled up to 1 day postirradiation provided kinetics for the in vivo loss of gamma-H2AX foci that correlated with DSB repair. Interestingly, in contrast to results obtained in vitro, normal individuals repair DSBs to background levels. A patient who had previously shown severe side effects after radiotherapy displayed levels of gamma-H2AX foci at various sampling times postirradiation that were several times higher than those of normal individuals. Gamma-H2AX and pulsed-field gel electrophoresis analysis of fibroblasts obtained from this patient confirmed a substantial DSB repair defect. Additionally, these fibroblasts showed significant in vitro radiosensitivity. These data show that the in vivo induction and repair of DSBs can be assessed in individuals exposed to low radiation doses, adding a further dimension to DSB repair studies and providing the opportunity to identify repair-compromised individuals after diagnostic irradiation procedures.  相似文献   

8.
This paper assesses the capacity of ionizing radiation to extend the lifespans of experimental insect models based on the peer-reviewed literature. Ionizing radiation biphasically affects the lifespans of adult males and females for a broad range of insect models with high doses reducing lifespan whereas lower doses can enhance lifespan, typically in the 20–60 % range. The average adult insect lifespan can be increased when ionizing radiation exposure is administered during early developmental stages or during the adult stage. The effective dose inducing the average adult insect lifespan enhancement may vary considerably depending upon which life stage is exposed. Recent findings have identified specific genes affecting anti-oxidant defenses, DNA repair, apoptosis and heat shock proteins as well as several cell signaling pathways that mediate the longevity enhancing hormetic response.  相似文献   

9.
Recent observations show that the single-cell response of p53 to ionizing radiation (IR) is "digital" in that it is the number of oscillations rather than the amplitude of p53 that shows dependence on the radiation dose. We present a model of this phenomenon. In our model, double-strand break (DSB) sites induced by IR interact with a limiting pool of DNA repair proteins, forming DSB-protein complexes at DNA damage foci. The persisting complexes are sensed by ataxia telangiectasia mutated (ATM), a protein kinase that activates p53 once it is phosphorylated by DNA damage. The ATM-sensing module switches on or off the downstream p53 oscillator, consisting of a feedback loop formed by p53 and its negative regulator, Mdm2. In agreement with experiments, our simulations show that by assuming stochasticity in the initial number of DSBs and the DNA repair process, p53 and Mdm2 exhibit a coordinated oscillatory dynamics upon IR stimulation in single cells, with a stochastic number of oscillations whose mean increases with IR dose. The damped oscillations previously observed in cell populations can be explained as the aggregate behavior of single cells.  相似文献   

10.
Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.  相似文献   

11.
Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an “overstretching” transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic “peeling” off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo.  相似文献   

12.
Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 1011 Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.  相似文献   

13.
彭利君  方婷婷  蔡龙 《中国防痨杂志》2022,44(10):1091-1095
为实现“2035终止结核”的目标,开发新的检测方法迫在眉睫。结核分枝杆菌cfDNA(Mycobacterium tuberculosis cfDNA, MTB-cfDNA)可表明病原体的存在,是结核病(tuberculosis,TB)诊断和治疗监测有吸引力的生物标志物。易于获取的尿液和(或)血液中的MTB-cfDNA可实现对任何年龄组的肺结核和肺外结核的检测。在胸腔积液、腹腔积液和脑脊液等体液样本中检测MTB-cfDNA对TB的诊断性能高于GeneXpert MTB/RIF等基因组DNA检测。但cfDNA作为TB生物标志物的研究仍处于起步阶段,未来需要更大型、纳入患者类型更全面的临床研究来评估其在TB诊断中的效用。随着检测方法的进一步优化,cfDNA检测有可能改善TB诊断并成为“游戏规则的改变者”。  相似文献   

14.
Given its significant role in the maintenance of genomic stability, histone methylation has been postulated to regulate DNA repair. Histone methylation mediates localization of 53BP1 to a DNA double-strand break (DSB) during homologous recombination repair, but a role in DSB repair by nonhomologous end-joining (NHEJ) has not been defined. By screening for histone methylation after DSB induction by ionizing radiation we found that generation of dimethyl histone H3 lysine 36 (H3K36me2) was the major event. Using a novel human cell system that rapidly generates a single defined DSB in the vast majority of cells, we found that the DNA repair protein Metnase (also SETMAR), which has a SET histone methylase domain, localized to an induced DSB and directly mediated the formation of H3K36me2 near the induced DSB. This dimethylation of H3K36 improved the association of early DNA repair components, including NBS1 and Ku70, with the induced DSB, and enhanced DSB repair. In addition, expression of JHDM1a (an H3K36me2 demethylase) or histone H3 in which K36 was mutated to A36 or R36 to prevent H3K36me2 formation decreased the association of early NHEJ repair components with an induced DSB and decreased DSB repair. Thus, these experiments define a histone methylation event that enhances DNA DSB repair by NHEJ.  相似文献   

15.
Chromosomal DNA is considered a priori to be a target for the induction of numerical (whole chromosome) aneuploidy in mitotic cells. If true, DNA repair would be expected to contribute to genome stability. One type of repair that appears to play an important role in the response of many organisms to DNA-damaging agents involves recombination. Using the yeast Saccharomyces cerevisiae containing a pair of DNA divergent (homoeologous) chromosomes, we have been able to determine the importance of recombinational repair of DNA damage in the maintenance of chromosome number. Specifically, the induction of aneuploidy by ionizing radiation has been examined in diploids that had one chromosome III replaced by a divergent chromosome from Saccharomyces carlsbergensis. The chromosomes are functionally equivalent but lack precise DNA homology over one-half their length. The absence of homology, and thus the opportunity for recombinational repair (presumably of DNA double-strand breaks) in the divergent chromosomes, results in high levels (5-10%) of aneuploidy for chromosome III at doses of radiation resulting in almost no killing. For homologous chromosomes, the frequency of loss is 20-50 times lower.  相似文献   

16.
Purpose Benzoquinone-ansamycins were the first compounds characterized with the ability to inhibit the function of heat shock protein 90 and its related family members. We investigated the composite effect of ionizing radiation and of these novel substances on the survival of malignant cells.Methods PC-3M prostate carcinoma cells were treated in vitro with increasing radiation doses in the presence or absence of Hsp90-active and Hsp90-inactive benzoquinone-ansamycins. Cytotoxicity was determined by the crystal violet dissolution assay.Results Twenty-four hour treatment with increasing geldanamycin doses (10 nM–1 µM) reduced cellular survival by 1.5 logs for all drug dose levels. Concomitant irradiation with a single fraction of 3 Gy reduced cellular survival by 2 logs, independently of drug dose. The treatment with 100 nM geldanamycin for 24 h combined with ionizing radiation (1–5 Gy) during the first hour of drug exposure reduced cellular survival by 1.5–2 logs depending on radiation-energy dose level, while no changes in cell survival were detectable with equimolar geldampicin, a benzoquinone-ansamycin known not to inhibit Hsp90.Conclusions The inhibition of Hsp90 and the concomitant exposure to ionizing radiation decrease cellular survival of malignant cells. These data contribute to laying the foundation for the translational use of Hsp90 inhibitors in the multimodal therapy of cancer.  相似文献   

17.
18.
19.
To provide an overview of the radiation related cancer risk associated with multiple computed tomographic scans required for follow up in colorectal cancer patients.A literature search of the PubMed and Cochrane Library databases was carried out and limited to the last 10 years from December 2012.Inclusion criteria were studies where computed tomographic scans or radiation from other medical imaging modalities were used and the risks associated with ionizing radiation reported.Thirty-six studies were included for appraisal with no randomized controlled trials.Thirty-four of the thirty-six studies showed a positive association between medical imaging radiation and increased risk of cancer.The radiation dose absorbed and cancer risk was greater in children and young adults than in older patients.Most studies included in the review used a linear,nothreshold model to calculate cancer risks and this may not be applicable at low radiation doses.Many studies are retrospective and ensuring complete follow up on thousands of patients is difficult.There was a minor increased risk of cancer from ionizing radiation in medical imaging studies.The radiation risks of low dose exposure(<50 milli-Sieverts)are uncertain.A clinically justified scan in the context of colorectal cancer is likely to provide more benefits than harm but current guidelines for patient follow up will need to be revised to accommodate a more aggressive approach to treating metastatic disease.  相似文献   

20.
Summary DNA-protein complexes were generated in intact Chinese hamster ovary (CHO) cells by the use of ionizing radiation. The DNA-protein crosslinks, as measured by a filter-binding assay, occurred immediately following the irradiation, were produced in a dose-dependent manner and were reversible. The reversibility of the crosslinks in the intact cells was dependent upon general protein synthesis. Three proteins that were attached to DNA in unirradiated cells were analyzed according to the presence of DNA attached to the proteins before, during and after exposure to ionizing radiation. All three proteins contained more DNA reversibly attached to the proteins after exposure to 5 Gy ionizing radiation as compared to unirradiated cells. One of the proteins was increasingly attached to DNA using 2.5–50 Gy X-ray. These data suggest that the increased DNA-protein crosslinking observed with ionizing radiation may involve the increase in particular protein(s) crosslinked to DNA as well as an increase in the amount of DNA attached to specific proteins.Abbreviations PBS phosphate-buffered saline - CHO Chinese hamster ovary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号