首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Mitogen-activated protein kinases (MAPKs) comprise 3 subgroups, that is extracellular signal-regulated protein kinase, c-Jun N-terminal kinase (JNK) and p38 MAPK (p38). In this study we analyzed the role of JNK as well as the expression of MAPK phosphatase-1 (MKP-1) in renal cancers. MATERIALS AND METHODS: Four renal cell carcinoma (RCC) cell lines were used. The effects of anisomycin (JNK activator) and Ro-318220 (MKP-1 expression inhibitor) were analyzed by alamar blue assay. Apoptosis was determined by flow cytometric TUNEL analysis, nuclear morphological alternations and the detection of DNA fragmentation. Changes in MKP-1 expression as well as the activation of extracellular signal-regulated protein kinases and JNK were analyzed by Western blotting. RESULTS: All cell lines treated with anisomycin resulted in a transient activation of JNK without inducing apoptosis. Since we hypothesized that elevated MKP-1 expression could possibly prevent persistent JNK activation, Ro-318220 was used. When cells were treated with Ro-318220, MKP-1 expression decreased in Caki-1 and KU 20-01 cells but not in ACHN or 769P cells. Combined treatment of Caki-1 and KU 20-01 cells with anisomycin and Ro-318220 resulted in a decrease in MKP-1 expression concomitant with persistent JNK activation. Apoptosis was induced in each cell line. CONCLUSIONS: These results suggest that prevalent MKP-1 expression in RCC contributes to cancer cell survival by attenuating an apoptosis inducing signal cascade via JNK. Since Ro-318220 potentiated JNK related apoptosis, JNK activation by blocking MKP-1 expression may be an effective therapeutic approach to RCC.  相似文献   

2.
Expression of mitogen-activated protein kinases in human renal dysplasia   总被引:13,自引:0,他引:13  
BACKGROUND: We previously reported that the expression of mitogen-activated protein kinases (MAPKs) is developmentally regulated. Dysregulation of MAPKs may lead to kidney malformation. Thus, we investigated the expression of MAPKs in human renal dysplasia, one of the most common kidney malformations. METHODS: Prenatal (gestational ages 20 to 36 weeks, N = 6) and postnatal (2 years old, N = 1) dysplastic kidneys, and normal kidneys (gestational ages 19 to 34 weeks, N = 4) were examined. Immunohistochemical studies were performed using antibodies against extracellular signal-regulated kinase (ERK), p38 MAPK (p38), c-Jun N-terminal kinase (JNK), phospho-MAPKs (P-MAPKs), and proliferating cell nuclear antigen (PCNA). Apoptosis was detected by the TUNEL method. RESULTS: In dysplastic kidneys, proliferation was prominent in dysplastic tubules and also found in cyst epithelia. TUNEL staining was detected in dysplastic tubules and cysts, and occasionally in undifferentiated cells. p38 and anti-phospho-p38 (P-p38) were strongly expressed in dysplastic epithelia, but not detected in normal kidneys at any stage examined. On the other hand, JNK and P-JNK were positive in tubular epithelia of normal kidneys, whereas their expression was barely detectable in dysplastic tubules and cysts. ERK was expressed in all tubular segments, and P-ERK was detected in distal tubules and collecting ducts of normal kidneys. Dysplastic kidney epithelia stained exclusively positive for ERK and P-ERK. CONCLUSIONS: p38 is ectopically expressed, and JNK is down-regulated in dysplastic kidney epithelia. Furthermore, dysplastic epithelia are exclusively positive for ERK and P-ERK. Activated p38 and ERK may mediate hyperproliferation of dysplastic tubules resulting in cyst formation, whereas down-regulated JNK expression may be the cause or the result of an undifferentiated state of dysplastic epithelia.  相似文献   

3.
4.
B Nolan  A Duffy  L Paquin  M De  H Collette  C M Graziano  P Bankey 《Surgery》1999,126(2):406-412
BACKGROUND: Neutrophil (PMN) apoptosis is critical to the resolution of infection and the limitation of inflammation. Bacterial endotoxin (lipopolysaccharide [LPS]) inhibits PMN apoptosis and activates the p38 mitogen-activated protein kinase (MAPK) signal cascade. The role of p38 and other MAPKs (ERK and SAPK/JNK) in regulating PMN apoptosis after LPS stimulation is unknown. We hypothesize that MAPK activation by LPS signals inhibition of PMN apoptosis. METHODS: PMNs were isolated from the blood of healthy human volunteers and incubated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor), or 0.1% dimethyl sulfoxide (vehicle) for 1 hour before treatment with LPS (0, 10, or 1000 ng/mL). Neutrophil MAPK activation was determined by Western blot analysis for phosphorylated p38, ERK, and SAPK/JNK. Apoptosis was quantified by flow cytometry with use of propidium iodide and annexin V. RESULTS: LPS inhibited PMN apoptosis and activated p38 and ERK in a dose- and time-dependent fashion. SAPK/JNK was not activated by LPS. Treatment of cells with ERK inhibitor before LPS stimulation abrogated LPS signaled inhibition of PMN apoptosis. Conversely, p38 inhibition with SB203580 augmented inhibition of apoptosis by LPS. CONCLUSIONS: These data demonstrate opposing roles of MAPKs in mediating PMN apoptosis after LPS stimulation. We conclude that LPS signal transduction by ERK inhibits PMN apoptosis while activation of p38 promotes apoptosis.  相似文献   

5.
Human renal dysplasia is frequently associated with urinary tract obstruction and the abnormal expression of mitogen-activated protein kinase (MAPK). Here, we determined the renal responses and MAPK expression in developing kidneys that were obstructed in fetal lambs. Kidneys were harvested at various times after obstruction (gestation day 60) through normal term (day 145). Dilation of Bowman's capsule and proximal tubules was seen 2 days after obstruction and involved the whole cortex 18 days later, with numerous cysts present throughout the kidney at term. The proliferation marker Ki-67 and transforming growth factor-beta (TGF-beta) were detected 2 days after obstruction and progressively increased in tubules, cysts, and the interstitium. In control kidneys, p38 was expressed in tubules only during the fetal stage, whereas phosphorylated extracellular signal-regulated kinase (P-ERK) was limited to ureteric buds and collecting ducts at all stages examined. However, Jun-N-terminal kinase (JNK) was absent in the fetal kidney but present in tubules at term. In obstructed kidneys, cyst epithelia were positive for p38 and P-ERK but negative for JNK throughout all stages. These studies show that P-ERK correlated spatially and temporally with Ki-67 and TGF-beta expression, which suggests that ERK may contribute to cyst formation and fibrosis in the obstructed fetal kidney.  相似文献   

6.
The expression of mitogen-activated protein kinases (MAPK) in DBA/2-pcy/pcy (pcy) mice, a murine model of polycystic kidney disease was investigated. Proliferating cell nuclear antigen-positive cells were recognized in cyst epithelium from embryonic day 14.5 to 25 wk of age. Extracellular signal-regulated kinase (ERK) was expressed in the renal tubules of control and pcy mice, but stronger immunostaining was observed in cyst epithelium. Phosphorylated ERK was detected only in pcy mice and was localized predominantly in the cysts. p38 MAPK (p38) was no longer expressed after birth in controls but was detected in the cyst epithelium and in occasional tubular cells of pcy mice at all stages examined. c-Jun N-terminal kinase (JNK) was expressed in all tubular segments of controls after neonatal day 7, whereas in pcy kidneys, tubules became positive for JNK after 8 wk, and the cysts expressed little JNK. Administration of an oral MAP/ERK kinase inhibitor, PD184352, 400 mg/kg per d, to 10-wk-old pcy mice daily for the first week and then every third day for 6 additional weeks significantly decreased BP, kidney weight, serum creatinine level, and water intake and significantly increased urine osmolality. The cystic index and expression of phosphorylated ERK and ERK were significantly lower in PD184352-treated pcy mice. These results demonstrate that the expression of MAPK is dysregulated in cyst epithelium and that inhibition of ERK slowed the progression of renal disease in pcy mice.  相似文献   

7.
8.
Kayali AG  Austin DA  Webster NJ 《Diabetes》2000,49(11):1783-1793
Osmotic shock and insulin stimulate GLUT4 translocation and glucose transport via mechanisms that are for the most part distinct yet convergent. In this article, we investigated the effect of osmotic shock and insulin on the activation of the mitogen-activated protein kinase (MAPK) cascades in differentiated 3T3-L1 adipocytes. The MAPKs are activated by phosphorylation on conserved tyrosine and threonine residues. Both sorbitol and insulin strongly stimulated extracellular regulated kinase (ERK) 1 and 2 phosphorylation (8- and 18-fold, respectively). In contrast, c-jun-NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK) phosphorylation was stimulated only by sorbitol (sevenfold) and not by insulin. Phosphorylation of p38 MAPK was stimulated strongly by sorbitol (22-fold) but weakly by insulin (2.7-fold). Measurement of intrinsic JNK and p38 MAPK activity confirmed the phosphorylation studies. JNK and p38 MAPK were activated only significantly by sorbitol. The MAPKs are phosphorylated by dual-specificity kinases (mitogen-activated ERK-activating kinase [MEK] or MAPK kinase [MKK]). As expected, sorbitol and insulin both stimulated MEK phosphorylation. MKK4 was phosphorylated only in response to sorbitol, and neither of the stimuli caused phosphorylation of MKK3 or 6. To determine the functional significance of the observed activation of p38 MAPK in response to insulin and osmotic shock, we used three pyridinyl imidazole p38 MAPK inhibitors, SB203580, SB202190, and PD169316. Insulin and osmotic shock-stimulated glucose transport was not inhibited by any inhibitor at concentrations that were shown to block p38 MAPK activity. Furthermore, activation of the p38 MAPK pathway by treatment of cells with anisomycin did not stimulate glucose transport. These results suggest that activation of the p38 MAPK pathway is not involved in the stimulation of glucose transport.  相似文献   

9.
10.
Mycophenolic acid (MPA), an inosine monophosphate dehydrogenase inhibitor, is widely used as an immunosuppressive drug after transplantations including those of pancreas islet cells. However, recent reports have indicated that MPA has apoptotic effects on islet cells in vitro. To study the effect of MPA on islet cells and determine its mechanism, we used an insulin secreting cell-line, HIT-T15. We examined mitogen-activated protein kinase (MAPK) activation after MPA treatment, and determining cell death levels using methylthiazdetetrazolium assays. The activations of extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK and caspase-3 cleavage were measured by Western blotting. MPA (1, 10, 30 micromol/L) increased cell death and caspase-3 cleavage within 24 hours. Exogenous 500 micromol/L guanosine reversed the MPA-induced islet cell death, but exogenous adenosine did not. MPA 10 micromol/L induced cell apoptosis and increased the activations of JNK, ERK, and p38 MAPK. Furthermore, exogenous guanosine, but not exogenous adenosine, reversed these effects induced by MPA. This study demonstrated that MPA may induce islet apoptosis in HIT-T15 cells by increasing activations of JNK, ERK, and p38 MAPK in a guanosine-dependent manner.  相似文献   

11.
BACKGROUND: To explore the roles of eicosanoids in arachidonic acid-induced mitogen-activated protein kinase (MAPK) signal transduction, we have shown that exposure of proximal tubular cells to arachidonic acid induces phosphorylation of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), two members of the MAPK superfamily. We observed that ketoconazole, an inhibitor of the cytochrome P450 pathway, blocked ERK but not JNK activation. METHODS: Direct regulation of arachidonic acid on mitogen-activated protein kinase (MAPK) signaling pathways was evaluated more directly by utilizing specific enzyme inhibitors of the cytochrome P450 metabolic pathway and by comparing the relative efficacy of arachidonic acid versus its cytochrome P450 metabolites (exogenous and endogenous), eicosatetraynoic acid (ETYA), and other fatty acids on the phosphorylation of members of the MAPK superfamily (ERKs, JNK, and p38(MAPK)), by utilizing early passage rabbit proximal tubular epithelial cells. RESULTS: Arachidonic acid activated p38(MAPK), a third member of the MAPK superfamily, in a time- and concentration-dependent manner. Studies designed to evaluate the ability of arachidonic acid and its cytochrome P450 metabolites (endogenously and exogenously) to stimulate ERKs, JNK, and p38(MAPK) found four conclusions. First, the metabolites of arachidonic acid generated endogenously by cytochrome P450 2C1 significantly augmented basal ERK activity, whereas the metabolites generated by the 2C2 isozyme significantly augmented basal p38(MAPK) activity. However, their effects were less profound than arachidonic acid itself. In contrast, there were no significant effects with transfection of either isozyme on basal JNK activity. Second, a variety of exogenous cytochrome P450 products were less potent than arachidonic acid on a molar basis in stimulating the activity of all three MAPKs. Third, ketoconazole and 17-octadecynoic acid, inhibitors of the cytochrome P450 pathway, as well as PPOH and DDMS, inhibitors of the epoxygenase and omega-hydroxylase pathways, respectively, failed to significantly reduce the effects of arachidonic acid to activate ERK and p38(MAPK) (JNK was not evaluated). Finally, arachidonic acid, its inactive analog ETYA, and other fatty acids with differing chain lengths and degrees of saturation stimulated the activity of all three MAPKs. CONCLUSIONS: These observations substantiate a role for arachidonic acid and other fatty acids in signaling linked to the MAPK superfamily in rabbit proximal tubular epithelium without the necessity of conversion to cytochrome P450 metabolites.  相似文献   

12.
BACKGROUND: Mitogen-activated protein kinases (MAPK) have been implicated in pathophysiologic responses to cardiopulmonary bypass (CPB). MAPK are deactivated by phosphatases, such as MAPK phosphatase-1 (MKP-1). We hypothesized that MAPK mediate peripheral microvascular contractile dysfunction caused by CPB in humans. METHODS: Skeletal muscle was harvested before and after CPB. Protein levels of MKP-1 and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 were measured. MKP-1 gene expression was measured. Peripheral microvessel responses to vasopressors were studied by videomicroscopy. Contractile function also was measured after MAPK inhibition with PD98059 (ERK1/2) and SB203580 (p38). ERK1/2, p38, and MKP-1 were localized by immunohistochemistry and in situ hybridization. RESULTS: ERK1/2 and p38 activity was decreased in peripheral tissue after CPB. MKP-1 was increased after CPB. Contractile responses of peripheral arterioles to phenylephrine and vasopressin were decreased after CPB. Microvessel reactivity also was reduced after treatment with PD98059 and SB203580. ERK1/2, p38, and MKP-1 localized to peripheral arterioles in tissue sections. CONCLUSIONS: CPB reduces ERK1/2 and p38 activity in peripheral tissue, potentially by MKP-1. Contractile responses of peripheral arterioles to phenylephrine and vasopressin are dependent on ERK1/2 and p38 and are decreased after CPB. These results suggest that alterations in MAPK pathways in part regulate peripheral microvascular dysfunction after CPB in humans.  相似文献   

13.
Low-level laser therapy (LLLT), widely used in physiotherapy, has been known to enhance wound healing and stimulate cell proliferation, including fibroblast and endothelial cells. Applying LLLT can increase cell proliferation in many kinds of cells including fibroblasts and endothelial cells. However, the protective mechanisms of LLLT on endothelial apoptosis remain unclear. We hypothesized LLLT can protect endothelial cells from inflammation-induced apoptosis. Human endothelial cell line, EA.hy926 cells, and TNF-α/cycloheximide (TNF/CHX) were used to explore the protective effects of LLLT (660 nm) on inflammation-induced endothelial apoptosis. Cell viability, apoptosis, caspase-3/7/8/9 activity, MAPKs signaling, NF-κB activity, and inducible/endothelial nitric oxide synthase (iNOS/eNOS) expression were measured. Our results showed that LLLT increased EA.hy926 cell proliferation, attenuated the TNF/CHX-induced apoptosis, and reduced the TNF/CHX-mediated caspase-3/7/8/9 activation. In addition, LLLT increased ERK MAPK phosphorylation and suppressed the TNF/CHX-increased p38 MAPK, JNK, IKK phosphorylation, NF-κB translocation, and iNOS expression. The caspases-3 cleavage and cell death were not increased in cells treating with ERK inhibitor U0126, which implicated that ERK is not to be responsible for the protective effects of LLLT. After treating with p38 mitogen-activated protein kinase (MAPK) activator, the protection of LLLT in cell apoptosis was no longer existed, showing that LLLT protected the endothelial cells by suppressing p38 MAPK signaling. Our results provide a new insight into the possible molecular mechanisms in which LLLT protects against inflammatory-induced endothelial dysfunction.  相似文献   

14.
OBJECTIVE: To examine the expression of mitogen-activated protein kinases (MAPKs) in human chondrocytes, to investigate whether selective activation of MAPKs is involved in up-regulation of proteoglycan (PG) synthesis following cyclical mechanical stimulation (MS), and to examine whether MS is associated with integrin-dependent or independent activation of MAPKs. METHODS: The C-28/I2 and C-20/A4 human chondrocyte cell lines were mechanically stimulated in monolayer cell culture. PG synthesis was assessed by [(35)S]-sulphate incorporation in the presence and absence of the p38 inhibitor SB203580, and the extracellular-regulated kinase (ERK1/2) inhibitor PD98059. Kinase expression and activation were assessed by Western blotting using phosphorylation status-dependent and independent antibodies, and by kinase assays. The Jun N-terminal kinase (JNK) inhibitor SP600125 and the anti-beta(1) integrin (CD29) function-blocking antibody were used to assess JNK activation and integrin dependence, respectively. RESULTS: Increased PG synthesis following 3 h of cyclic MS was abolished by pretreatment with 10 microM SB203580, but was not affected by 50 microM PD98059. The kinases p38, ERK1/ERK2 and JNKs were expressed in both stimulated and unstimulated cells. Phosphorylated p38 was detected at various time points following 0.5, 1, 2 and 3 h MS in C-28/I2, but not detected in C-20/A4 cell lines. Phosphorylation of ERK1 and ERK2 was not significantly affected by MS. Phosphorylation of the 54 and 46 kDa JNKs increased following 0.5, 1, 2 and 3 h of MS, and following CO(2) deprivation. MS-induced JNK phosphorylation was inhibited by SB203580 at concentrations > or =5 microM and activation of JNK1 following MS was blocked by SP600125 and partially inhibited by anti-CD29. CONCLUSIONS: The data suggest JNK, rather than p38 or ERK dependent increases in PG synthesis, and selective, partially integrin-dependent, activation of JNK kinases in human chondrocyte cell lines following cyclical MS. JNK activation is also very sensitive to changes in CO(2)/pH in this chondrocyte culture model.  相似文献   

15.
Expression of somatostatin in the adult and developing mouse kidney   总被引:1,自引:0,他引:1  
  相似文献   

16.
目的 探讨丝裂原激活蛋白激酶类(MAPKs)对缺氧条件下人近端肾小管上皮细胞(HKC)中富含半胱氨酸蛋白61(Cyr61)基因转录活性的调控机制。方法 缺氧培养HKC,Northern印迹检测Cyr61mRNA表达;Western印迹检测Cyr61、p38、细胞外信号调节激酶(ERK1/2)、c—Jun—N末端蛋白激酶(JNK)以及缺氧诱导因子1c(HIF-1α)的表达。构建含有人Cyr61基因启动子的报告基因Cyr61-luc质粒,将其单独或者分别与表达活性MAPKs的质粒Ca—MEK1和Ca—MKK6共同瞬时转染HKC。通过荧光素酶活性检测观察缺氧、MAPKs抑制剂和MAPKs活性酶对Cyr61基因转录活性的调控。结果 缺氧时HKC表达cyr61、HIF-1α增高,ERK1/2、JNK、p38总量不变,而其各自的磷酸化形式均明显增加。HKC转染Cyr—luc后,p38通路抑制剂SB203580和ERK通路抑制剂PD98059显著抑制缺氧时Cyr61的转录活性,两者协同作用时抑制作用显著增强。Ca—MEK1与Cyr—luc共转染HKC后,Cyr61转录活性无改变;而Ca—MKK6与Cyr—luc共转染后,Cyr61转录活性显著增高。对缺氧培养的HKC,PD98059处理使HIF-1α和Cyr61蛋白表达显著降低;SB203580处理可显著降低Cyr61蛋白表达,但对HIF-1α无影响。结论 在HKC中,缺氧可通过p38通路直接上调Cyr61基因启动子活性,也可通过ERK1/2途径促进HIF-1α表达,间接调节Cyr61基因启动子活性。  相似文献   

17.
Molecular mechanisms underlying chemotherapeutic agent-induced apoptosis in sarcoma cells are not well known. Induction of apoptosis is regulated by several components including mitogen-activated protein kinases (MAPKs) comprising ERK, p38MAPKs, and c-Jun N-terminal kinase (JNK). In the present study, we examined whether activation of JNK is induced by the chemotherapeutic agents cis-diaminedichloroplatinum (cisplatin, CDDP) or doxorubicin (DXR), and whether the ectopic expression of constitutively active (MKK7-JNK1) or dominant-negative form of JNK (dnJNK) influenced apoptosis in response to the CDDP or DXR in sarcoma cell lines MG-63 and SaOS-2. The CDDP or DXR induced JNK activation in the both cell lines, as assessed by Western blotting using phosphospecific antibodies. A transient expression of the activated form of JNK sensitized the MG-63 and SaOS-2 cells to the drug-induced apoptosis, while dnJNK1 reduced the proportion of apoptotic cell death. Apoptosis was determined by flow cytometry using annexin-V Cy5. Collectively, our results indicate that JNK activation is involved in apoptotic cell death in sarcoma cell lines following stimulation with CDDP or DXR.  相似文献   

18.
BACKGROUND: Studies have indicated that a shift from a Th1 to a Th2 response occurs that contributes to the late immunosuppression seen during sepsis. However, the mechanism by which this occurs is unknown. In this regard, mediators released in response to sepsis are thought to upregulate a family of stress-induced mitogen-activated protein kinases (MAPKs), such as JNK, ERK, and p38 MAPK, which may play a role in this process. MATERIALS AND METHODS: To determine the role of MAPK in immune suppression, we induced polymicrobial sepsis in C3H/HeN male mice using cecal ligation and puncture (CLP). Splenic lymphocytes were harvested 24 h post-CLP and stimulated with the T-cell mitogen concanavalin A, and the expression and activation of these MAPKs were assessed by Western analysis. To determine the extent to which these MAPKs may have an impact on splenic immune function, cells were pretreated with a 10 microM concentration of the p38 MAPK inhibitor SB203580 or the MEK inhibitor PD98059 or with DMSO vehicle. The cells were then stimulated with 2.5 microg/ml of the T-cell mitogen concanavalin A, and cytokine release was then determined (by ELISA). RESULTS: In the lymphocytes from CLP mice no JNK signal was detected, however, p38 expression and activation were markedly (P < 0.05, n = 6) increased. In contrast, the expression of activated ERK markedly decreased following septic challenge. The results indicate that p38 MAPK inhibition with SB203580 suppressed the sepsis-induced augmentation of interleukin-10 release while restoring the suppressed Th1 cytokine interleukin-2 release typically encountered following sepsis. Inhibition of ERK had no effect on cytokine release. Neither PD98059 nor SB203580 had an effect on interferon gamma release or on proliferative capacity. CONCLUSION: This would indicate that the induction of p38 MAPK activation in splenocytes contributes to the immunosuppression seen in late sepsis.  相似文献   

19.
目的 探讨白蛋白诱导肾小管上皮细胞凋亡以及诱导凋亡的信号传导机制&#65377; 方法 将培养的大鼠肾小管细胞NRK-52E分别与不同浓度(10&#65380; 20&#65380; 30 mg/ml)的去脂无内毒素牛血清白蛋白(BSA)共同孵育6&#65380; 12&#65380; 18和24 h&#65377;透射电镜&#65380;共聚焦激光显微镜和流式细胞仪检测细胞凋亡&#65377;BSA 20 mg/ml刺激NRK-52E细胞15&#65380; 30&#65380; 60和120 min后, Westen印迹测定p38&#65380;氨基末端激酶(JNK)和细胞外信号调节激酶(ERK)活性&#65377;将SB202190(20 μmol/L, p38抑制剂)&#65380;SP600125(10 μmol/L, JNK抑制剂)和PD98059(20 μmol/L, ERK抑制剂)分别与白蛋白和NRK-52E细胞共同孵育24 h后检测细胞凋亡&#65377;结果 白蛋白以时间和剂量依赖方式诱导肾小管细胞凋亡&#65377;白蛋白与NRK-52E细胞共孵育后,p38和JNK活性明显升高,ERK活性显著降低&#65377;SB202190和SP600125可分别抑制白蛋白诱导NRK-52E细胞凋亡,而PD98059促进白蛋白诱导的NRK-52E细胞凋亡&#65377;结论 白蛋白以时间和剂量依赖方式诱导肾小管细胞凋亡,而p38和JNK激活与ERK抑制介导了白蛋白诱导的肾小管细胞凋亡&#65377;  相似文献   

20.
Mutations of genes in the renin-angiotensin system are associated with congenital abnormalities of the kidney and urinary tract. The major signaling pathway for branching morphogenesis during kidney development is the c-Ret receptor tyrosine kinase whose ligand is GDNF and whose downstream target is Wnt11. We determined whether angiotensin II, an inducer of ureteric bud branching in vitro, influences the GDNF/c-Ret/Wnt11 pathway. Mouse metanephroi were grown in the presence or absence of angiotensin II or an angiotensin type 1 receptor (AT1R) antagonist and gene expression was measured by whole mount in situ hybridization. Angiotensin II induced the expression of c-Ret and Wnt11 in ureteric bud tip cells. GDNF, a Wnt11-regulated gene expressed in the mesenchyme, was also upregulated by angiotensin II but this downregulated Spry1, an endogenous inhibitor of Ret tyrosine kinase activity in an AT1R-dependent manner. Angiotensin II also decreased Spry1 mRNA levels in cultured ureteric bud cells. Exogenous angiotensin II preferentially stimulated ureteric bud tip cell proliferation in vivo while AT1R blockade increased cell apoptosis. Our findings suggest AT1R-mediated inhibition of the Spry1 gene increases c-Ret tyrosine kinase activity leading to upregulation of its downstream target Wnt11. Enhanced Wnt11 expression induces GDNF in adjacent mesenchyme causing focal bursts of ureteric bud tip cell proliferation, decreased tip cell apoptosis and branching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号