首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30-60 μm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8 h following 2 h incubation in SGF and was found to retain 75% activity using the ARCHITECT? assay. Lysozyme was released completely in SIF in 10 h following 2 h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

2.
Lysozyme and insulin were encapsulated in alginate gel microspheres using impinging aerosols method. High loadings of around 50% weight/dry microspheres weight were obtained with encapsulation efficiencies of at least 48%. Environmental scanning electron microscopy revealed smooth spherical hydrated microspheres (30–60?µm) in diameter. No lysozyme or insulin release was measured in simulated gastric fluid (HCl, pH 1.2, 37°C). Total insulin release occurred in simulated intestinal fluid (SIF; phosphate buffer saline, pH 7.4, 37°C) in 8?h following 2?h incubation in SGF and was found to retain 75% activity using the ARCHITECT® assay. Lysozyme was released completely in SIF in 10?h following 2?h incubation in SGF and was found to exhibit at least 80% bioactivity using the Micrococcus lysodeikticus assay. The absence of protein release in HCl and the retention of high levels of biological activity demonstrate the potential of alginate gel microspheres, for improving oral delivery of biopharmaceuticals.  相似文献   

3.
Alginate-chitosan (ALG-CS) blend gel beads were prepared based on Ca2+ or dual crosslinking with various proportions of alginate and chitosan. The homogeneous solution of alginate and chitosan was dripped into the solution of calcium chloride; the resultant Ca2+ single crosslinked beads were dipped in the solution of sodium sulfate sequentially to prepare dual crosslinked beads. The dual crosslinkage effectively promoted the stability of beads under gastrointestinal tract conditions. The sustained release profiles of single and dual crosslinked gel beads loaded bovine serum albumin (BSA), a model protein drug, were investigated in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). In SGF, compared to Ca2+ single crosslinked beads, from which BSA released fast and the cumulative drug release percentages were about 80% of all formations in 4 h, the BSA total release from dual crosslinked gel beads was no more than 3% in 8 h. In SIF and SCF, Ca2+ single crosslinked beads were disrupted soon associating with the fast drug release. As to the dual crosslinked beads, the BSA total release from the ALG-CS mass ratio 9:1 (81.24%) was higher than that of 7:3 and 5:5 (less than 60%) in 8 h in SIF; the BSA release from all beads was much faster in SCF than in SIF. The dual crosslinked beads incubated in gastrointestinal tract conditions, the BSA cumulative release of ALG-CS mass ratios 9:1, 7:3 and 5:5 were respectively 2.35, 1.96, 1.76% (in SGF 4 h), 82.86, 78.83, 52.91% (in SIF 3 h) and 97.84, 96.81, 87.26% (in SCF 3 h), which suggested that the dual crosslinked beads have potential small intestine or colon site-specific drug delivery property.  相似文献   

4.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6?µm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

5.
This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6 microm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release.  相似文献   

6.
Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl2, diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease.  相似文献   

7.
ABSTRACT

Formulation and preparation parameters of drug/ion-exchange particles microencapsulated in cross-linked chitosan were evaluated for controlled release of the water-soluble drug chlorpheniramine maleate (CPM) in a suspension. An emulsion solvent evaporation method was used to produce CPM-resinates embedded in glutaraldehyde (GTA) crosslinked chitosan microspheres (MCSs). Crosslinking extent in the chitosan was monitored by swelling measurements. Controlled release was evaluated by dissolution tests in simulated gastric fluid without enzyme (SGF) and in simulated intestinal fluid without enzyme (SIF). CPM-resinates contained 62% (w/w) of drug. MCSs were spherical, ranging from 82 to 420 μm in diameter, and contained multiple resinates. The sizes of MCSs prepared with safflower oil and Span 80 were controlled by surfactant concentration, stirring speed, and duration of stirring. Maximum crosslinking was produced with 240 mg GTA per 250 mg of chitosan. Maximum drug release from free CPM-resinates was about 60% by 1 hr in SGF, and was about 100% by 3 hr in SIF. CPM release was slower from MCSs crosslinked with 120 mg of GTA compared to 5 mg GTA in both media. By 8.3 hr, the more crosslinked MCSs released about 30% CPM in SGF, and about 60% in SIF. Because of the apparent ceiling on release in SGF, the final experiments were conducted in SIF. Increasing the weight ratio of the chitosan coating to CPM-resinate ratio from 1:1 to 4:1 moderately decreased release profiles carried out to 33 hr. Increasing MCS diameters from 82 to 163 μm moderately decreased release profiles. Microencapsulation of CPM-resinates with crosslinked chitosan demonstrated controlled release of CPM in SGF and SIF without enzymes. The retardation effect increased when the crosslinking extent and chitosan to resin ratio increased.  相似文献   

8.
Formulation and preparation parameters of drug/ion-exchange particles microencapsulated in cross-linked chitosan were evaluated for controlled release of the water-soluble drug chlorpheniramine maleate (CPM) in a suspension. An emulsion solvent evaporation method was used to produce CPM-resinates embedded in glutaraldehyde (GTA) crosslinked chitosan microspheres (MCSs). Crosslinking extent in the chitosan was monitored by swelling measurements. Controlled release was evaluated by dissolution tests in simulated gastric fluid without enzyme (SGF) and in simulated intestinal fluid without enzyme (SIF). CPM-resinates contained 62% (w/w) of drug. MCSs were spherical, ranging from 82 to 420 microns in diameter, and contained multiple resinates. The sizes of MCSs prepared with safflower oil and Span 80 were controlled by surfactant concentration, stirring speed, and duration of stirring. Maximum crosslinking was produced with 240 mg GTA per 250 mg of chitosan. Maximum drug release from free CPM-resinates was about 60% by 1 hr in SGF, and was about 100% by 3 hr in SIF. CPM release was slower from MCSs crosslinked with 120 mg of GTA compared to 5 mg GTA in both media. By 8.3 hr, the more crosslinked MCSs released about 30% CPM in SGF, and about 60% in SIF. Because of the apparent ceiling on release in SGF, the final experiments were conducted in SIF. Increasing the weight ratio of the chitosan coating to CPM-resinate ratio from 1:1 to 4:1 moderately decreased release profiles carried out to 33 hr. Increasing MCS diameters from 82 to 163 microns moderately decreased release profiles. Microencapsulation of CPM-resinates with crosslinked chitosan demonstrated controlled release of CPM in SGF and SIF without enzymes. The retardation effect increased when the crosslinking extent and chitosan to resin ratio increased.  相似文献   

9.
In the present study, spherical microspheres able to prolong the release of INH were produced by a modified emulsification method, using sodium alginate as the hydrophilic carrier. The shape and surface characteristics were determined by scanning electron microscopy using gold sputter technique. Particle sizes of both placebo and drug-loaded formulations were measured by SEM and the particle size distribution was determined by an optical microscope. The physical state of the drug in the formulation was determined by differential scanning calorimetry (DSC). The release profiles of INH from microspheres were examined in simulated gastric fluid (SGF pH 1.2) and simulated intestinal fluid (SIF pH 7.4). Gamma-scintigraphic studies were carried out to determine the location of microspheres on oral administration and the extent of transit through the gastrointestinal tract (GIT). The microspheres had a smoother surface and were found to be discreet and spherical in shape. The particles were heterogeneous with the maximum particles of an average size of 3.719mum. Results indicated that the mean particle size of the microspheres increased with an increase in the concentration of polymer and the cross-linker as well as the cross-linking time. The entrapment efficiency was found to be in the range of 40-91%. Concentration of the cross-linker up to 7.5% caused increase in the entrapment efficiency and the extent of drug release. Optimized isoniazid-alginate microspheres were found to possess good bioadhesion (72.25+/-1.015%). The bioadhesive property of the particles resulted in prolonged retention in the small intestine. Microspheres could be observed in the intestinal lumen at 4h and were detectable in the intestine 24h post-oral administration, although the percent radioactivity had significantly decreased (t(1/2) of (99m)Tc=4-5h). Increased drug loading (91%) was observed for the optimized formulation suggesting the efficiency of the method. Nearly 26% of INH was released in SGF pH 1.2 in 6h and 71.25% in SIF pH 7.4 in 30h. No significant drug-polymer interactions were observed in FT-IR studies. Dissolution and gamma-scintigraphy studies have shown promising results proving the utility of the formulation for enteric drug delivery.  相似文献   

10.
In this paper, compendial sodium alginate beads have been manufactured by laminar jet break-up technology. The effect of polymer concentration, viscosity and polymeric solution flow rate on the characteristics of beads was studied. Size distribution of alginate beads in the hydrated state was strongly dependent on the flow rate and viscosity of polymer solutions, since a transition from laminar jet break-up conditions to vibration-assisted dripping was observed. The re-hydration kinetics of dried beads in simulated gastric fluid (SGF) showed that the maximum swelling of beads was reached after 1-2 h, with an increase in volume of two to three times and a time lag dependent on the polymer concentration. The re-hydration swelling profiles in simulated intestinal fluid (SIF) showed no time lag and higher swelling volume; moreover, in this medium after the maximum swelling was reached, the bead structure was quickly disaggregated because of the presence in the medium of phosphate able to capture calcium ions present in the alginate gel structure.  相似文献   

11.
Nigella sativa extract (NSE) was incorporated in alginate microcapsules using aerosolisation and homogenisation methods, respectively, with the aim of delivering high concentrations of the active species, thymoquinone (TQ), directly to sites of inflammation in the colon following oral administration. Encapsulation of NSE was accomplished either by direct loading or diffusion into blank microparticles. Microcapsules in the size range 40–60 µm exhibited significantly higher NSE loading up to 42% w/w and encapsulation efficiency (EE) up to 63% when the extract was entrapped by direct encapsulation compared with 4.1 w/w loading, 6.2% EE when NSE was incorporated by diffusion loading. Sequential exposure of samples to simulated intestinal fluids (SIFs) revealed that the microcapsules suppressed NSE release in simulated gastric fluid (SGF) for 2?h and SIF for 4?h and liberated most of the NSE content (80%) in simulated colonic fluid (SCF) over 18?h. NSE released in SCF at 12?h exhibited antioxidant activity, when measured using the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay at levels comparable with the activity of unencapsulated extract. These findings demonstrate the potential of oral alginate microcapsules as highly efficient, targeted carriers for colonic delivery of NSE in the treatment of inflammatory bowel disease.  相似文献   

12.
《Journal of drug targeting》2013,21(10):831-841
Microencapsulation of a hydrophilic active (gentamicin sulphate (GS)) and a hydrophobic non-steroidal anti-inflammatory drug (ibuprofen) in alginate gel microparticles was accomplished by molecular diffusion of the drug species into microparticles produced by impinging aerosols of alginate solution and CaCl2 cross-linking solution. A mean particle size in the range of 30–50 µm was measured using laser light scattering and high drug loadings of around 35 and 29% weight/dry microparticle weight were obtained for GS and ibuprofen respectively. GS release was similar in simulated intestinal fluid (phosphate buffer saline (PBS), pH 7.4, 37°C) and simulated gastric fluid (SGF) (HCl, pH 1.2, 37°C) but was accelerated in PBS following incubation of microparticles in HCl. Ibuprofen release was restricted in SGF but occurred freely on transfer of microparticles into PBS with almost 100% efficiency. GS released in PBS over 7?h, following incubation of microparticles in HCl for 2?h was found to retain at least 80% activity against Staphylococcus epidermidis while Ibuprofen retained around 50% activity against Candida albicans. The impinging aerosols technique shows potential for producing alginate gel microparticles of utility for protection and controlled delivery of a range of therapeutic molecules.  相似文献   

13.
Propranolol-HCl-loaded calcium alginate (ALG) beads, propranolol-resin complex (resinate)-loaded calcium alginate (RALG) beads and polyethyleneimine (PEI)-treated RALG (RALG-PEI) beads were prepared by ionotropic gelation/polyelectrolyte complexation method. The beads were evaluated and compared in respect of drug entrapment efficiency (DEE) and release characteristics in simulated gastric fluid (SGF, 0.1(N) HCl, pH 1.2) and simulated intestinal fluid (SIF, phosphate buffer, pH 6.8). DEE of RALG beads was considerably higher than that of ALG beads containing unresinated drug. However, DEE of RALG beads decreased with increase in both gelation time and concentration of the gel forming Ca2+ ions due to drug displacement from resinate. PEI treatment of RALG beads further decreased DEE as the polycation also displaced the drug from the resinate. The release of drug from all the beads was slow and incomplete in SGF owing to considerably less swelling of the beads and the decrease in drug release from the beads followed the order: RALG-PEI相似文献   

14.
The solubility of non cross-linked chitosan in weak acid solutions restricts its utility in microspheres for drug delivery. The primary aim of this study was to produce pentasodium tripolyphosphate cross-linked chitosan microspheres with higher acid resistance for controlled release of ampicillin. The microspheres were prepared by two different microencapsulation procedures (by emulsification and by spray-drying) and characterized by their particle size, surface morphology, stability, drug entrapment efficiency and drug release. The size of the microspheres was <10 microm with a narrow size distribution. The entrapment of ampicillin in the microspheres was more than 80%. Stability of uncross-linked and cross-linked microspheres was affected by the pH of simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.5). The inclusion of the enzymes pepsin and pancreatin did not affect the stability of the microspheres. The inclusion of lysozyme in phosphate buffer saline resulted in increased solubilization. The release of the drug was affected by cross-linking of microspheres with tripolyphosphate (TPP). The cross-linked microspheres were more stable in simulated gastric fluid and showed slower but sustained release of ampicillin. The antimicrobial activity of the released ampicillin was confirmed by Staphylococcus aureus bioassay.  相似文献   

15.
目的:研究羟丙基甲基纤维素(HPMC)的凝胶特性及其对曲尼司特缓释片释放行为的影响。方法:采用称重法、图像法和体积测量法,研究HPMC辅料片和曲尼司特缓释片在不同pH环境中的水合度和溶胀度。结果:辅料片在SGF和SIF中的水合速率常数分别为0.897 h-1和0.681 h-1;溶胀速率常数分别为1.005 h-1和0.713 h-1。曲尼司特缓释片在SGF中,在0.5 h内迅速水合和溶胀,其后呈负增长;而在SIF中,重量和体积都缓慢增加,5 h后重量稍有下降,体积保持不变。结论:HPMC水凝胶的形成速度和形态与介质的pH有关,凝胶层的溶蚀速度控制药物的释放。  相似文献   

16.
Diclofenac sodium (DS) a non-steroidal anti-inflammatory drug has a bitter taste and is a local stomach irritant. The aim of this study was to formulate taste masked DS orally dispersible tablets (ODTs) with targeted drug release in the intestine. Pellets of DS were designed using sugar sphere cores layered with DS followed by an enteric coat of Eudragit L100 and a second coat of Eudragit E100 for taste masking. The produced pellets had a high loading efficiency of 99.52% with diameters ranging from 493.7 to 638.9?µm. The prepared pellets were spherical with smooth surfaces on scanning electron microscopy examination. Pellets with the 12% enteric coat Eudragit L100 followed by 5% Eudragit E 100 resulted in 1.4?±?0.5% DS release in simulated gastric fluid (SGF) and complete dissolution in simulated intestinal fluid (SIF). The pellets were then used to formulate ODTs. In vitro disintegration time of ODTs ranged from 20?±?0.26 to 46?±?0.27?s in simulated saliva fluid (SSF). Dissolution was less than 10% in SGF while complete drug release occurred in SIF. The release rate was higher for the optimized formulation (F12) in SIF than for the marketed product Voltaren® 25?mg tablets. The optimized ODTs formulation had a palatable highly acceptable taste.  相似文献   

17.
A series of mesocellular foams (MCFs)-based mesoporous silica nanospheres (DH-MCF-P123-n, (n=12, 2, 0.5)) were synthesized as controlled-release deliveries for a typical antidepressant drug, venlafaxine. The foams were 3-(2,3-dihydroxypropoxyl)propyl-grafted and the P123 template partially preserved. We studied the release profiles of venlafaxine-loaded DH-MCF-P123-n in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), respectively, as well as their corresponding venlafaxine loading capacities. Appropriate amounts of P123 template preserved in mesopores showed an efficient synergetic effect on increasing venlafaxine loading capacity and controlled-release property. Up to 90.87% (mass fraction) of venlafaxine could be loaded into DH-MCF-P123-2. For this carrier, 36% of venlafaxine was released after 1h of incubation in SGF and 53% of venlafaxine was released after 12h in SIF. The mechanisms of the loading and releasing processes were tentatively described based on the release behaviors.  相似文献   

18.
Oral administration of dry vaccine formulations is acknowledged to offer major clinical and logistical benefits by eliminating the cold chain required for liquid preparations. A model antigen, bovine serum albumin (BSA) was encapsulated in alginate microspheres using aerosolisation. Hydrated microspheres 25 to 65 μm in size with protein loading of 3.3 % w/w were obtained. Environmental scanning electron microscopy indicated a stabilizing effect of encapsulated protein on alginate hydrogels revealed by an increase in dehydration resistance. Freeze drying of alginate microspheres without use of a cryoprotectant resulted in fragmentation and subsequent rapid loss of the majority of the protein load in simulated intestinal fluid in 2 h, whereas intact microspheres were observed following freeze-drying of BSA-loaded microspheres in the presence of maltodextrin. BSA release from freeze-dried preparations was limited to less than 7 % in simulated gastric fluid over 2 h, while 90 % of the protein load was gradually released in simulated intestinal fluid over 10 h. SDS-PAGE analysis indicated that released BSA largely preserved its molecular weight. These findings demonstrate the potential for manufacturing freeze-dried oral vaccines using alginate microspheres.  相似文献   

19.
To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.  相似文献   

20.
海藻酸钙凝胶微丸作为口服缓释给药载体的研究   总被引:8,自引:0,他引:8  
将海藻酸钠溶液滴入胶凝剂氯化钙溶液中制备了海藻酸钙凝胶微丸。以胶凝过程中凝胶微丸重量变化 (失水量 )研究了胶凝速率及不同浓度海藻酸钠溶液 ( 1 %~ 4 % )与氯化钙溶液 ( 0 0 5~0 2 0mol/L)对胶凝速率的影响 ,结果是 6h前胶凝速率快 ,随后减慢 ,约 70h胶凝完全 ,氯化钙溶液的浓度≥ 0 1mol/L对胶凝速率无明显影响。干燥的凝胶微丸在不同水性介质中溶胀试验结果表明 :在温度约 37℃时 ,微丸在蒸馏水和 0 1mol/L盐酸 ( pH1 0 )中几乎不溶胀 ,而在磷酸盐缓冲溶液( pH6 8)中1h溶胀 ,溶胀后的微丸直径是干燥前湿微丸直径的 1 80 %。海藻酸钙凝胶微丸这种溶胀的 pH敏感性 ,使它能成为口服药物缓释制剂的载体。以硝苯地平为模型药物制备的海藻酸钙凝胶微丸 ,其体外释放试验结果 ,2h累积释放量为 2 0 %~ 30 % ,6h为 6 0 %~ 80 % ,1 2h时大于85 %。药物从微丸中的释放是以扩散和骨架溶蚀相结合的方式。由此可见 ,硝苯地平的海藻酸钙凝胶微丸具有缓释作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号