首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30–60?µm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8?h following 2?h incubation in SGF and was found to retain 75% activity using the ARCHITECT® assay. Lysozyme was released completely in SIF in 10?h following 2?h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

2.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30-60 μm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8 h following 2 h incubation in SGF and was found to retain 75% activity using the ARCHITECT? assay. Lysozyme was released completely in SIF in 10 h following 2 h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

3.
《Journal of drug targeting》2013,21(10):831-841
Microencapsulation of a hydrophilic active (gentamicin sulphate (GS)) and a hydrophobic non-steroidal anti-inflammatory drug (ibuprofen) in alginate gel microparticles was accomplished by molecular diffusion of the drug species into microparticles produced by impinging aerosols of alginate solution and CaCl2 cross-linking solution. A mean particle size in the range of 30–50 µm was measured using laser light scattering and high drug loadings of around 35 and 29% weight/dry microparticle weight were obtained for GS and ibuprofen respectively. GS release was similar in simulated intestinal fluid (phosphate buffer saline (PBS), pH 7.4, 37°C) and simulated gastric fluid (SGF) (HCl, pH 1.2, 37°C) but was accelerated in PBS following incubation of microparticles in HCl. Ibuprofen release was restricted in SGF but occurred freely on transfer of microparticles into PBS with almost 100% efficiency. GS released in PBS over 7?h, following incubation of microparticles in HCl for 2?h was found to retain at least 80% activity against Staphylococcus epidermidis while Ibuprofen retained around 50% activity against Candida albicans. The impinging aerosols technique shows potential for producing alginate gel microparticles of utility for protection and controlled delivery of a range of therapeutic molecules.  相似文献   

4.
5.
Oral administration of dry vaccine formulations is acknowledged to offer major clinical and logistical benefits by eliminating the cold chain required for liquid preparations. A model antigen, bovine serum albumin (BSA) was encapsulated in alginate microspheres using aerosolisation. Hydrated microspheres 25 to 65 μm in size with protein loading of 3.3 % w/w were obtained. Environmental scanning electron microscopy indicated a stabilizing effect of encapsulated protein on alginate hydrogels revealed by an increase in dehydration resistance. Freeze drying of alginate microspheres without use of a cryoprotectant resulted in fragmentation and subsequent rapid loss of the majority of the protein load in simulated intestinal fluid in 2 h, whereas intact microspheres were observed following freeze-drying of BSA-loaded microspheres in the presence of maltodextrin. BSA release from freeze-dried preparations was limited to less than 7 % in simulated gastric fluid over 2 h, while 90 % of the protein load was gradually released in simulated intestinal fluid over 10 h. SDS-PAGE analysis indicated that released BSA largely preserved its molecular weight. These findings demonstrate the potential for manufacturing freeze-dried oral vaccines using alginate microspheres.  相似文献   

6.
Alginate microspheres loaded with dexamethasone were prepared by the droplet generator technique. Important parameters affecting drug release, including initial drug content, the type of polyelectrolyte coating, and a combination of different ratios of coated and uncoated microspheres were investigated to achieve in vitro dexamethasone delivery with approximately zero order release kinetics, releasing up to 100% of entrapped drug within 1 month, wherein dexamethasone released at a steady rate of 4.83 μg/day after an initial burst release period. These findings imply that these polyelectrolyte-coated alginate microspheres show promise as release systems to improve biocompatibility and prolong lifetime of implantable glucose sensors.  相似文献   

7.
A novel method for analyzing electromechanical properties (e.g., size, electrostatic charge, polarity) of therapeutic aerosols produced by four different commercially available pressurized metered dose inhalers (pMDIs), including Albuterol?, Atrovent?, Qvar?, and Ventolin?, is presented. Respiratory drug particles aerosolized from pulmonary drug delivery devices may not only have different aerodynamic particle size distributions but also electrostatic charge distributions. The interactive effects of these two electromechanical properties on regional deposition of inhaled aerosols in the lung airway have been acknowledged by the investigators of aerosol medicine research, which requires precise quantification for analytical perspective. Experimental studies using a multi-stage electrical low pressure impactor (ELPI) reported the net charge (q(+) or q(-)) and aerodynamic diameter (d(a)) of the pMDIs. However, the ELPI has a limitation of providing the net charge of all particles deposited on its impaction stage, not for each particle in real time. To resolve this issue, this study reports the application of an electronic single-particle aerodynamic relaxation time (ESPART) analyzer, which operates on the principle of laser Doppler velocimetry to measure simultaneously d(a), q(+), and q(-) (charge magnitude and polarity) on a single particle basis and in real time. Aerosol particles from all drug delivery devices were found to not only have different size and charge distributions but they also varied in their polarities. The drug aerosols cloud emitted by Albuterol? and Ventolin? were determined to be electropositive, while Atrovent? and Qvar? were electronegative. Count and mass distributions were reproducible for all pMDIs. In conclusion, the ESPART provided more detailed charge information about the pMDI aerosol particles.  相似文献   

8.
Introduction: Alginate microspheres are versatile tools for the delivery of a wide range of therapeutic biomacromolecules. This naturally occurring biopolymer has many unique properties making it an ideal candidate for tailoring with different composites of polymers leading to the formation of strong complexes for a broad range of applications.

Areas covered: This article overviews various types of composite alginate microspheres, methods of preparation, new technologies available, physico-chemical characteristics, controlled release profiles, applications and the future directions of composite alginate microsphere delivery system for biomacromolecules.

Expert opinion: Composite alginate microsphere systems are the ideal carriers for controlled delivery applications because of their ability to encapsulate a myriad of therapeutic drugs, proteins, enzymes, DNA, antisense oligonucleotides, vaccines, growth factors and chemokines as well as the ease of processing, mechanical properties, biocompatibility, high bioavailability, controlled release rates, stability, suitability for different administration modes, targeted/localized delivery of different agents and large-scale production with cost-effectiveness. This article presents updated information of applying microalginate-based technologies and tools in the biomedical field which will benefit research scientists and clinical physicians or biopharmaceutical industries keen in the development of application-based new therapeutic and diagnostic strategies for various diseases. Furthermore, this technology will play more important roles in biosensors, vaccination, tissue engineering, cancer chemotherapeutics and stem cell research.  相似文献   

9.
Combining the Rayleigh-type jet break-up and two new plate nozzles, the alginate microsphere was produced. Spray generators made of syringe needle and laser-drilling nozzle plate and synthetic red stone nozzle plate were fabricated and contrasted. The above two plate nozzles provided lower liquid resistance and yield well. Furthermore, the more uniform microsphere was produced within a wider range of frequency by plate nozzles. Experiments using multiple-nozzle synthetic red stone plate was easy to feasible.  相似文献   

10.
In the present study, spherical microspheres able to prolong the release of INH were produced by a modified emulsification method, using sodium alginate as the hydrophilic carrier. The shape and surface characteristics were determined by scanning electron microscopy using gold sputter technique. Particle sizes of both placebo and drug-loaded formulations were measured by SEM and the particle size distribution was determined by an optical microscope. The physical state of the drug in the formulation was determined by differential scanning calorimetry (DSC). The release profiles of INH from microspheres were examined in simulated gastric fluid (SGF pH 1.2) and simulated intestinal fluid (SIF pH 7.4). Gamma-scintigraphic studies were carried out to determine the location of microspheres on oral administration and the extent of transit through the gastrointestinal tract (GIT). The microspheres had a smoother surface and were found to be discreet and spherical in shape. The particles were heterogeneous with the maximum particles of an average size of 3.719mum. Results indicated that the mean particle size of the microspheres increased with an increase in the concentration of polymer and the cross-linker as well as the cross-linking time. The entrapment efficiency was found to be in the range of 40-91%. Concentration of the cross-linker up to 7.5% caused increase in the entrapment efficiency and the extent of drug release. Optimized isoniazid-alginate microspheres were found to possess good bioadhesion (72.25+/-1.015%). The bioadhesive property of the particles resulted in prolonged retention in the small intestine. Microspheres could be observed in the intestinal lumen at 4h and were detectable in the intestine 24h post-oral administration, although the percent radioactivity had significantly decreased (t(1/2) of (99m)Tc=4-5h). Increased drug loading (91%) was observed for the optimized formulation suggesting the efficiency of the method. Nearly 26% of INH was released in SGF pH 1.2 in 6h and 71.25% in SIF pH 7.4 in 30h. No significant drug-polymer interactions were observed in FT-IR studies. Dissolution and gamma-scintigraphy studies have shown promising results proving the utility of the formulation for enteric drug delivery.  相似文献   

11.
Poly(vinyl alcohol) (PVA) microspheres were prepared by dispersion reticulation with glutaraldehyde and further aminated. These microspheres were firstly loaded with diclofenac (DF) and then entrapped in cellulose acetate butyrate (CAB) microcapsules by an o/w solvent evaporation technique for intestinal delivery of drug. The encapsulated PVA microspheres due to their low swelling degree in intestinal fluids, do not have enough force to produce the disruption of CAB shell, therefore different amounts of succinoylated pullulan microspheres (SP-Ms) (exchange capacity up to 5.2 meq/g) were co-encapsulated. The SP-Ms do not swell in acidic pH, but swell up to 20-times in intestinal fluids causing the rupture of CAB shell and facilitating the escape of loaded PVA microspheres.  相似文献   

12.
Use of floating alginate gel beads for stomach-specific drug delivery.   总被引:10,自引:0,他引:10  
Two types of alginate gel beads capable of floating in the gastric cavity were prepared. The first, alginate gel bead containing vegetable oil (ALGO), is a hydrogel bead and its buoyancy is attributable to vegetable oil held in the alginate gel matrix. The model drug, metronidazole (MZ), contained in ALGO was released gradually into artificial gastric juice, the release rate being inversely related to the percentage of oil. The second, alginate gel bead containing chitosan (ALCS), is a dried gel bead with dispersed chitosan in the matrix. The drug-release profile was not affected by the kind of chitosan contained in ALCS. When ALCS containing MZ was administered orally to guinea pigs, it floated on the gastric juice and released the drug into the stomach. Furthermore, the concentration of MZ at the gastric mucosa after administration of ALCS was higher than that in the solution, though the MZ serum concentration was the same regardless of which type of gel was administered. These release properties of alginate gels are applicable not only for sustained release of drugs but also for targeting the gastric mucosa.  相似文献   

13.
BACKGROUND: Alginate microspheres represent a useful tool for modified drug delivery. Their preparation is quite easy and is usually based on the gelling properties of the polysaccharide in the presence of divalent ions; nevertheless, microparticles prepared only with calcium alginate show several problems, mainly related to the mechanical stability and to the release that, in most cases, is too fast. To overcome such inconveniences, polymer-coated alginate microspheres and/or appropriately interpenetrating polymer network (semi-IPNs and IPNs) structures formed with alginate and other macromolecules were developed. OBJECTIVE: This article reports a synthetic overview on the most recent searches carried out on coated alginate microspheres. METHODS: After a section focused on the microsphere preparation, this article is divided into several main topics related to the specific polymer that was used as a coating material to provide a rationale in reporting literature data. In the last section, the advantages and disadvantages of the various approaches are discussed and the authors' opinion on perspectives for further studies and novel applications of coated alginate microspheres are reported. CONCLUSION: Ca(2+)-alginate microparticles could experience a new era if scientists will increase their efforts in developing microparticles with smart properties.  相似文献   

14.
Spherical and discrete calcium alginate microspheres had been produced by the emulsification technique. The microencapsulation process was highly efficient, but drug release from microspheres was rapid. A more orderly chain arrangement of the polymeric chains would give rise to a stronger and less permeable matrix capable of sustaining drug release. Therefore, the potential of using partially cross-linked alginate in the production of microspheres by emulsification was explored. The size and roundness of the microspheres, its drug content and drug release property were determined. The more viscous alginate solutions when reacted with more calcium salt added resulted in larger microspheres produced. Microspheres made from partially cross-linked alginate exhibited lower drug content and higher T75% values in drug release studies. This was due to decreased flexibility of the polymer chains which were partially held together by calcium ions, reducing subsequent interaction with the calcium ions resulting in lower drug entrapment efficiency and a more permeable microsphere matrix.  相似文献   

15.
In this study the feasibility of joining prilling and microwave (MW) assisted treatments as combined technique to produce controlled release alginate beads was tested. Beads were produced by prilling (laminar jet break-up) using different polymer concentrations and loaded with ketoprofen, a slightly soluble non-steroidal anti-inflammatory BCS class II drug characterized by low melting point. MW assisted treatments applied using different irradiating conditions were performed as drying/curing step. The effect of formulation conditions and process variables on drying kinetics, particle micromeritics, shape, surface and inner characteristics of the matrix as well as drug loading and drug release behaviour was studied (USP pH change method). The properties of MW dried particles were compared to those dehydrated by convective methods (room conditions and tray oven 105°C). Results showed that MW dried ketoprofen loaded beads were obtained in a very narrow dimensional range retaining shape and size distribution of the hydrates particles. Compared to the traditional drying methods, MW treatments were able to strongly increase drying rate of the hydrated beads achieving faster and controllable dehydration kinetics. Moreover, different regimes of irradiation affected structural properties of the particles such as matrix porosity as well as the solid state of the loaded drug. DSC, X-ray and FTIR analyses indicated complex chemical interactions between the drug and polymer matrix induced by MW, related with the regime of irradiation, that contributes to the differences in release profiles. In fact, MW treatments under different time and irradiating regimes are able to modulate drug release from alginate beads; high levels of irradiation led to beads suitable for immediate release oral dosage forms whereas the lowest regime of irradiation led to beads that achieved a prolonged/sustained release of the drug till 8h in simulated intestinal medium. This study showed that prilling in combination with microwave treatments is a useful and simple tandem technique to prepare dextran-based dried beads.  相似文献   

16.
A novel N-succinyl chitosan(Suc-Chi)/alginate hydrogel bead was prepared by the ionic gelation method for the controlled delivery of nifedipine. The structure and surface morphology of the hydrogel were characterized by FTIR and SEM, respectively. Factors influencing the swelling ability of the hydrogel bead were also investigated, such as the ratio of Suc-Chi and alginate (X(1)), the weight ratio of drug to polymer (X(2)), the volume ratio of alginate/Suc-Chi to CaCl(2) (X(3)), crosslinking time (X(4)), CaCl(2) concentration (X(5)). In addition, the delivery behavior of nifedipine from the hydrogel bead was studied. The amount of nifedipine released from the hydrogel bead at pH 1.5 was relatively low (11.6%), while this value approached 76% at pH 7.4. The results clearly suggested that the Suc-Chi/alginate hydrogel bead may be a potential polymeric carrier for drug delivery in the intestinal tract. The release of nifedipine from the hydrogel bead at various pH values was analysed by a semi-empirical equation and it was found that the drug release mechanisms were either 'anomalous transport' or 'case-II transport'.  相似文献   

17.
A novel in situ gel for sustained drug delivery and targeting   总被引:5,自引:0,他引:5  
The objective of this study was to develop a novel chitosan-glyceryl monooleate (GMO) in situ gel system for sustained drug delivery and targeting. The delivery system consisted of 3% (w/v) chitosan and 3% (w/v) GMO in 0.33M citric acid. In situ gel was formed at a biological pH. In vitro release studies were conducted in Sorensen's phosphate buffer (pH 7.4) and drugs were analyzed either by HPLC or spectrophotometry. Characterization of the gel included the effect of cross-linker, determination of diffusion coefficient and water uptake by thermogravimetric analysis (TGA). Mucoadhesive property of the gel was evaluated in vitro using an EZ-Tester. Incorporation of a cross-linker (glutaraldehyde) retarded the rate and extent of drug release. The in vitro release can further be sustained by replacing the free drug with drug-encapsulated microspheres. Drug release from the gel followed a matrix diffusion controlled mechanism. Inclusion of GMO enhanced the mucoadhesive property of chitosan by three- to sevenfold. This novel in situ gel system can be useful in the sustained delivery of drugs via oral as well as parenteral routes.  相似文献   

18.
The effects of alginate coated on tetracycline (Tc) loaded poly (D, L-lactic-co-glycolic acid) (PLGA) microspheres fabricated by double emulsion solvent evaporation technique for local delivery to periodontal pocket were investigated. Alginate coated PLGA microspheres showed smoother surface but enlarged their particle sizes compared with those of uncoated ones. In addition, alginate coated microspheres enhanced Tc encapsulation efficiency (E.E.) from 11.5?±?0.5% of uncoated ones to 17.9?±?0.5%. Moreover, all of the coated PLGA microspheres even fabricated at different conditions could prolong Tc release from 9–12 days with 50% or higher in cumulative release of Tc compared with those of uncoated ones. The swelling ratios of PLGA microspheres for alginate coated or uncoated ones, one of the possible mechanisms for enhancing Tc release for the coated ones, were measured. The results showed that 20% or higher in swelling ratio for the coated microspheres at the earlier stage of hydration (e.g.?≤?24?h) could be an important factor to result in high Tc release compared to the uncoated ones. In conclusion, alginate coated Tc loaded PLGA microspheres could enhance Tc delivery to periodontal pocket by enhancing drug encapsulated efficiency, released quantities and sustained release period compared with uncoated ones.  相似文献   

19.
The effects of alginate coated on tetracycline (Tc) loaded poly (D, L-lactic-co-glycolic acid) (PLGA) microspheres fabricated by double emulsion solvent evaporation technique for local delivery to periodontal pocket were investigated. Alginate coated PLGA microspheres showed smoother surface but enlarged their particle sizes compared with those of uncoated ones. In addition, alginate coated microspheres enhanced Tc encapsulation efficiency (E.E.) from 11.5 +/- 0.5% of uncoated ones to 17.9 +/- 0.5%. Moreover, all of the coated PLGA microspheres even fabricated at different conditions could prolong Tc release from 9-12 days with 50% or higher in cumulative release of Tc compared with those of uncoated ones. The swelling ratios of PLGA microspheres for alginate coated or uncoated ones, one of the possible mechanisms for enhancing Tc release for the coated ones, were measured. The results showed that 20% or higher in swelling ratio for the coated microspheres at the earlier stage of hydration (e.g. < or = 24 h) could be an important factor to result in high Tc release compared to the uncoated ones. In conclusion, alginate coated Tc loaded PLGA microspheres could enhance Tc delivery to periodontal pocket by enhancing drug encapsulated efficiency, released quantities and sustained release period compared with uncoated ones.  相似文献   

20.
Bioadhesive sodium alginate microspheres of Metoprolol tartrate (MT) for intranasal systemic delivery were prepared to avoid the first-pass effect, as an alternative therapy to injection, and to obtain improved therapeutic efficacy in the treatment of hypertension and angina pectoris. The microspheres (Ms) were prepared using emulsification--cross-linking method. The formulation variables were drug loading, polymer concentration, cross-linking agent concentration, and cross-linking time. The Ms were evaluated for characteristics, like particle size, incorporation efficiency, swelling ability, in vitro bioadhesion, in vitro drug release, and in vivo pharmacodynamic performance in rabbits against isoprenaline-induced tachycardia. Treatment of in vitro data to different kinetic equations indicated matrix-diffusion controlled drug delivery from sodium alginate Ms. Polymer concentration, cross-linking agent concentration, and cross-linking time influenced the drug release profiles significantly. In vivo studies indicated significantly improved therapeutic efficacy of MT from Ms with sustained and controlled inhibition of isoprenaline-induced tachycardia as compared with oral and nasal administration of drug solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号